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Abstract: Some new formulas related to the well-known symmetric Lucas polynomials are the pri-
mary focus of this article. Different approaches are used for establishing these formulas. A matrix
approach to Lucas polynomials is followed in order to obtain some fundamental properties. Par-
ticularly, some recurrence relations and determinant forms are determined by suitable Hessenberg
matrices. Conjugate Lucas polynomials and generating functions are derived and examined. Several
connection problems between the Lucas polynomials and other celebrated symmetric and non-
symmetric orthogonal polynomials such as the first and second kinds of Chebyshev polynomials and
their shifted counterparts are solved. We prove that several argument-type hypergeometric functions
are involved in the connection coefficients. In addition, we construct new formulas for high-order
derivatives of Lucas polynomials in terms of their original polynomials, as well as formulas for
repeated integrals of Lucas polynomials.
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1. Introduction

The investigations regarding different special functions occupy a considerable part
of the literature. Numerous papers have been published interested in examining various
polynomial sequences theoretically. Examples of these contributions are the studies on
Fibonacci polynomials and their generalized polynomials ([1–4]). The interesting books
by Koshy [5] and Djordjevic [6] comprehensively studied many sequences of polynomials.
Two kinds of orthogonal polynomials have recently been investigated from a theoretical
point of view in [7,8]. A note on the Bernoulli and Euler polynomials was given in [9]. The
authors in [10] studied three other families of polynomials. Some properties of Horadam
polynomials were given in [11]. A class of generalized polynomials associated with Hermite
and Euler polynomials was considered and investigated in [12].

Numerous problems in many fields, such as approximation theory and theoretical
physics, rely on special functions. Some uses of some special functions are discussed
in [13]. In numerical analysis, special functions and polynomials play important roles in
developing several approximations of different problems. One can consult the useful books
in [14,15] that illustrate the importance of some special functions in numerical analysis.
Specifically, obtaining spectral solutions to various differential equations can be aided by
using several special functions. For example, Chebyshev polynomials of the fifth kind were
used in [16] to handle a type of fractional differential equations. Chebyshev polynomials of
the third and fourth kinds have also been used in a variety of papers to treat different types
of differential equations. For some papers in this direction, one can consult [17,18].

A wide variety of disciplines, including physics, computer science, biology, and statis-
tics, rely primarily on Lucas polynomials and their generalized sequences of polynomials.
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A wide range of theoretical publications in the literature focus on these sequences. For
instance, the authors in [19,20] derived formulas concerning respectively the second and
the qth derivative sequences of Fibonacci and Lucas polynomials. For some other articles
regarding Lucas polynomials, one may be referred to [21,22]. In addition, some differ-
ential equations have been solved numerically using these polynomial sequences. For
example, the authors in [23] used Lucas polynomials to approach a certain model that
arises in chemical processes. In [24], a numerical solution for a two-dimensional Sobolev
equation using mixed Lucas and Fibonacci polynomials was proposed. The authors in [25]
obtained numerical solutions for the multi-dimensional sinh-Gordon equation based on
Lucas polynomials. A fractional-order model was treated using Lucas polynomials in [26].

The issue of how different polynomials are connected is an essential one. Finding the

connection coefficients Ai,j such that Fi(x) =
i

∑
j=0

Ai,j Gj(x) is the solution to the connection

problem between the two sets of polynomials {Fi(x)}i≥0 and {Gj(x)}j≥0. Numerous papers
have been written on the subject of addressing the connection problems between different
orthogonal polynomials. For two examples, see [27,28].

Due to their connections to different classes of special functions, many types of hyper-
geometric functions play important roles in many areas of mathematics. These functions are
frequently used to calculate the connection and linearization coefficients between several
polynomials. See, for example ([29,30]).

One further area of curiosity is the development of explicit formulations for high-order
derivatives and repeated integrals of different kinds of special functions. More precisely,
expressing the derivatives of different celebrated polynomials as combinations of their
original ones is of great importance. They are very useful in approximating a variety of
differential equations. Specifically, in [31], Abd-Elhameed established new derivatives
formulas for Chebyshev polynomials of the sixth kind and used them as basis functions to
treat a type of non-linear Burgers’ equation. Furthermore, in [32], some other polynomial
derivative formulas generalizing Chebyshev polynomials of the third kind were established.
Using the spectral Galerkin approach, these polynomials were used to find solutions to
linear and non-linear even-order BVPs.

Our main aim in this article is to establish some new formulas of Lucas polynomials
and their relationships with some celebrated orthogonal polynomials via two approaches.
To this end, we use some fundamental properties of Lucas polynomials as well as some
properties of well-known orthogonal polynomials.

Below is an outline of the article’s primary aims:

• Follow a matrix approach to Lucas polynomials in order to derive some of the funda-
mental relations of these polynomials. Important features of a polynomial sequence
can be obtained using this approach ([33,34]);

• Solve connection problems between Lucas polynomials and some orthogonal poly-
nomials. We will show that the connection coefficients are expressed in terms of
hypergeometric functions of different arguments;

• Establish new high-order derivatives and repeated integral formulas of Lucas polynomials.

The paper is organized as follows: In the next section, we give some elementary
properties of Lucas polynomials. Section 3 is devoted to following a matrix approach to
obtain some formulas concerned with Lucas polynomials. Section 4 is concerned with
establishing new connection formulas between Lucas polynomials and some orthogonal
polynomials and their inversion formulas. In Section 5, we derive two new formulas. In the
first, we express the high-order derivatives of Lucas polynomials in terms of their original
polynomials. In contrast, in the second one, we give a new expression for the repeated
integrals of Lucas polynomials in terms of their original ones. Finally, some conclusions are
presented in Section 6.
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2. An Overview on Lucas Polynomials and Jacobi Polynomials

This section mainly focuses on outlining some important relationships related to Lucas
polynomials. Additionally, several characteristics of Jacobi polynomials and their shifted
ones are presented.

