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Abstract: In this paper, we concentrate on a control system with a non-local condition that is governed
by a Hilfer fractional neutral stochastic evolution hemivariational inequality (HFNSEHVI). By using
concepts of the generalized Clarke sub-differential and a fixed point theorem for multivalued maps,
we first demonstrate adequate requirements for the existence of mild solutions to the concerned
control system. Then, using limited Lagrange optimal systems, we demonstrate the existence of
optimal state-control pairs that are regulated by an HFNSEHVI with a non-local condition. In order
to demonstrate the existence of fixed points, the symmetric structure of the spaces and operators that
we create is essential. Without considering the uniqueness of the control system’s solutions, the best
control results are established. Lastly, an illustration is used to demonstrate the major result.

Keywords: optimal control; Hilfer fractional derivative; stochastic evolution equation; neutral system;
hemivariational inequalities; non-local condition
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1. Introduction

The hemivariational inequality (HVI) was originally established by Panagiotopoulos
in 1981 as a weak formulation for a number of kinds of mechanical problems using non-
smooth and non-convex energy functionals [1,2]. Recently, many researchers have paid a
lot of attention to the control problems of hemivariational inequalities (HVIs). Migórski and
Ochal [3] explored the direct approach of the calculus of variations along with the Galerkin
method in 2000 when it came to the optimal control issues of the parabolic HVIs. Using
the Faedo-Galerkin technique and the direct method of the arithmetic of modification,
the authors [4] showed in 2007 that there are optimum control pairs for a hyperbolic
quasi-linear HVI. Researchers [5] recently employed a convergence point approach for
multivalued maps to look at the approximative controllability of HVIs. The optimum
control issue of second-order stochastic evolution hemivariational inequalities (SEHVIs)
with Poisson jumps was recently addressed by Muthukumar et al. [6] using the fixed
point technique of multivalued maps and Balder’s theorem. In order to investigate the
optimal controls and solvability of impulsive HF delay evolution inclusions with Clarke
sub-differential, Harrat et al. [7] used fractional calculus, semigroup theory, fixed point
strategy, and multivalued analysis.

Understanding partial differential equations is greatly aided by symmetry analysis,
especially when dealing with equations derived from mathematical concepts relating to
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accounting. Even though symmetry is absent from the majority of natural observations, it
is the secret of nature. The occurrence of unexpected symmetry-breaking is a better way
to conceal symmetry. The two categories are finite and infinitesimal symmetry. There
are two types of discrete and continuous finite symmetries. Natural symmetries like
parity and temporal inversion are discrete whereas space is a continuous change. On the
other hand, fractional calculus has grown in importance in mathematics during the recent
several decades. Fractional-order differential equations are better suitable for various
physical issues than integer-order differential equations. Due to their applications in
viscoelasticity materials, electrical circuits, neural networks, control theory, chemistry,
engineering, biology, mechanics, and physics, fractional differential equations (FDEs) have
become a popular research topic ([8–14]). We point out that during the past three decades,
FDEs have undergone a substantial evolution (see, for instance, [15–20]) and are a useful
instrument for the description of specific materials and processes [21–30].

Stochastic differential equations (SDEs) are useful tools in several branches of science
and engineering for describing some systems and processes with stochastic disturbances.
See the monograph [31] for information on the general concept of stochastic differential
equations. Furthermore, it should be noted that both natural and artificial systems exhibit
stochastic discomfort or noise. Stochastic differential systems have garnered a lot of interest
because of their numerous uses in the biological, physical, and pharmaceutical sciences
(see [32–34]); they are crucial for simulating real-world processes when an element of ran-
domness is required. Stochastic evolution equations (SEEs) in infinite-dimensional spaces
are inspired by the random events studied in the biological sciences, such as thermodynam-
ics, molecular biology, and operations research. Many authors have extensively studied the
existence of mild solutions for various types of SEEs and their optimum management in
Hilbert spaces (see [35–37]).

The Reimann–Liouville (R-L) and Caputo fractional derivatives are also included in
the Hilfer fractional derivative (HFD), which was first developed by Hilfer [9]. In theoretical
electromagnetic simulations of glass-forming components, it is used. The presence of mild
solutions to an evolution equation with HFD was looked at by Gu and Trujillo in [38]. The
solvability and best controls of impulsive Hilfer fractional (HF) delay evolution systems
with Clarke sub-differential were investigated by Harrat et al. in [7]. Non-local conditions
for HF evolution equations provide some fascinating findings. Yang and Wang, for instance,
looked at the approximability of controllability of an HF differential system with non-local
conditions in [39]. The existence of mild solutions to an HF differential equation with
non-local conditions was investigated by the researchers in [40,41].

Due to their vast applicability in numerous fields of pragmatic mathematics, neu-
tral systems have attracted increased interest in recent years. With or without delay,
various neutral systems, such as thermal expansion in substances, stretchability, surface
waves, and several organic improvements, profit from neutral systems. Readers can
consult [19,33,42,43] for more information on the neutral system and its use.

The idea of controllability is crucial to the study and design of control systems, as is
well known. Furthermore, it is important to research hemivariational inequalities with
fractional derivatives since they are related to applicable disciplines including evaporation
in heat exchangers, thermoviscoelasticity, and selective memory thermodynamics. The
authors [44] investigate the HF evolution hemivariational inequalities with non-local initial
conditions and optimal controls for condensing multivalued maps. The fixed point theory
for multivalued maps has been used to generate the optimum control issues for Hilfer
fractional neutral stochastic evolution hemivariational inequalities, which were inspired
by the aforementioned work.Both the evaluation of hemivariational inequality and the
consideration of the controllability of the control systems described by a class of stochastic
HVI with fractional derivatives appear to have been neglected.

We believe that the literature has not yet addressed the presence of and optimal
controls for the HF neutral stochastic evolution hemivariational inequality (HFNSEHVI).



Symmetry 2023, 15, 18 3 of 18

This work’s main focus will be on the existence and optimal control of the subsequent
control system, which is governed by HFNSEHVI.