2.1. Some Properties of Lucas Polynomials

Consider the Lucas polynomials sequence {Ln(x)}n≥0. This recurrence relation can
be used to construct the Lucas polynomials:

Ln(x) = xLn−1(x) + Ln−2(x), L0(x) = 2, L1(x) = x, n ≥ 2. (1)

In the power basis, we can write

Ln(x) =
n

∑
k=0

an,k xk, an,k ∈ R, n = 0, 1, · · · ,

with a0,0 = 2 and, for n, k > 0,

an,k =


2n

n + k

( n+k
2

n−k
2

)
, (n− k) even,

0, (n− k) odd,

(2)

or, alternatively, as

Ln(x) = j
b n

2 c
∑

m=0

(n−m
m )

n−m
xn−2m, n ≥ 0. (3)

From (1), it is clear that the coefficients an,k satisfy the following recurrence relation:

an,k = an−1,k−1 + an−2,k, n ≥ k ≥ 2, (4)

with

an,0 =

{
2, n even,
0, n odd,

an,1 =

{
0, n even,
n, n odd,

n ≥ 0.

The inversion formula to (3) can be written in the form

xn =
b n

2 c
∑
i=0

(−1)i ξn−2i

(
n
i

)
Ln−2i(x), n ≥ 0, (5)

where

ξi =

{
1
2 , i = 0,
1, i ≥ 1.

(6)

Furthermore, one of the important relations of Lucas polynomials is its structural formula
which can be easily shown from the power form representation (3). This formula is given by

Ln(x) =
1

n + 1
L′n+1(x) +

1
n− 1

L′n−1(x), n ≥ 2. (7)

2.2. Some Properties of Jacobi Polynomials and Their Shifted Ones

This section focuses on presenting some fundamental properties of the classical Jacobi
polynomials and their shifted ones.
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It is well known that the Jacobi polynomials P(α,β)
m (x), x ∈ [−1, 1], m ≥ 0 α > −1,

β > −1, (see [35,36]) can be generated by the following Rodrigues formula:

P(α,β)
m (x) =

(−1)m

2m m!
(1− x)−α(1 + x)−β dm

dxm

[
(1− x)α+m(1 + x)β+m

]
.

These polynomials have the following hypergeometric representation:

P(α,β)
m (x) =

(α + 1)m

m! 2F1

(
−m, m + α + β + 1

α + 1

∣∣∣∣1− x
2

)
.

For convenience, the normalized Jacobi polynomials can be defined as (see, [7])

R(α,β)
m (x) = 2F1

(
−m, m + α + β + 1

γ + 1

∣∣∣∣1− x
2

)
. (8)

The main characteristic of the polynomials in (8) is that they satisfy the property:

R(α,β)
m (1) = 1, m = 0, 1, 2, . . . .

It is an easy matter to transform all identities and relations of the classical Jacobi
polynomials P(α,β)

m (x) in order to obtain their counterparts for the polynomials R(α,β)
m (x).

For example, the orthogonality relation for the polynomials R(α,β)
m (x) is given by

∫ 1

−1
(1− x)α(1 + x)β R(α,β)

m (x) R(α,β)
n (x) dx =

{
0, m 6= m,

hα,β
m , m = n,

(9)

where

hα,β
m =

2α+β+1 m! Γ(m + β + 1) (Γ(α + 1))2

(2m + α + β + 1) Γ(m + α + β + 1) Γ(m + α + 1)
. (10)

If the parameters α and β are chosen appropriately, the following six well-known special
polynomials can be derived as special polynomials of R(α,β)

m (x):

• The first-kind Chebyshev polynomials Tm(x);
• The second-kind Chebyshev polynomials Um(x);
• The third-kind Chebyshev polynomials Vm(x);
• The fourth-kind Chebyshev polynomials Wm(x);
• Legendre polynomials Lm(x).

• Ultraspherical polynomials C(α)
m (x).

In fact, the above six families of polynomials can be extracted from the polynomials R(α,β)
m (x)

by the following relations:

Tm(x) = R(− 1
2 ,− 1

2 )
m (x), Um(x) = (m + 1) R( 1

2 , 1
2 )

m (x),

Vm(x) = R(− 1
2 , 1

2 )
m (x), Wm(x) = (2m + 1) R( 1

2 ,− 1
2 )

m (x),

Lm(x) = R(0,0)
m (x), C(α)

m (x) = R(α− 1
2 ,α− 1

2 )
m (x).

Now, we define the shifted normalized Jacobi polynomials R̃(α,β)
m (x) on [0, 1] as:

R̃(α,β)
m (x) = R(α,β)

m (2x− 1).
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The orthogonality relation of R̃(α,β)
m (x) can be written as

∫ 1

0
(1− x)α xβ R̃(α,β)

m (x) R̃(α,β)
n (x) dx =

{
0, n 6= m,

h̃α,β
m , n = m,

(11)

where

h̃α,β
m =

m! (Γ(α + 1))2 Γ(m + β + 1)
(2m + α + β + 1) Γ(m + α + 1) Γ(m + α + β + 1)

. (12)

The following power form representation of R̃(α,β)
m (x) and its inversion formula are useful

in the sequel:

R̃(α,β)
m (x) =

m

∑
r=0

(−1)r m! Γ(α + 1) (β + 1)m (α + β + 1)2m−r

r! (m− r)! Γ(m + α + 1) (α + β + 1)m (β + 1)m−r
xm−r, (13)

and

xm =
m

∑
r=0

(m
r )(α + 1)m−r(m− r + β + 1)r

(2m− 2r + α + β + 2)r(m− r + α + β + 1)m−r
R̃(α,β)

m−r (x). (14)

Jacobi polynomials and the particular families they belong to are covered in detail in [35,37].

3. A Matrix Approach to Lucas Polynomials

In this section, we follow a matrix approach to Lucas polynomials. We denote by A
the matrix with entries ai,j, i, j = 0, . . . , n, ai,i 6= 0, ∀ i and ai,j = 0 for j > i. A is an infinite,
lower triangular non-singular matrix. For example, for n = 6, we obtain

A =



2 0 0 . . . . . . 0

0 1
. . .

...

2 0 1
. . .

...

0 3 0 1
. . .

...

2 0 4 0 1
. . .

...
0 5 0 5 0 1 0
2 0 9 0 6 0 1


.

Note that the classical sequence of Lucas numbers can be computed from the sums of the
elements in the rows of A, that is, ∑k

i=0 ak,i = Lk.
Moreover, the elements of the columns of A corresponding to the column sequences

of the (2, 1)−Pascal triangle except for the element a0,0 being 2.
If Lx =

[
L0(x), L1(x), . . . , Ln(x), . . .

]T , and X =
[
1, x, x2, . . . , xn, . . .

]T , we obtain the
matrix form of the Lucas polynomial sequence:

Lx = AX.

In the following, we will write P.S. to denote a polynomial sequence. Since A is an infinite,
lower triangular non-singular matrix, so is also A−1 = B =

(
bi,k
)

i,k≥0 with

b0,0 =
1
2

, bn,k =

 bk(−1)
n−k

2

(
n

n−k
2

)
, (n− k) even,

0, (n− k) odd,
(15)
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with b0 = 1
2 and bk = 1 for k ≥ 1. For n = 6, we have

B =



1
2 0 0 . . . . . . 0

0 1
. . .

...

−1 0 1
. . .

...

0 −3 0 1
. . .

...

3 0 −4 0 1
. . .

...
0 10 0 −5 0 1 0
−10 0 15 0 −6 0 1


.

The recurrence relation is satisfied by the elements bn,k.

b0,0 = 1
2 , bn,0 = −bn−1,1,

bn,k = ckbn−1,k−1 − bn−1,k+1,
n, k = 1, 2, . . . , (16)

with c1 = 2 and ck = 1 for k ≥ 2.

3.1. The Conjugate Sequence

The P.S.
{

L̂n(x)
}

n∈IN related to the matrix B, with elements

L̂n(x) =
n

∑
i=0

bn,ixi,

is called the conjugate P.S. of
{

Ln
(

x)}n∈IN. We say that the polynomial sequences{
Ln(x)

}
n∈IN and

{
L̂n(x)

}
n∈IN are conjugate to each other and it results in

Ln ◦ L̂n = L̂n ◦ Ln = in,

where
{

in
}

n∈IN the P.S. related to the identity matrix I, with in(x) = xn.
For the conjugate sequences,

{
Ln(x)

}
n∈IN and

{
L̂n(x)

}
n∈IN, we have

Lx = AX = A2 L̂x, and L̂x = BX = B2Lx,

where L̂x =
[
L̂0(x), L̂1(x), . . . , L̂n(x), . . .

]T .
If ∀n ∈ IN, An and Bn are the principal submatrices of order n of A and B, respectively,

Xn =
[
1, x, x2, . . . , xn]T , Lx

n =
[
L0(x), L1(x), . . . , Ln(x)

]T , and L̂x
n =

[
L̂0(x), L̂1(x), . . .,

L̂n(x)
]T , then

Lx
n = AnXn = A2

n L̂x
n, and L̂x

n = BnXn = B2
nLx

n. (17)

3.2. Basis for Pn

Let Pn denote the set of polynomials of degree ≤ n. From (17), ∀n ∈ IN, we have

xn =
n

∑
k=0

bn,kLk(x) and xn =
n

∑
k=0

an,k L̂k(x). (18)

Therefore, each of the two sets
{

L0(x), . . . , Ln(x)
}

and
{

L̂0(x), . . . , L̂n(x)
}

forms a basis
for Pn.

Hence, if qn(x) ∈ Pn, that is qn(x) =
n

∑
k=0

qn,kxn−k, then

qn(x) =
n

∑
k=0

cn,kLk(x) =
n

∑
k=0

dn,k L̂k(x),
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where cn,k = ∑
b n−k

2 c
j=0 qn,n−k−2jbk+2j,k, dn,k = ∑

b n−k
2 c

j=0 qn,n−k−2jak+2j,k, k = 0, 1, . . . , n.
From (15), for k = 0, 1, . . . , n, we obtain

cn,0 =
1
2

b n
2 c

∑
j=0

qn,n−2j(−1)j
(

2j
j

)
, cn,k =

b n−k
2 c

∑
j=0

qn,n−k−2j(−1)j
(

k + 2j
j

)
, k > 1,

and from (2), we have

dn,0 = 2
b n

2 c

∑
j=0

qn,n−2j, dn,k =
b n−k

2 c

∑
j=0

qn,n−k−2j
k + 2j
k + j

(
k + j

j

)
k > 1.

3.3. First Recurrence Relation and Determinant Form

From the first relation in (18), Ln(x) can be written as:

Ln(x) = xn −
n−1

∑
k=1

bn,kLk(x).

Furthermore, the first relation in (18), for n ≥ 0, can be considered as an infinite linear
system in the unknowns Lj(x), j ≥ 0. Using Cramer’s rule, the first (n + 1) equations in the
unknowns L0(x), . . . , Ln(x) can be solved to produce the determinant form shown below.

L0(x) = 2, Ln(x) = 2(−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · xn−1 xn

b0,0 b1,0 b2,0 · · · bn−1,0 bn,0
0 b1,1 b2,1 · · · bn−1,1 bn,1
...

. . . . . .
...

...
...

. . . . . .
...

...
0 · · · · · · 0 bn−1,n−1 bn,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, n ≥ 1.

Similarly, from the second of (18), we can express the conjugate polynomials as

L̂n(x) = xn −
n−1

∑
k=1

an,k L̂k(x),

and

L̂0(x) =
1
2

, L̂n(x) =
(−1)n

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · xn−1 xn

a0,0 a1,0 a2,0 · · · an−1,0 an,0
0 a1,1 a2,1 · · · an−1,1 an,1
...