〈
Dδ,η

0+ [κ($)− σ($,κ($))] + Ã[κ($)− σ($,κ($))] + B($)u($) + F($,κ($)) dW($)
d$ , ω

〉
Z

+G0($,κ($); ω) ≥ 0, $ ∈ W = [0, à], ∀ ω ∈ Z,

I (1−δ)(1−η)
0+ [κ($)]$=0 + h̄(κ) = κ0,

(1)

where Dδ,η
0+ denotes the HFD, $ ∈ W ′ = [0, à], δ ∈ [0, 1], η ∈ (0, 1). The state variables

κ(·) takes values in the Hilbert space Z with the norm ‖ · ‖Z and the inner product 〈·, ·〉Z.
The infinitesimal generator of the strongly continuous cosine family N ($), ($ > 0) in
Z is Ã : D(Ã) ⊂ Z → Z. Let u be a control function, and J be the set of all admissible
controls that is also a Hilbert space. B : J → Z is a bounded linear operator. The function
σ : W × Z → Z and F($,κ($)) : W × Z → L0

2 are the appropriate function. Let (Λ, E , P)
be a complete probability spaces, and let K be the other separable Hilbert space. Assume
the Wiener process {W($) : $ > 0} is a K-Wiener process with nuclear covariance operator
Q ≥ 0 having a finite trace. The norm of L(K,Z) is denoted by the same notations, ‖ · ‖,
where L(K,Z) represents the space of all bounded operators from K into Z. Simply as
L(K,Z) = L(Z) if K = Z. The Clarke sub-differential of a globally Lipschitz function
G($, ·) : Z → R is denoted by the notation G0($, ·; ·). Let Aad be the set of all admissible
state control pairs (κ, u) and E denote the expectation of a random variable or the Lebesgue
integral with regard to the probability measure P. The cost functional on the set Aad is
provided by

K (κ, u) = E
∫ à

0
L ($,κu($), u($))d$. (2)

The plan of this paper is organized into five sections. We list some important prelim-
inaries in Section 2. In Section 3 we demonstrate that the system (1) has a mild solution
given a few reasonable assumptions. We answer the optimal control problem governed
by (1) under acceptable criteria in Section 4. In Section 5, a specific illustration is given to
demonstrate our primary findings.

2. Preliminaries

This section provides the basic material as well as the essential fractional calculus
ideas, notations, and lemmas that are necessary to establish the main findings.

Suppose that Z is a separable Hilbert space and its norm represented by ‖ · ‖Z.
Consider (Λ, E , P) denotes the complete probability space with the usual classification
{E$, $ > 0}. L2(E ,Z) = L2(Λ, E , P,Z) denotes the Hilbert space of all strongly E -
measurable square integrable Z-valued random variable satisfying E‖κ‖2

Z < ∞. Sup-
pose that C(W , L2(E ,Z)) is the Banach space of all continuous maps fromW → L2(E ,Z)
with ‖κ‖L2 =

[
sup$∈[0,à] E‖κ($)‖2

Z
] 1

2 < ∞. L2
E (W ,Z) represent the Hilbert space of all

stochastic processes E$-adapted measurable determined on W using values in Z and a

norm ‖κ‖L2
E (W ,Z) =

[ ∫ à
0 E‖κ($)‖2

Zd$
] 1

2 < ∞. The space L2
E (W , J) represents the Hilbert

space of all stochastic processes E$-adapted measurable determined onW assuming values

in J and a norm ‖u‖L2
E (W ,J) =

[ ∫ à
0 E‖u($)‖2

J d$
] 1

2 < ∞.
We suppose that ∃ a complete orthonormal system {en} in K, a bounded sequence of

non-negative real integers {βn}, such that Qen = βnen, n = 1, 2, · · · , and a sequence {µn}
of independent Wiener process, such that

〈W($), ε〉 =
∞

∑
n=1

√
βn〈en, ε〉µn($), ε ∈ K, $ > 0.
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Let φ ∈ L(K,Z) and defined by

‖φ‖2
Q = Tr(φQφ∗) =

∞

∑
n=1

∥∥∥∥√βnφen

∥∥∥∥2

.

Suppose that ‖φ‖Q < ∞, then φ is called a Q-Hilbert Schmidt operator. Let the space
of all Q-Hilbert Schmidt operators φ : K → Z be defined as LQ(K,Z). The fulfilment
LQ(K,Z) of L(K,Z) with regard to the geometry caused by ‖ · ‖Q, with ‖φ‖2

Q = 〈φ, φ〉 is a
Hilbert space with the above norm geometry.

The concepts from fractional calculus are introduced below. For more information [10,13].

Definition 1 (see [10,13]). For a function g, the fractional integral of order δ > 0 with the lower
bound zero is defined as

Iδ
$ g($) =

1
Γ(δ)

∫ $

0
($−v)δ−1g(v)dv, $ > 0,

if the right side is point-wise defined on [0,+∞), where Γ is the gamma function. We make the
unassumed assumption that the gamma functions utilised in this work are real without loss of
generality.

Definition 2 (see [10,13]). For a function g : [0,+∞) → R, the R-L derivative of order δ > 0
with lower limit zero can be denoted as

LDδ
$g($) =

1
Γ(m− δ)

dm

d$m

∫ $

0

g(v)

($−v)δ−m+1 dv, m− 1 < δ < m, m ∈ N.

Definition 3 (see [10,13]). The Caputo fractional derivative of order δ > 0 can be defined as

Dδ
0+ g($) =L Dδ

$

(
g($)−

m−1

∑
n=1

$n

n!
gn(0)

)
, m = 1 < δ < m, m ∈ N,

where the derivative of the function g is completely continuous up to order m− 1.

Definition 4 (see [9]). The HFD of order 0 ≤ δ ≤ 1, 0 < η < 1 for the function κ is defined by

Dδ,η
0+ g($) = [Iδ(1−η)

0+ D(I (1−δ)(1−η)
0+ g)]($).

We now go over numerous fundamental properties of a multivalued map; for further
information, please see the works by [45,46].

In the case of a Banach space Y with ‖ · ‖, Y∗ designates the dual of Y, and 〈·, ·〉 the
pairing of Y and Y∗. For our satisfaction, we will be using the following conditions:

Pg(c)(Y) = {Λ ⊆ Y : Λ is non-empty, closed (convex)},
P(w)k(c)(Y) = {Λ ⊆ Y : Λ is non-empty, (weakly) compact (convex)}.

We will now define the generalised Clarke gradient for a globally Lipschitzian func-
tional G : Y → R. G0(κ; ω) represents the Clarke geometric derivative of G at κ in the
direction ω, i.e.,

G0(κ, ω) = lim
κ′→κ

sup
β→0+

G(κ′ + βω)− G(κ′)
β

.

As you may recall, the Clarke sub-differential of G at κ, denoted by ∂G, is a subset of
Y∗ generated by

∂G(κ) = {κ∗ ∈ Y∗ : G0(κ, ω) ≥ 〈κ∗, ω〉, ∀ ω ∈ Y}.
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The upcoming fundamental characteristics of the generalised geometric derivative
and the generalised gradient are crucial to our main conclusions.