. . . . . .
...

...
...

. . . . . .
...

...
0 · · · · · · 0 an−1,n−1 an,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, n ≥ 1.

3.4. Second Recurrence Relation and Determinant Form

The production matrix or Stieltjes matrix Π ([38]) of an infinite lower triangular matrix
A is the Hessenberg matrix Π such that

A Π = DA,

with D =
(

βi+1,j
)

i,j≥0, being δi,j the well-known Kroneker’s delta function.

Observe that DA = A, where A is the matrix obtained from A by deleting its first row.
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Theorem 1 ([39,40]). Let
{

pn(x)
}

n∈IN be a P.S. with matrix A =
(
ai,k
)

i,k≥0 and let Π =(
πij
)

i,j≥0 be the production matrix of A−1. Then,

p0(x) = a0,0, πn,n+1 pn+1(x) = (x− πn,n)pn(x)−
n−1

∑
i=0

πn,i pi(x), (19)

where ∑−1
i=0 · = 0.

We require the production matrices of B and A in order to obtain further recurrence
relations and determinant forms for the elements of

{
Ln(x)

}
n∈IN and

{
L̂n(x)

}
n∈IN.

Proposition 1. The production matrix Π of B is tridiagonal with elements

π0,1 = 2, πi,i−1 = −1, πi,i = 0, πi,i+1 = 1, i ≥ 1. (20)

Proof. The proof follows by induction, taking into account relations (4) and (16).

From (20) and Theorem 1, we obtain the recurrence relation (1).
The production matrix of A can be obtained by the same technique used in Proposition 1:

Proposition 2. The production matrix Π̂ of A is a lower Hessenberg matrix with elements

π̂0,1 =
1
2

, π̂0,k = 0, k 6= 1, π̂1,2 = 1,

π̂i,k =



4bi−1,0, i ≥ 1, k = 0,

π̂i−1,0, i ≥ 1, k = 1,

π̂i−1,1

i− 1
, i ≥ 2, k = 2,

π̂i−k+2,2, i ≥ 2, 2 < k ≤ i + 1,

0, i ≥ 2, k > i + 1.

The following recurrence relation can be obtained from Proposition 2 and Theorem 1:

L̂0(x) =
1
2

, L̂1(x) = x, L̂n+1(x) = xL̂n(x)− 1
n

n−1

∑
i=0

bn−i−1,0 L̂i(x).

From Theorem 8 in [39], the recurrence relation (19) is equivalent to the determinant
of a suitable Hessenberg matrix. That is, every P.S. pn ∈

{
pn(x)

}
n∈IN with matrix A can be

written as p0(x) = a0,0,

pn(x) =
(−1)n p0(x)

∏n−1
i=0 πi,i+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

π0,0 − x π0,1 0 0 · · · 0
π1,0 π1,1 − x π1,2 0 · · · 0

...
. . . . . . . . .

...
...

. . . . . . . . . 0
...

. . . . . . πn−2,n−1
πn−1,0 πn−1,1 · · · · · · πn−1,n−2 πn−1,n−1 − x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, n > 0. (21)

Hence, from (21), Propositions 1 and 2, we obtain the following determinant forms for
Ln(x) and L̂n(x):
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L0(x) = 2, Ln(x) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−x 2 0 0 · · · 0
−1 −x 1 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
...

. . . . . . 1
0 · · · · · · 0 −1 −x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, n ≥ 1;

L̂0(x) = 2, L̂n(x) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−x 1
2 0 0 · · · 0

1 −x 1 0 · · · 0

b1,0
. . . . . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . . . . 1
bn−2,0 bn−3,0 · · · b1,0 1 −x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, n ≥ 1.

For the zeros z of Ln(x), from (20) and the Gershgorin theorem, we have

|z− πs,s| ≤
s

∑
j=0
j 6=s

∣∣πs,j
∣∣ = 2, s = 1, . . . , n.

It is known ([41]) that, except for n = 0, all of the roots of Ln(x) are zk = 2i cos (2k+1)π
2n ,

k = 0, . . . , n− 1. Hence, their absolute values are less than 2.

3.5. Generating Function

The following theorem allows for determining the generating function of a P.S. under
appropriate hypotheses.

Theorem 2 ([42]). Let
{

pn
}

n∈IN be a P.S. with a three-term recurrence relation of the type

pn+1(x) = axpn(x) + bpn−1(x), a, b ∈ IR, n > 1,

with p0(x) = α, p1(x) = β1x + β2, α, β1, β2 ∈ IR. Then, the generating function is

G(x, t) =
α(1− axt) + tp1(x)

1− axt− bt2 .

The generating function of Lucas P.S.
{

Ln
}

n∈IN can be obtained from Theorem 2 with
a = b = 1 and α = L0(x) = 2:

∞

∑
n=0

Ln(x)tn =
2− xt

1− xt− t2 .

This is in accordance with the literature ([11,43]).

4. Connection Formulas between Lucas Polynomials and Other Classes of Polynomials

Let
{

pn(x)
}

n∈IN and
{

qn(x)
}

n∈IN be two polynomial sequences with matrix, respec-
tively, T =

(
ti,j
)

i,j≥0 and S. With the usual notations, we obtain Px = TX, Qx = SX,
from which

Px =
(

T S−1
)

Qx = CQx, (22)
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with C = TS−1 =
(
ci,j
)

i,j≥0.
Thus, ∀n ∈ IN, we can write

pn(x) =
n

∑
j=0

cn,jqj(x), with ci,j =
i

∑
k=j

ti,ksk,j, (23)

being S−1 =
(
si,j
)

i,j≥0. C is the connection matrix of
{

pn
}

n∈IN and
{

qn
}

n∈IN.
From (23), we can easily obtain

qn(x) =
1

cn,n

{
pn(x)−

n−1

∑
j=0

cn,jqj(x)

}
,

and the determinant form

q0(x) =
1

c0,0
p0(x), qn(x) =

(−1)n

∏n
i=0 ci,i

∣∣∣∣∣∣∣∣∣
p0(x) p1(x) · · · pn(x)
c0,0 c1,0 · · · cn,0

...
. . . . . .

...
0 · · · cn−1,n−1 cn,n−1

∣∣∣∣∣∣∣∣∣, n > 0,

where C =
(
ci,k
)

i,k≥0 is the inverse matrix of C.
Similarly, we have

pn(x) =
1

cn,n

{
qn(x)−

n−1

∑
j=0

cn,j pj(x)

}
,

and

p0(x) =
1

c0,0
q0(x), pn(x) =

(−1)n

∏n
i=0 ci,i

∣∣∣∣∣∣∣∣∣
q0(x) q1(x) · · · qn(x)
c0,0 c1,0 · · · cn,0

...
. . . . . .

...
0 · · · cn−1,n−1 cn,n−1

∣∣∣∣∣∣∣∣∣, n > 0.

The coefficients ci,j in (23) can be determined by different techniques. In the following,
we are going to develop some new connection formulas between Lucas polynomials and
some other orthogonal polynomials. In addition, we present the inversion of these formulas.

4.1. Connection Formulas between Lucas Polynomials and Ultraspherical Polynomials

We now establish novel connection formulas between various orthogonal polynomials
and Lucas polynomials. More specifically, we address the following two connection problems:

Ln(x) =
n

∑
j=0

aj C(α)
j (x), C(α)

n (x) =
n

∑
j=0

aj Lj(x), (24)

where C(α)
n (x) is the ultraspherical polynomial of degree n.

With the use of the connection formulae in (24), one may obtain the connection for-
mulas for the Lucas-first-type Chebyshev, Lucas-second-kind Chebyshev, Lucas–Legendre,
and their inversions.
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Theorem 3. Let n be a non-negative integer. The following connection formula holds:

Ln(x) =
√

π n! 2−n−2λ+1

Γ
(

λ + 1
2

) b n
2 c

∑
j=0

(n + λ− 2j)Γ(n− 2j + 2λ)

j!(n− 2j)!Γ(n− j + λ + 1)
×

2F1

(
−j,−n + j− λ

1− n

∣∣∣∣− 4
)

C(λ)
n−2 j(x).

(25)

Proof. We should find the coefficients cn,j such that

Ln(x) =
b n

2 c
∑
j=0

cn,j C(λ)
n−2j(x). (26)

Based on the orthogonality relation of C(λ)
n (x), the coefficients cn,j in (26) are

cn,j =
1

hλ
n−2 j

∫ 1

−1
(1− x2)λ− 1

2 Ln(x)C(λ)
n−2j(x) dx,

where hλ
n is given by hλ

n =

√
π n! Γ

(
λ + 1

2

)
Γ(2λ + 1)

2(n + λ) Γ(λ + 1) Γ(n + 2λ)
. Following the Rodrigues formula,

cn,j can be given as

cn,j =
(−1)n 2−n−2λ+2j+1 (n + λ− 2j) Γ(n− 2j + 2λ)

Γ
(

λ + 1
2

)
(n− 2j)! Γ

(
n− 2j + λ + 1

2

) ∫ 1

−1
Ln(x) Dn−2j

(
1− x2

)n−2j+λ− 1
2 dx. (27)

Integrating the right side of (27) (n− 2j) times yields

cn,j =
2−n−2λ+2j+1 (n + λ− 2j) Γ(n− 2j + 2λ)

Γ
(

λ + 1
2

)
(n− 2j)! Γ

(
n− 2j + λ + 1

2

) ∫ 1

−1

(
1− x2

)n−2j+λ− 1
2 Dn−2jLn(x) dx.

With the aid of the analytic form of Lucas polynomials (3), the last equation turns into

cn,j =
n 2−n−2λ+2j+1 (n + λ− 2j) Γ(n− 2j + 2λ)

Γ
(

λ + 1
2

)
(n− 2j)! Γ

(
n− 2j + λ + 1

2

) b n
2 c

∑
i=0

(n− i− 1)!
i!(2j− 2i)!

∫ 1

−1
x2j−2i

(
1− x2

)n+λ−2j− 1
2 dx.

It is easy to show that

∫ 1

−1
x2j−2i

(
1− x2

)n+λ−2j− 1
2 dx =

Γ
(
−i + j + 1

2

)
Γ
(

n− 2j + λ + 1
2

)
Γ(n− i− j + λ + 1)

,

and consequently, the coefficients cn,j are given by

cn,j =
n 2−n−2λ+2j+1 (n + λ− 2j) Γ(n− 2j + 2λ)

Γ
(

λ + 1
2

)
(n− 2j)!

j

∑
i=0

(n− i− 1)! Γ
(

j− i + 1
2

)
i! (2j− 2i)! Γ(n− i− j + λ + 1)

. (28)

Now, it is not difficult to show that the last sum in (28) takes the following form:

j

∑
i=0

(n− i− 1)! Γ
(
−i + j + 1

2

)
i! (2j− 2i)! Γ(n− i− j + λ + 1)

=

√
π 2−2 j (n− 1)!

j! Γ(n− j + λ + 1) 2F1

(
−j,−n + j− λ

1− n

∣∣∣∣− 4
)

,
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and therefore, the coefficients cn,j are equivalent to

cn,j =

√
π n! 2−n−2λ+1 (n + λ− 2j)Γ(n− 2j + 2λ)

Γ
(

λ + 1
2

)
j!(n− 2j)!Γ(n− j + λ + 1)

2F1

(
−j,−n + j− λ

1− n

∣∣∣∣− 4
)

.

With this, we have proved Theorem 3.

The following three corollaries are direct consequences of Theorem 3.