Proposition 1 (see [47]). If g : Λ → R is a globally Lipschitz function on an open set Λ of Z,
then

(i) ∀ z ∈ Z, one has g0(κ, ω) = max{〈κ∗, ω〉 : ∀ κ ∈ ∂g(κ)};
(ii) ∀ κ ∈ Λ, the derivative ∂g(x) is a convex, non-empty, weak∗-compact subset of Z∗ and

‖κ∗‖Z∗ ≤ K ∀ κ ∈ g(κ) (where K is the Lipschitz constant of g near κ);
(iii) The graph of the generalized derivative ∂g is closed in Λ× Z∗v∗ topology, i.e., suppose that

{yn} ⊂ Λ and {y∗n} ⊂ Z are sequences, such that κn ∈ ∂g(κn) and κn → κ in Z,
κn → weakly∗ in Z, then κ ∈ ∂g(κ) (where Z∗v∗ represent the Banach space Z related with
the v∗-topology);

(iv) The multi-valued function Λ such that κ → ∂g(κ) ⊆ Z : Λ → Z∗v∗ is upper semi-
continuous.

Lemma 1 (see [48]). Let G : [0, à] × Λ → L2
0 be a strongly measurable mapping such that∫ à

0 E‖G($)‖p
L2

0
d$ < ∞. Then

E
∥∥∥∥ ∫ à

0
G(v)dW(v)

∥∥∥∥p

≤ LG

∫ à

0
E‖G(v)‖p

L2
0
dv,

∀ 0 ≤ $ ≤ à and p ≥ 2, where LG is the constant employing p and à.

Theorem 1 (see [49]). Let Y be a globally convex Banach space and G : Y → 2Y be a compact
convex valued, upper semi-continuous multivalued map such that ∃ a closed neighborhood V of 0
for which G(V) is a relatively compact set. Assume that

Λ = {κ ∈ Y : λκ ∈ G(κ) ∀ λ > 1}

is bounded, then G has a fixed point.

3. Existence

The following fractional evolution inclusion can be taken into account while analyzing
system (1):

Dδ,η
0+ [κ($)− σ($,κ($))] ∈ Ã[κ($)− σ($,κ($))] + B($)u($) + F($,κ($)) dW($)

d$

+∂G($,κ($)), $ ∈ W ′,
I (1−δ)(1−η)

0+ [κ($)]$=0 + h̄(κ) = κ0,

(3)

where ∂G denotes the generalized Clarke sub-differential of a globally Lipschitz functional
G($, ·) : Z → R. The control function u(·) is a stochastic process provided in L2

E (W , J)
of admissible control functions, and the set J is a Hilbert space, B : J → Z is a bounded
linear operator. F :W × E → L2

0 is a appropriate functions and κ0 is measurable Z-valued
random variables independent of W.

It is clear that each solution to system (3) also solves system (1). In reality, suppose
κ($) ∈ C(W , L2(E ,Z)) is a solution of the system (1), then ∃ a function g($) ∈ ∂G($,κ($)),
a.e., $ ∈ W , and satisfies the following equation:

Dδ,η
0+ [κ($)− σ($,κ($))] ∈ Ã[κ($)− σ($,κ($))] + B($)u($) + F($,κ($)) dW($)

d$

+∂G($,κ($)), $ ∈ W ′,
I (1−δ)(1−η)

0+ [κ($)]$=0 + h̄(κ) = κ0.
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In view of above equation, we obtain
〈

Dδ,η
0+ [κ($)− σ($,κ($))] + Ã[κ($)− σ($,κ($))] + B($)u($) + F($,κ($)) dW($)

d$ , ω
〉
Z

+〈G($), ω〉Z = 0, a.e. $ ∈ W ′, ∀ ω ∈ Z,

I (1−δ)(1−η)
0+ [κ($)]$=0 + h̄(κ) = κ0.

Since g($) ∈ ∂G($,κ($)) and 〈G($), ω〉Z ≤ G0($,κ($); ω), we obtain
〈

Dδ,η
0+ [κ($)− σ($,κ($))] + Ã[κ($)− σ($,κ($))] + B($)u($) + F($,κ($)) dW($)

d$ , ω
〉
Z

+G0($,κ($); ω) ≥ 0, $ ∈ W ′, ∀ ω ∈ Z,

I (1−δ)(1−η)
0+ [κ($)]$=0 + h̄(κ) = κ0.

It is proved that by using the equivalent evolution inclusion system (3), we may refer
the system (1).

We now define the mild solution to system (3) using the Wright function:

Mη(θ) =
∞

∑
n=1

(−θ)n−1

(n− 1)Γ(1− µn)
, 0 < µ < 1, θ ∈ C,

that fulfills the equality ∫ ∞

0
θιMη(θ)dθ =

Γ(1 + ι)

Γ(1 + ηι)
, θ ≥ 0.

Lemma 2 (see [19]). The operatorsMδ,η , Nη and Qη admit the following conditions:

(a) For any fixed $ > 0,Mδ,η($), Nη($) and Qη($) are bounded linear operators such that, ∀
κ ∈ Z,

‖Mδ,η($)κ‖ ≤
M$η−1

Γ(δ(1− η) + η)
‖κ‖, ‖Nη($)κ‖ ≤

M$η−1

Γ(η)
‖κ‖ and

‖Qη($)κ‖ ≤
M$η−1

Γ(η)
‖κ‖.

(b) {Mδ,η($), $ > 0}, {Nη($), $ > 0} and {Qη($), $ > 0} are strongly continuous.
(c) If T($) is compact, then ∀ $ > 0,Mδ,η($), Nη($) and Qη($) are also compact operators.

Lemma 3 (see [48]). Suppose {T($)}$>0 is a compact C0-semigroup ∀ $ > 0, then it is uniformly
continuous ∀ $ > 0.

Proposition 2. Consider η ∈ (0, 1), q ∈ (0, 1] and ∀ κ ∈ D(Ã), then ∃ a κq > 0 such that

‖ÃqQη($)κ‖ ≤
ηκqΓ(2− q)

$ηqΓ(1 + η(1− q))
‖κ‖, 0 < $ < à.

Definition 5. For each u ∈ L2
E (W , J), an E$-adapted stochastic process κ ∈ C(W , L2(E ,Z)) is

called a mild solution of the control system (3) suppose κ(0) = κ0 ∈ Z and ∃ a g ∈ L2
E (W ,Z),

such that g($) ∈ ∂G($,κ($)), a.e., $ ∈ W and

κ($) =Mδ,η($)[κ(0)− h̄(κ)− σ(0,κ(0))] + σ($,κ($))

+
∫ $

0
($−v)η−1Qη($−v)[g(v) + Bu(v)]dv

+
∫ $

0
($−v)η−1Qη($−v)F(v,κ(v))dW(v),
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∀ $ ∈ W , where

Mδ,η($) = Iη(1−δ)θNη($), Nη($) = $η−1Qη($) and Qη($) =
∫ ∞

0
ηξMη(ξ)N ($ηξ)dξ.