Corollary 1. The Lucas-first-kind Chebyshev connection formula is:

Ln(x) =
n!

2n−1

b n
2 c

∑
j=0

1
j! (n− j)! 2F1

(
−j,−n + j

1− n

∣∣∣∣− 4
)

Tn−2j(x), n ≥ 0. (29)

Corollary 2. The Lucas-second-kind Chebyshev connection formula is:

Ln(x) =
n!
2n

b n
2 c

∑
j=0

(n− 2j + 1)!
j! (n− 2j)! (n− j + 1)! 2F1

(
−j,−n + j− 1

1− n

∣∣∣∣− 4
)

Un−2j(x), n ≥ 0. (30)

Corollary 3. The Lucas–Legendre connection formula is:

Ln(x) =
√

π n!
2n

b n
2 c

∑
j=0

n− 2j + 1
2

j! Γ
(
n− j + 3

2
) 2F1

(
−j,−n + j− 1

2
1− n

∣∣∣∣− 4
)

Pn−2j(x), n ≥ 0. (31)

In the following, we give the inversion formula for (25). Due to the non-orthogonality
of Lucas polynomials, we will use another method to obtain the desired relation. In fact, the
suggested method is based on the use of the power form representation of C(λ)

j (x) given by

C(λ)
j (x) =

j! Γ(2λ + 1)
2 Γ(λ + 1) Γ(j + 2λ)

⌊
j
2

⌋
∑
r=0

(−1)r 2j−2r Γ(j− r + λ)

r! (j− 2r)!
xj−2r, (32)

and the inversion formula of Lucas polynomials (5).

Theorem 4. Let j be a non-negative integer. The following connection formula holds:

C(λ)
j (x) =

j! 2j+2λ−1 Γ
(

λ + 1
2

)
Γ(j + λ)

√
π Γ(j + 2λ)

⌊
j
2

⌋
∑
p=0

(−1)p ξ j−2p

p! (j− p)! 2F1

(
−p, p− j
−j− λ + 1

∣∣∣∣− 1
4

)
Lj−2p(x), (33)

and ξi is as defined in (6).

Proof. From (32) and the inversion Formula (5), the following relation can be obtained

C(λ)
j (x) =

j! Γ(2λ + 1)
2Γ(λ + 1) Γ(j + 2λ)

⌊
j
2

⌋
∑
r=0

(−1)r 2j−2r Γ(j− r + λ)

r! (j− 2r)!
×

⌊
j
2

⌋
−r

∑
t=0

(−1)t ξ j−2r−2t(j− 2r− t + 1)t

t!
Lj−2r−2t(x).
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Rearranging the terms in the last formula and performing some calculations leads to the
following relation

C(λ)
j (x) =

⌊
j
2

⌋
∑
p=0

ξ j−2p (−1)p j! Γ
(

λ + 1
2

)
√

π Γ(j + 2λ)

p

∑
r=0

2j+2λ−2r−1 Γ(j− r + λ)

r! (p− r)! (j− p− r)!
Lj−2p(x). (34)

It is not difficult to show the identity

p

∑
r=0

2j+2λ−2r−1Γ(j− r + λ)

r! (p− r)! (j− p− r)!
=

2j+2λ−1 Γ(j + λ)

p! (j− p)! 2F1

(
−p, p− j
−j− λ + 1

∣∣∣∣− 1
4

)
,

and hence, the connection Formula (33) can be obtained.

The following three corollaries are direct consequences of Theorem 4.

Corollary 4. The first-kind Chebyshev–Lucas connection formula is:

Tj(x) = 2j−1 j!

⌊
j
2

⌋
∑
p=0

(−1)p ξ j−2p

p!(j− p)! 2F1

(
−p, p− j

1− j

∣∣∣∣− 1
4

)
Lj−2p(x), j ≥ 0. (35)

Corollary 5. Let j be a non-negative integer. The second-kind Chebyshev–Lucas connection formula is:

Uj(x) = 2j j!

⌊
j
2

⌋
∑
p=0

(−1)p ξ j−2p

p!(j− p)! 2F1

(
−p, p− j
−j

∣∣∣∣− 1
4

)
Lj−2p(x), j ≥ 0. (36)

Corollary 6. Let j be a non-negative integer. The Legendre–Lucas connection formula is:

Pj(x) =
2jΓ
(

j + 1
2

)
√

π

⌊
j
2

⌋
∑
p=0

(−1)p ξ j−2p

p!(j− p)! 2F1

(
−p, p− j

1
2 − j

∣∣∣∣− 1
4

)
Lj−2p(x), j ≥ 0. (37)

4.2. Some Other Connection Formulas

In this section, we present some other connection formulas between Lucas polynomials
and some other orthogonal polynomials. Due to the similarities of proofs with the proofs
given in the previous section, the details are omitted.

Theorem 5. The Lucas–Hermite connection formula is:

Lj(x) =
j!
2j

⌊
j
2

⌋
∑
r=0

1
r! (j− 2r)! 1F1(−r; 1− j; 4) Hj−2r(x), j ≥ 0. (38)

Theorem 6. The Hermite–Lucas connection formula is:

Hj(x) = j!

⌊
j
2

⌋
∑
r=0

ξ j−2r
2j−2r

r!(j− r)!
U(−r, j− 2r + 1,−4) Lj−2r(x), j ≥ 0, (39)

where U(a, b, z) is the confluent hypergeometric function (see [35]).