The following hypotheses are used throughout this paper:

(H0) The operatorM($) is compact ∀ $ > 0.
(H1) The function $→M($) is continuous in B(Z) ∀ $ > 0, and ∃ a constant M > 1, such that

‖M($)‖ ≤ M.
(H2) G :W ×R fulfils the following requirements:

(a) ∀ κ ∈ Z, G(·,κ) is measurable;
(b) For a.e. $ ∈ W , G($; ·) is globally Lipschitz continuous;

(c) ∃ a b ∈ L
1
γ (W ,R+), γ ∈ (0, 2η − 1) and a constant c ≥ 0, such that

E‖∂G($,κ)‖2 = sup{E‖g($)‖2 : g($) ∈ ∂G($,κ)} ≤ b($) + c‖κ‖2,

for a.e. $ ∈ W and ∀ κ ∈ Z.

(H3) F : W × Z → L2
0 is continuous in the second variable for a.e. $ ∈ W and ∃ a function

d ∈ L
1
γ (W ,R+), γ ∈ (0, 2η − 1) and a constant e ≥ 0, such that

E‖F($,κ)‖2 ≤ d($) + e‖κ‖2.

(H4) ∃ Lh̄, a constant such that ∀ κ1;κ2 ∈ C,

E‖h̄(κ1)− h̄(κ2)‖2 ≤ Lh̄‖κ1 −κ2‖2.

(H5) σ :W ×Z→ Z is a continuous function and ∃ constants q ∈ (0, 1) and Mσ > 0, such that
σ is Zq-valued and fulfils the following requirements:

E‖σ($,κ)‖2 ≤ Mσ(1 + ‖κ‖2
Z), κ ∈ Z, $ ∈ W .

Define the admissible set as follows:

Uad =
{
u(·) ∈ Lp

E (W , J); u($) ∈ J a.e. $ ∈ W
}

.

Then, by Proposition 2.1.7 and Lemma 2.3.2 of [46], we know that Uad 6= ∅; and Uad is
bounded, convex, and closed subset of Lp(W , J) with 1 < p < ∞. Clearly, Bu ∈ Lp(W ,Z) ∀
u ∈ Uad. Next, define an operator Υ : L2

E (W ,Z) by

Υ(κ) = {W ∈ L2
E (W ,Z) : W($) ∈ ∂G($,κ($)) a.e. $ ∈ W ∀ κ ∈ L2

E (W ,Z)}.

We also require the following lemmas in order to reach our main results:

Lemma 4 (see [35]). Provided that (H2) holds, then ∀ κ ∈ L2(W ,Z), the set Υ(κ) has non-
empty, convex and weakly compact values.

Lemma 5 (see [35]). Suppose that (H2) holds, Υ satisfies: if κn → κ ∈ L2(W ,Z), zk → z
weakly in L2(W ,Z) and zk ∈ Υ(κk), therefore z ∈ Υ(κ).

Lemma 6 (see [6]). Suppose that (H2) holds and the operator Υ fulfills: if κn → κ in L2
E (W ,Z),

Wn →W weakly in L2
E (W ,Z) and Wn ∈ Υ(κn), then W ∈ Υ(κ).
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Theorem 2. Suppose that (H0)− (H5) holds, then the HF stochastic system (1) has a mild solution
onW given by

S =

(
2Màη−1

Γ(η)

)2 à2η−1

2η − 1
+ (àc + LGe) < 1.

Proof. ∀ κ ∈ C ⊂ L2(W , L2(E ,Z)), by corresponding Lemma 4, consider the multi-
operator Ψ : C → 2C as follows:

Ψ(κ) =


z ∈ C,
z($) =Mδ,η($)[κ(0)− h̄(κ)− σ(0,κ(0))] + σ($,κ($))

+
∫ $

0 ($−v)η−1Qη($−v)[g(v) + Bu(v)]dv

+
∫ $

0 ($−v)η−1Qη($−v)F(v,κ(v))dW(v).

We have now come to the conclusion that the goal of our concentrated effort was to
identify a fixed point of Ψ. We now prove that Ψ satisfies each and every necessary premise
of Theorem 1. We organised our evidence into six phases, as shown below, to make it easier
to use.
Step 1: Now, we’ll demonstrate that Ψ(κ) has convex, non-empty, and weakly compact
values ∀ κ ∈ C. By using Lemma 4, we may simply demonstrate that Ψ(κ) has non-
empty and weakly compact values. Additionally, the values of Υ(κ) are convex; by giving
χ1, χ2 ∈ Υ(κ) and then αχ1 + (1− α)χ2 ∈ Υ(κ), we can now draw a result ∀ α ∈ [0, 1].
The function Ψ(κ) is convex.
Step 2: Ψ is bounded in C, where Dq = {κ ∈ C : ‖κ‖2 ≤ q}, ∀ q > 0. Certainly, Dq is the
closed, convex and bounded set of C.

In practise, it is sufficient to demonstrate the existence of a positive constant r∗, such
that ‖ϑ‖ ≤ r∗, ∀ Υ ∈ Ψ(κ), and κ ∈ Dq. Suppose that ϑ ∈ Ψ(κ), then ∃ a function
g ∈ Υ(κ) such that

ϑ($) =Mδ,η($)[κ0 − h̄(κ)− σ(0,κ(0))] + σ($,κ($))

+
∫ $

0
($−v)η−1Qη($−v)g(v)dv +

∫ $

0
($−v)η−1Qη($−v)Bu(v)dv

+
∫ $

0
($−v)η−1Qη($−v)F(v,κ(v))dW(v), $ ∈ W ′.

From (H0)− (H5), Lemma 1 and the Hölder inequality, we obtain

E‖ϑ‖2 ≤ 5
[

E‖Mδ,η($)[κ0 − h̄(κ)− σ(0,κ(0))]‖2 + E‖σ($,κ($))‖2

+
∫ $

0
E‖($−v)η−1Qη($−v)g(v)dv‖2

+
∫ $

0
($−v)2(η−1)dv

∫ $

0
E‖Qη($−v)Bu(v)‖2dv

+ LG

∫ $

0
E‖($−v)η−1Qη($−v)F(v,κ(v))dv‖2

]
≤ 5

[(
Màη−1

Γ(δ(1− η) + η)

)2(
2E[‖κ0‖2 + ‖h̄(0)‖2] + Lh̄r + 2Mσ(1 + ‖κ0‖2)

)
+ Mσ(1 + ‖κ‖2) +

(
Màη−1

Γ(η)

)2{( 1− γ

2η − 1− γ

)γ−1

à2η−1−γ
[
‖b‖

L
1
γ (W ,R+)

+ LG‖d‖
L

1
γ (W ,R+)

]
+

à2η−1

2η − 1
[
(c + LGe)q + ‖B‖2‖u‖2

L2
E (W ,J)

]}
:= r∗.

Thus, Ψ(Dq) is bounded in C(W , L2(E ,Z)).
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Step 3: {Ψ(κ) : κ ∈ Dq} is equicontinuous.
Firstly, ∀ κ ∈ Dq,

ϑ($) =Mδ,η($)[κ0 − h̄(κ)− σ(0,κ(0))] + σ($,κ($)) +
∫ $

0
($−v)η−1Qη($−v)g(v)dv

+
∫ $

0
($−v)η−1Qη($−v)Bu(v)dv +

∫ $

0
($−v)η−1Qη($−v)F(v,κ(v))dW(v).

Next, for ε > 0 small enough and 0 < $1 < $2 ≤ à, we get

E‖ϑ($2)− ϑ($1)‖2

≤ E
∥∥∥∥[Mδ,η($2)[κ0 − h̄(κ)− σ(0,κ(0))] + σ($2,κ($2)) +

∫ $2

0
($2 −v)η−1Qη($2 −v)g(v)dv

+
∫ $2

0
($2 −v)η−1Qη($2 −v)Bu(v)dv +

∫ $2

0
($2 −v)η−1Qη($2 −v)F(v,κ(v))dW(v)

]
−
[
Mδ,η($1)[κ0 − h̄(κ)− σ(0,κ(0))] + σ($1,κ($1)) +

∫ $1

0
($1 −v)η−1Qη($1 −v)g(v)dv

+
∫ $1

0
($1 −v)η−1Qη($1 −v)Bu(v)dv +

∫ $1

0
($1 −v)η−1Qη($1 −v)F(v,κ(v))dW(v)

]∥∥∥∥2

≤ 5E
∥∥∥∥[Mδ,η($2)−Mδ,η($1)](κ0 − h̄(κ)− σ(0,κ(0))

∥∥∥∥2

+ 5E‖σ($2,κ($2))− σ($1,κ($1))‖2

+ 5E
∥∥∥∥ ∫ $1

0
[($2 −v)η−1 − ($1 −v)η−1]Qη($2 −v)g(v)dv

+
∫ $1

0
($1 −v)η−1[Qη($2 −v)−Qη($1 −v)]g(v)dv

+
∫ $2

$1

($2 −v)η−1Qη($2 −v)g(v)dv

∥∥∥∥2

+ 5E
∥∥∥∥ ∫ $1

0
[($2 −v)η−1 − ($1 −v)η−1]Qη($2 −v)Bu(v)dv

+
∫ $1

0
($1 −v)η−1[Qη($2 −v)−Qη($1 −v)]Bu(v)dv

+
∫ $2

$1

($2 −v)η−1Qη($2 −v)Bu(v)dv

∥∥∥∥2

+ 5E
∥∥∥∥ ∫ $1

0
[($2 −v)η−1 − ($1 −v)η−1]Qη($2 −v)F(v,κ(v))dW(v)

+
∫ $1

0
($1 −v)η−1[Qη($2 −v)−Qη($1 −v)]F(v,κ(v))dW(v)

+
∫ $2

$1

($2 −v)η−1Qη($2 −v)F(v,κ(v))dW(v)

∥∥∥∥2

=
5

∑
i=1

Ji.

By the strong continuity ofMδ,η($), we get J1 → 0 as $2 → $1.
Similarly,

J2 = 5E‖σ($2,κ($2))− σ($1,κ($1))‖2 → 0 as $2 → $1.
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By assumptions (H0)− (H4) and the same method used in Lemma 3.1 of [32], we get

J3 ≤ 12
[ ∫ $1

0
[($2 −v)η−1 − ($1 −v)η−1]2dv

∫ $1

0
‖Qη($2 −v)‖2E‖g(v)‖2dv

+
∫ $1

0
($1 −v)2(η−1)dv

∫ $1

0
‖Qη($2 −v)−Qη($1 −v)‖2E‖g(v)‖2dv

+
∫ $2

$1

($2 −v)2(η−1)dv
∫ $2

$1

‖Qη($2 −v)‖2E‖g(v)‖2dv

]
≤ 12

[(
M$

η−1
2

Γ(η)

)2 ∫ $1

0
[($2 −v)η−1 − ($1 −v)η−1]2dv

∫ $1

0
E‖g(v)‖2dv

+
$

2η−1
1

2η − 1
sup

v∈[0,$1]

‖Qη($2 −v)−Qη($1 −v)‖2E‖g(v)‖2dv

+

(
M$

η−1
2

Γ(η)

)2
($2 − $1)

2η−1

2η − 1

∫ $2

$1

E‖g(v)‖2dv

]
.

Further, using a similar way, we can get

J4 ≤ 12
[ ∫ $1

0
[($2 −v)η−1 − ($1 −v)η−1]2dv

∫ $1

0
‖Qη($2 −v)‖2‖B‖2‖u‖2

L2
E (W ,J)

dv

+
∫ $1

0
($1 −v)2(η−1)dv

∫ $1

0
‖Qη($2 −v)−Qη($1 −v)‖2‖B‖2‖u‖2

L2
E (W ,J)

dv

+
∫ $2

$1

($2 −v)2(η−1)dv
∫ $2

$1

‖Qη($2 −v)‖2‖B‖2‖u‖2
L2

E (W ,J)
dv

]
≤ 12

[(
M$

η−1
2

Γ(η)

)2

‖B‖2‖u‖2
L2

E (W ,J)
$1

∫ $1

0
[($2 −v)η−1 − ($1 −v)η−1]2

+
$

2η−1
1

2η − 1
‖B‖2‖u‖2

L2
E (W ,J)

$1 sup
v∈[0,$1]

‖Qη($2 −v)−Qη($1 −v)‖2

+

(
M$

η−1
2

Γ(η)

)2
($2 − $1)

2η−1

2η − 1
‖B‖2‖u‖2

L2
E (W ,J)

($2 − $1)

]
,

J5 ≤ 12LG

[ ∫ $1

0
[($2 −v)η−1 − ($1 −v)η−1]2dv

∫ $1

0
‖Qη($2 −v)‖2E‖F(v,κ(v))‖2

L2
0
dv

+
∫ $1

0
($1 −v)2(η−1)dv

∫ $1

0
‖Qη($2 −v)−Qη($1 −v)‖2E‖F(v,κ(v))‖2

L2
0
dv

+
∫ $2

$1

($2 −v)2(η−1)dv
∫ $2

$1

‖Qη($2 −v)‖2E‖F(v,κ(v))‖2
L2

0
dv

]
≤ 12LG

[(
M$

η−1
2

Γ(η)

)2 ∫ $1

0
[($2 −v)η−1 − ($1 −v)η−1]2dv

∫ $1

0
E‖F(v,κ(v))‖2

L2
0
dv

+
$

2η−1
1

2η − 1
sup

v∈[0,$1]

‖Qη($2 −v)−Qη($1 −v)‖2E‖F(v,κ(v))‖2
L2

0
dv

+

(
M$

η−1
2

Γ(η)

)2
($2 − $1)

2η−1

2η − 1

∫ $2

$1

E‖F(v,κ(v))‖2
L2

0
dv

]
.