Theorem 7. The Lucas-shifted Jacobi connection formula is:
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Lj(x) =
j! Γ(j + β + 1)

Γ(α + 1)

⌊
j
2

⌋
∑
r=0

(α + β + 2j− 4r + 1)Γ(j− 2r + α + 1)Γ(j− 2r + α + β + 1)
(2r)! (j− 2r)! Γ(j− 2r + β + 1) Γ(2j− 2r + α + β + 2)

×

4F3

(
−r, 1

2 − r,− α
2 −

β
2 − j + r− 1

2 ,− α
2 −

β
2 − j + r

1− j,− β
2 −

j
2 ,− β

2 −
j
2 + 1

2

∣∣∣∣∣− 1
4

)
R̃(α,β)

j−2r (x)

+
j! Γ(j + β + 1)

Γ(α + 1)

⌊
j−1

2

⌋
∑
r=0

(α + β + 2j− 4r− 1) Γ(j− 2r + α)Γ(j− 2r + α + β)

(2r + 1)! (j− 2r− 1)! Γ(j− 2r + β) Γ(2j− 2r + α + β + 1)
×

4F3

(
−r,−r− 1

2 ,− α
2 −

β
2 − j + r,− α

2 −
β
2 − j + r + 1

2
1− j,− β

2 −
j
2 ,− β

2 −
j
2 + 1

2

∣∣∣∣∣− 4

)
R̃(α,β)

j−2r−1(x), j ≥ 0.

(40)

Taking into consideration the special classes of shifted Jacobi polynomials, the follow-
ing connection formulas can be deduced.

Corollary 7. The Lucas-shifted ultraspherical connection formula is:

Lj(x) =
2j! Γ

(
j + α + 1

2

)
Γ
(

α + 1
2

)
⌊

j
2

⌋
∑
r=0

(α + j− 2r)Γ(j− 2r + 2α)

(2r)!(j− 2r)!Γ(2j− 2r + 2α + 1)
×

4F3

(
−r, 1

2 − r,−α− j + r,−α− j + r + 1
2

1− j,− α
2 −

j
2 + 1

4 ,− α
2 −

j
2 + 3

4

∣∣∣∣∣− 4

)
C̃(α)

j−2r(x)

+
2 j! Γ

(
j + α + 1

2

)
Γ
(

α + 1
2

)
⌊

j−1
2

⌋
∑
r=0

(α + j− 2r− 1) Γ(j− 2r + 2α− 1)
(2r + 1)! (j− 2r− 1)! Γ(2(j− r + α))

×

4F3

(
−r,−r− 1

2 ,−α− j + r + 1
2 ,−α− j + r + 1

1− j,− α
2 −

j
2 + 1

4 ,− α
2 −

j
2 + 3

4

∣∣∣∣∣− 4

)
C̃(α)

j−2r−1(x), j ≥ 0.

(41)

Corollary 8. The Lucas-shifted first-kind Chebyshev connection formula is:

Lj(x) =
(2j)!
22j−1

⌊
j
2

⌋
∑
r=0

ξ j−2r

(2r)! (2j− 2r)! 4F3

(
−r, 1

2 − r, r− j,−j + r + 1
2

1− j, 1
4 −

j
2 , 3

4 −
j
2

∣∣∣∣∣− 4

)
T∗j−2 r(x)

+
(2j)!
22j−1

⌊
j−1

2

⌋
∑
r=0

ξ j−2r−1

(2r + 1)!(2j− 2r− 1)!
×

4F3

(
−r,−r− 1

2 ,−j + r + 1
2 ,−j + r + 1

1− j, 1
4 −

j
2 , 3

4 −
j
2

∣∣∣∣∣− 4

)
T∗j−2 r−1(x), j ≥ 0.

(42)

Corollary 9. The Lucas-shifted second-kind Chebyshev connection formula is:

Lj(x) =
(2j + 1)!

22j−1

⌊
j
2

⌋
∑
r=0

j− 2r + 1
(2r)! (2j− 2r + 2)! 4F3

(
−r, 1

2 − r,−j + r− 1,−j + r− 1
2

1− j,− j
2 −

1
4 , 1

4 −
j
2

∣∣∣∣∣− 4

)
U∗j−2r(x)

+
(2j + 1)!

22j−1

⌊
j−1

2

⌋
∑
r=0

(j− 2r)
(2r + 1)!(2j− 2r + 1)! 4F3

(
−r,−r− 1

2 ,−j + r− 1
2 , r− j

1− j,− j
2 −

1
4 , 1

4 −
j
2

∣∣∣∣∣− 4

)
U∗j−2r−1(x), j ≥ 0.

(43)

Corollary 10. The Lucas-shifted Legendre connection formula is:
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Lj(x) =(j!)2

⌊
j
2

⌋
∑
r=0

1 + 2j− 4r
(2r)! (2j− 2r + 1)! 4F3

(
−r, 1

2 − r,−j + r− 1
2 , r− j

1− j, 1
2 −

j
2 ,− j

2

∣∣∣∣∣− 4

)
P∗j−2r(x)

+ (j!)2

⌊
j−1

2

⌋
∑
r=0

−1 + 2j− 4r
(2r + 1)! (2j− 2r)! 4F3

(
−r− 1

2 ,−r, r− j,−j + r + 1
2

1− j, 1
2 −

j
2 ,− j

2

∣∣∣∣∣− 4

)
P∗j−2r−1(x), j ≥ 0.

(44)

5. High-Order Derivatives and Repeated Integrals of Lucas Polynomials

This section is concerned with deriving the high-order derivatives of Lucas polynomi-
als in terms of their original polynomials. Moreover, a new formula for repeated integrals
of Lucas polynomials is also given.

5.1. Derivation Matrix

Derivation matrices are used in several areas of numerical analysis, such as in the
solution of differential equations ([44,45]) and in many engineering and physical problems.

Let
{

pn(x)
}

n∈IN be a P.S. with matrix A =
(
aij
)

i,j≥0 and let B = A−1 =
(
bij
)

i,j≥0.

Moreover, let Px
n =

[
p0(x), p1(x), . . . , pn(x)

]T . If Px
n
′ =

[
p′0(x), p′1(x), . . . , p′n(x)

]T , it is
known that the derivation matrix of the P.S.

{
pn(x)

}
n∈IN is the matrix D such that

Px
n
′ = D Px

n . (45)

Note that D is a lower triangular matrix whose diagonal elements are zeros.
The following proposition gives the entries of D.

Proposition 3 ([39]). The derivation matrix of the P.S.
{

pn
}

n∈IN with matrix A =
(
ai,j
)

i,j≥0 is

D =
(
di,j
)

i,j≥0 with

di,j =


i

∑
k=j

(k + 1)ai,k+1bk,j, i > j,

0, otherwise.

(46)

From (45), (46), (2), and (15), we have

Lx
n
′ = D Lx

n (47)

where Lx
n
′(x) =

[
L′0(x), L′1(x), . . . , L′n(x)

]T , and D =
(
di,j
)n

i,j=0 is the lower triangular
matrix with

di,0 =

 (−1)
i−1

2
i
2

, i odd,

0 i even,
, di,j =

 (−1)
i−j−1

2 i, i + j odd,

0 i + j even,
i > j. (48)

From (47), for higher order derivatives we obtain

Lx
n
(s) = Ds Lx

n, s ≥ 1.

Remark 1. From (48), the matrix D is an upper triangular matrix whose main diagonal elements
are zeros. Therefore, it is a nilpotent matrix, that is, Ds = 0 for s > n.
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5.2. New High-Order Derivatives and Repeated Integral Formulas

In this section, we will derive an explicit formula for the high-order derivatives of
Lucas polynomials in terms of their original polynomials.

Lemma 1. For every r ≥ 1, we obtain

L′r(x) = r
b r−1

2 c
∑

m=0
(−1)m ξr−2m−1Lr−2m−1(x),

where ξ j, j ≥ 0, are defined in (6).

Proof. The proof follows from (45) and (48).

This allows us to prove a theorem about how to derive high-order derivatives of Lucas
polynomials in terms of their original polynomials. First, the following preliminary lemma
is useful.

Lemma 2. For every non-negative q, one has

`

∑
p=0

(
p + q− 1

p

)
(−2p− q + r) (−p− q + r + 1)q−1 =

(`+ 1) (−`+ r− 1) (`+ q)! (−`+ r− 2)!
(`+ 1)! q! (−`− q + r− 1)!

.

Proof. The proof can be easily followed by induction.

Theorem 8. The q-th derivative of Lucas polynomials Lr(x) can be expressed as:

L(q)
r (x) = r

b r−q
2 c

∑
`=0

(−1)` ξr−2`−q

(
`+ q− 1

`

)
(−`− q + r + 1)q−1 Lr−2`−q(x). (49)

Proof. We will prove (49) by induction. From Lemma 1, the theorem is true for q = 1. Now,
assume the validity of (49). We will show the validity of the following relation:

L(q+1)
r (x) = r

⌊
r−q−1

2

⌋
∑
`=0

(−1)` ξr−2`−q−1

(
`+ q
`

)
(r− `− q)q Lr−2`−q−1(x). (50)

Differentiating both sides of relation (49) with respect to x and making use of Lemma 1 yields

L(q+1)
r (x) = r

⌊
r−q−1

2

⌋
∑
`=0

(−1)` ξr−2`−q−1

`

∑
p=0

(
p + q− 1

p

)
×

(−2p− q + r) (−p− q + r + 1)q−1 Lr−2`−q−1(x).

The application of Lemma 2 allows one to obtain relation (49).

Now, we are going to state and prove a theorem in which repeated integrals of Lj(x)
are expressed in terms of their original polynomials.

Theorem 9. Let Iq
j (x) be defined as Iq

j (x) =
∫ ∫

. . .
∫

︸ ︷︷ ︸
q times

Lj(x) dx dx . . . dx︸ ︷︷ ︸
q times

. Then,

Iq
j (x) = j

q

∑
`=0

(q
`)

(j− `)1+q
Lj+q−2`(x) + ρq−1(x), (51)
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where ρq−1(x) is a polynomial of degree not exceeding (q− 1).

Proof. We will prove (51) by induction on q. The theorem holds for q = 1 following
the structure Formula (7). Assume that (51) holds. We will show that the following
relation holds:

Iq+1
j (x) = j

q+1

∑
`=0

(q+1
` )

(j− `)2+q
Lj+q−2`+1(x) + ρ̄q(x),

with ρ̄q(x)—a polynomial of degree not exceeding q.
Now, making use of relation (51) together with the structure Formula (7) yields

I(q+1)
j (x) = j

q

∑
`=0

(q
`)

(j− `)1+q

(
Lj+q+1−2`(x)
j− 2`+ q + 1

+
Lj+q−1−2`(x)
j− 2`+ q− 1

)
.

The last formula can be written alternatively as

Iq+1
j (x) =j

q

∑
`=1

1
1 + j− 2`+ q

{
(q
`)

(j− `)1+q
+

( q
−1+`)

(1 + j− `)1+q

}
Lj−2`+q+1(x)

+
(j− q− 2)!
(j− 1)!

Lj−q−1(x) +
j!

(j + q + 1)!
Lj+q+1(x).

(52)

It is not difficult to show the identity

1
1 + j− 2`+ q

{
(q
`)

(j− `)1+q
+

( q
−1+`)

(1 + j− `)1+q

}
=

(q+1
` )

(j− `)2+q
,

hence, relation (52) turns into

Iq+1
j (x) = j

q+1

∑
`=0

(q+1
` )

(j− `)2+q
Lj+q−2`+1(x) + ρ̄q(x).

This concludes the proof.

6. Conclusions

In this paper, we establish some new formulas concerned with Lucas polynomials.
Different approaches are followed. A matrix approach is followed for some fundamental
properties. Several connection formulas between Lucas polynomials and different orthogonal
polynomials are derived. Furthermore, high-order derivatives formulas and repeated integrals
formula of Lucas polynomials are established. As far as we know, most of the formulas derived
in this paper are new and they may be useful in various applications. As future work, we
hope to investigate some types of generalized and modified Lucas polynomials.
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