Hence, using Lebesgue’s dominated convergence theorem, we deduce that the right
side of the above inequalities tends to zero as $2 − $1 → 0. Therefore, we deduce that
Ψ(κ)($) is continuous from the right in (0, à]. Which is likewise continuous from the left in
(0, à], as shown by a similar argument.
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In a similar manner, for $1 = 0 and 0 < $2 ≤ à, we may demonstrate E‖ϑ($2) −
κ0‖2 → 0 independently of κ ∈ Dq as $2 → 0.

Therefore, it appears from the above explanations that {Ψ(κ) : κ ∈ Dq} is an equicon-
tinuous set of functions in C(W , L2(E ,Z)).
Step 4: Ψ is completely continuous.

Suppose that $ ∈ W be fixed. We prove the set Σ($) = {ϑ($) : ϑ ∈ Ψ(Dq)} is
relatively compact in Z. It is clear that Σ(0) = {κ0} is compact.

Therefore, only $ > 0 must be taken into account. Let 0 < $ ≤ à be fixed and ∀
κ ∈ Dq, ϑ ∈ Ψ(κ), ∃ a g ∈ Υ(κ), such that

ϑ($) =Mδ,η($)[κ0 − h̄(κ)− σ(0,κ(0))] + σ($,κ($))

+
∫ $

0
($−v)η−1Qη($−v)[g(v) + Bu(v)]dv

+
∫ $

0
($−v)η−1Qη($−v)F(v,κ(v))dW(v), $ ∈ W .

∀ ε ∈ (0, $), $ ∈ (0, à] and any κ ∈ Dq, we define

ϑε($) =Mδ,η($)[κ0 − h̄(κ)− σ(0,κ(0))] + σ($,κ($))

+
∫ $−ε

0
($−v)η−1Qη($−v)[g(v) + Bu(v)]dv

+
∫ $−ε

0
($−v)η−1Qη($−v)F(v,κ(v))dW(v).

From the boundedness of
∫ $−ε

0 ($ − v)η−1Qη($ − v)[g(v) + Bu(v)]dv,∫ $−ε
0 ($−v)η−1Qη($−v)F(v,κ(v))dW(v), and the compactness ofMδ,η($), Qη , we ob-

tain the set Σε($){ϑε($) : ϑ ∈ Ψ(Dq)} is relatively compact in Z ∀ ε ∈ (0, $). Furthermore,
∀ ϑ ∈ Ψ(Dq), we get

E‖ϑ($)− ϑε($)‖2 ≤ E
∥∥∥∥(Mδ,η($)[κ0 − h̄(κ)− σ(0,κ(0))] + σ($,κ($))

+
∫ $

0
($−v)η−1Qη($−v)[g(v) + Bu(v)]dv

+
∫ $

0
($−v)η−1Qη($−v)F(v,κ(v))dW(v)

)
−
(
Mδ,η($)[κ0 − h̄(κ)− σ(0,κ(0))] + σ($,κ($))

+
∫ $−ε

0
($−v)η−1Qη($−v)[g(v) + Bu(v)]dv

+
∫ $−ε

0
($−v)η−1Qη($−v)F(v,κ(v))dW(v)

)∥∥∥∥2

≤ 2
(

Mεη−1

Γ(η)

)2[
ε2η−1

2η − 1

∫ $

$−ε
E‖g(v) + Bu(v)‖2dv

+
∫ $

$−ε
($−v)2(η−1)E‖F(v,κ(v))‖2

L2
0
dv

]
≤ 2

(
Mεη−1

Γ(η)

)2[2ε2η−1

2η − 1
(ε1−γ‖b‖

L
1
γ (W ,R+)

+ cqε + ‖B‖2‖u‖2
L2

E (W ,J)
ε)

+ LG

(
1− γ

2η − 1− γ

)γ−1

ε2η−1−γ‖d‖
L

1
γ (W ,R+)

+ LG
ε2η−1

2η − 1
eq
]

,

=⇒ the set Σε($){ϑε($) : ϑ ∈ Ψ(Dq)} is totally bounded. The Ascoli–Arzela theorem
allows us to prove Ψ is completely continuous.
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Step 5: Ψ has a closed graph.
Suppose that κn → κ∗ in C(W , L2(E ,Z)), ϑn ∈ Ψ(κn) and ϑn → ϑ∗ in C(W , L2(E ,Z)). We
will prove that ϑ∗ ∈ Ψ(κ∗). Indeed, ϑn ∈ Ψ(κn) means that ∃ a gn ∈ Υ(κn), such that

ϑn($) =Mδ,η($)[κ0 − h̄(κ)− σ(0,κ(0))] + σ($,κn($))

+
∫ $

0
($−v)η−1Qη($−v)[gn(v) + Bu(v)]dv

+
∫ $

0
($−v)η−1Qη($−v)F(v,κn(v))dW(v). (4)

From (H3)(iii) and (H4), we may prove that {(gn, f (·,κn))}n≥1 ⊆ L2
E (W ,Z)× L2

0 is
bounded. Therefore, we may suppose, proceeding on if required to a subsequent thought,
that

(gn, f (·,κn))→ (g∗, f (·,κ∗)) weakly in L2
E (W ,Z)× L2

0. (5)

By the compactness of Qη , (H4), (4) and (5), we obtain

ϑn($)→Mδ,η($)[κ0 − h̄(κ)− σ(0,κ(0))] + σ($,κ∗($))

+
∫ $

0
($−v)η−1Qη($−v)[g∗(v) + Bu(v)]dv

+
∫ $

0
($−v)η−1Qη($−v)F(v,κ∗(v))dW(v). (6)

It should be noted that ϑn → ϑ∗ in C(W , L2(E ,Z)) and gn ∈ Υ(κn). According to
Lemma 6 and Equation (6), we get g∗ ∈ Υ(κ∗). Consequently, we have shown that
ϑ∗ ∈ Ψ(κ∗), =⇒ Ψ has a closed graph. From [47], it may be concluded Ψ is upper semi-
continuous.
Step 6: A priori estimate.
It is evident from Steps 1–5 that Ψ is compact convex value and ϑ, Ψ(Dq) is a relatively
compact set. We continue from Theorem 1 to demonstrate the collection

Π = {κ ∈ C(W , L2(E ,Z)) : λκ ∈ Ψ(κ), λ > 1},

is bounded to get a fixed point of Ψ.
Consider κ ∈ Π and suppose ∃ a f ∈ Υ(κ), such that

ϑ($) =λ−1Mδ,η($)[κ0 − h̄(κ)− σ(0,κ(0))] + λ−1σ($,κ($))

+ λ−1
∫ $

0
($−v)η−1Qη($−v)[g(v) + Bu(v)]dv

+ λ−1
∫ $

0
($−v)η−1Qη($−v)F(v,κ(v))dW(v).

From (H0)− (H5), Lemma 1 and the Hölder inequality, we obtain
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E‖κ($)‖2 ≤ 5
[

E‖Mδ,η($)[κ0 − h̄(κ)− σ(0,κ(0))]‖2 + E‖σ($,κ($))‖2

+ E‖
∫ $

0
($−v)η−1Qη($−v)g(v)dv‖2

+ E‖
∫ $

0
($−v)2(η−1)dv

∫ $

0
Qη($−v)Bu(v)‖2dv

+ E‖
∫ $

0
($−v)η−1Qη($−v)F(v,κ(v))dW(v)‖2

]
≤ 5

(
Màη−1

Γ(δ(1− η) + η)

)2

[E‖κ0‖2 + E‖h̄(0)‖2 + Lh̄r + Mσ(1 + ‖κ0‖2)] + 5Mσ(1 + ‖κ‖2)

+ 5
(

Màη−1

Γ(η)

)2[( à2η−1

2η − 1

∫ $

0
[b(v) + cE‖κ(v)‖2]

+

(
à2η−1

2η − 1

∫ $

0
E‖Bu(κ)‖2dv + LG

∫ $

0
($−v)2(η−1)[d(v) + eE‖κ(v)‖2]

]
≤ 5

(
Màη−1

Γ(δ(1− η) + η)

)2

[E‖κ0‖2 + E‖h̄(0)‖2 + Lh̄r + Mσ(1 + ‖κ0‖2)] + 5Mσ(1 + ‖κ‖2)

+ 5
(

Màη−1

Γ(η)

)2[ à2η−1

2η − 1
(
àη−1‖b‖

L
1
γ (W ,R+)

+ (àc + LGe)‖κ‖2 + ‖B‖2‖u‖2
L2

E (W ,J))

+ LG

(
1− γ

2η − 1− γ

)γ−1

à2η−1−γ‖d‖
L

1
γ (W ,R+)

]
≤ `+ S‖κ‖2, (7)

where

` = 5
(

Màη−1

Γ(δ(1− η) + η)

)2

[E‖κ0‖2 + E‖h̄(0)‖2 + Lh̄r + Mσ(1 + ‖κ0‖2)] + 5Mσ(1 + ‖κ‖2)

+ 5
(

Màη−1

Γ(η)

)2[ à2η−1

2η − 1
(
àη−1‖b‖

L
1
γ (W ,R+)

+
à2η−1

2η − 1
‖B‖2‖u‖2

L2
E (W ,J)

)
+ LG

(
1− γ

2η − 1− γ

)γ−1

à2η−1−γ‖d‖
L

1
γ (W ,R+)

]
.

Hence, from S < 1, the inequality (7),

=⇒ ‖κ‖2 = sup
$∈W

E‖κ($)‖2 ≤ `+ S‖κ‖2 ≤ `

S− 1
:= p0.

Therefore, the set Π is bounded. We determined that Ψ has a fixed point from
Theorem 1. Hence, completed the proof.

4. Optimal Controls

In this segment, we look at the preceding Lagrange problem (LP):
(P) Find a pair (κ0, u0) ∈ C(W , L2(E ,Z))×Uad such that

K (κ0, u0) ≤ K (κ, u), ∀ (κ, u) ∈ C(W , L2(E ,Z))×Uad,

where

K (κ, u) = E
∫ à

0
L ($,κu($), u($))d$.
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Here, κu represents the mild solution of system (1) relating to the control u ∈ Uad. We base
our analysis on the following assumption (H6) to denote the Lagrange problem (P):

(a) The functional L :W ×Z× J → R
⋃{∞} is Borel measurable;

(b) For almost all $ ∈ W , L is sequentially l.s.c. on Z× J;
(c) ∀ κ ∈ Z and almost all $ ∈ W , L ($,κ, ·) is convex on J;
(d) ∃ constants r1 ≥ 0, r2 > 0, ξ is positive and ξ ∈ L1(W ,R), such that

L ($,κ, u) ≥ ξ($) + r1E‖κ‖2
Z + r2E‖u‖p

J .

Theorem 3. Assume that (H0)− (H6) are fulfilled. The optimal control problem (P) permits at
least one optimal pair if B is a strongly continuous operator.

Proof. If inf{K (κ, u)|u ∈ Uad} = +∞, then we can simply determine Lagrange prob-
lem (P) has a single optimal pair. Without loss of consensus, we might assume that
inf{K (κ, u) : u ∈ Uad} = v < +∞. Then condition (H6)(d) implies that v > −∞. By
definition of infimum, ∃ a minimizing sequence of possible pair {(κn, un)} ⊂ Aad, such
that L (κn, un) → v as n → +∞. Since {un} ⊆ Uad, n = 1, 2, · · · , {un} is bounded on
Lp

E (W , J), due to the reflexivity of Lp
E (W , J), ∃ a subsequence of {un}, represented again by

{un}, and u∗ ∈ Lp
E (W , J) satisfying

un weakly−−−−→ u∗ ∈ Lp
E (W , J).

Since Uad is convex and closed, it follows from Mazur’s lemma that u∗ ∈ Uad. Consider
the related sequence of solutions to the following integral equation be denoted by the
symbol {κn}:

κn($) =Mδ,η($)[κ0 − h̄(κ)− σ(0,κ(0))] + σ($,κn($))

+
∫ $

0
($−v)η−1Qη($−v)[gn(v) + Bun(v)]dv

+
∫ $

0
($−v)η−1Qη($−v)F(v,κn(v))dW(v), (8)

where f (v,κn(v)) ∈ SF,κn and gn ∈ Υ(κn).
We then demonstrate that {κn} is a relatively compact subset of C

(
W , L2(E ,Z)

)
.

Firstly, in a similar manner that the proof of Equation (7), we get

E‖κ($)‖2 ≤ 5
(

Màη−1

Γ(δ(1− η) + η)

)2

[E‖κ0‖2 + E‖h̄(0)‖2 + Lh̄r + Mσ(1 + ‖κ0‖2)] + 5Mσ(1 + ‖κ‖2)

+ 5
(

Màη−1

Γ(η)

)2[ à2η−1

2η − 1
(
àη−1‖b‖

L
1
γ (W ,R+)

+ àc‖κ‖2 + ‖B‖2‖u‖2
L2

E (W ,J)

)
+ LG

(
1− γ

2η − 1− γ

)γ−1

à2η−1−γ‖d‖
L

1
γ (W ,R+)

+ LGe
à2η−1

2η − 1
‖κ‖2

]
. (9)

Because of the boundedness of {un}, (9) and Gronwall’s inequality, we infer that ∃ a
constant µ > 0, such that ‖κn‖ ≤ µ, =⇒ {κn} is uniformly bounded.

Then, according to the argument of Steps 3 and 4 in Theorem 2, we may prove {κn($)}
is equicontinuous onW and {κn($)} is relatively compact ∀ $ ∈ W . Thus, the Ascoli–Arzelà
theorem =⇒ {κn} is a relatively compact subset of C

(
W , L2(E ,Z)

)
and so ∃ a function

κ∗ ∈ C
(
W , L2(E ,Z)

)
, such that

κn → κ∗ in C
(
W , L2(E ,Z)

)
⊂ L2(W , L2(E ,Z)

)
. (10)
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The boundedness of {un} and compactness ofNη($−v) together with the dominated
convergence theorem

=⇒
∫ $

0
($−v)η−1Nη($−v)Bun(v)dv →

∫ $

0
($−v)η−1Nη($−v)Bu∗(v)dv. (11)

Equivalent to the proof of Step 5 in Theorem 2, according to the compactness of Qη ,
(H2)(c), (H3), (10) and Lemmas 6, one has

Mδ,η($)[κ0 − h̄(κ)− σ(0,κ(0))] + σ($,κn($)) +
∫ $

0
($−v)η−1Qη($−v)gn(v)dv

+
∫ $

0
($−v)η−1Qη($−v)F(v,κn(v))dW(v)

→Mδ,η($)[κ0 − h̄(κ)− σ(0,κ(0))] + σ($,κ∗($)) +
∫ $

0
($−v)η−1Qη($−v)g∗(v)dv

+
∫ $

0
($−v)η−1Qη($−v)F(v,κ∗(v))dW(v), (12)

where F(v,κ∗(v)) ∈ SF,κ∗ and g∗ ∈ Υ(κ∗). Hence, it concludes from (11) and (12) that

κ∗($) =Mδ,η($)[κ0 − h̄(κ)− σ(0,κ(0))] + σ($,κ∗($))

+
∫ $

0
($−v)η−1Qη($−v)[g∗(v) + Bu∗(v)]dv

+
∫ $

0
($−v)η−1Qη($−v)F(v,κ∗(v))dW(v). (13)

This proves that κ∗ is a mild solution of (1) following to the control u ∈ Uad.
We discern that (a)− (d) satisfy all the hypotheses of Balder’s theorem (see Theorem 2.1

of [50]). Therefore, Balder’s theorem shows that the functional

(κ, u) 7→ E
∫ à

0
L ($,κu($), u($))d$,

is sequentially lower semi-continuous in the strong topology of L1
E (W ,Z) and weak topol-

ogy of Lp
E (W ,Z) ⊂ L1

E (W , J). Since Lp
E (W , J) ⊂ L1

E (W , J), we deduce that K is weakly
lower semi-continuous on Lp

E (W , J). From the hypotheses (H5)(d), we know that K > −∞.
Thus, we show that K reaches its infimum at u∗ ∈ Uad and so

v = lim
n→∞

E
∫ à

0
L ($,κn($), un($))d$ ≥ E

∫ à

0
L ($,κ∗($), u∗($))d$ ≥ v.

This completes the proof.

5. Example

We wrap up this discussion with a straightforward illustration. We can provide
references [7,51] for mathematical induction of HFD and approximate solutions of various
fractional differential systems. Take into account the preceding inclusion problem:

Dδ, 4
7

0+ [κ($, ξ)− k($,κ($, ξ))] ∈ ∂2κ
∂ξ2 [($, ξ)− k($,κ($, ξ))] + ∂G($,κ($, ξ)) + u($, ξ)

+F($,κ($, ξ)) dW($)
d$ , $ ∈ (0, 1], ξ ∈ [0, π],

κ($, 0) = κ($, π) = 0, $ ∈ [0, 1],

I (
3
7 )(1−δ)

0+
(
κ(0, ξ)

)
+ ∑m

i=1
∫ π

0 k($, v)κ($i, v)dv = κ0(ξ), ξ ∈ [0, π],

(14)

where Dδ, 4
7

0+ is the HFD of order 4
7 and type δ ∈ [0, 1], I (

3
7 )(1−δ)

0+ is the R-L integral of order
( 3

7 )(1− δ). k($, v) ∈ L2([0, π]× [0, π]), m is a non-negative integer and 0 < $1 < $2 <
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· · · < $m ≤ 1. Take Z = Y = L2[0, π]. Consider κ(·)(ξ) = κ(·, ξ), B(·)u(·)(ξ) = u(·, ξ),
and

F(κ, u) =
∫ π

0

∫ 1

0
|κ($, ξ)|2d$dξ +

∫ π

0

∫ 1

0
|u($, ξ)|2d$dξ.

Here, W($) is a two-sided, one-dimensional Brownian motion in Z defined on filtered
probability space (Λ, E , P), and ∂G denotes the generalized gradient of a globally Lipschitz
function G. A straightforward illustration of G satisfying the condition (H2) is G($, µ) =
G(µ) = min{g1(µ), g2(µ)} where gi : R → R, i = 1, 2, are convex quadratic functions
(see [18,47]). The function σ($,κ($)) = k($,κ($, ξ)), satisfies the condition (H5).

Let us consider the operator Ã : D(Ã) ⊂ Z → Z which is defined in Ãv = v′′ with
D(Ã) := {v ∈ Z : v ∈ L2([0, π]), v(0) = v(π) = 0}. The strongly continuous semigroup
{M($)}$≥0, which is compact ∀ $ > 0, algebraic, and identity, is then produced by Ã.
Ã is known to have a discrete spectrum with eigenvalues of the kind −n2, n ∈ N, and

the corresponding normalized eigenvectors are given by en(v) :=
√

2
π sin(nv). Similarly,

since {en : n ∈ N} is an orthonormal basis for Z, and also Ã may be denoted by Ãz =

∑∞
n=1 n2〈z, en〉en, z ∈ D(Ã). In particular, ‖M($)‖ ≤ e−$ (see [48] for more information). If

we assume that h̄(κ)(y) = ∑m
i=0
∫ π

0 k(y, z)κ($i, z)dz, then h̄ fulfills condition (C50) (see [39]).
Emphasize that the problem (14) may be denoted as (3), an abstract form. From Theorems
2–3, Equation (14) has a mild solution for ρ, Lh̄ appropriately small, and its corresponding
limited Lagrange problem admits at least one optimal possible pair.

6. Conclusions

For a class of HFNSEHVI with non-local circumstances, this work investigates whether
mild solutions and ideal controls exist. We first established sufficient conditions for the
existence of mild solutions to the relevant control system using notions from the extended
Clarke sub-differential and a fixed point theorem for multivalued maps. The existence
of optimum state-control pairings that are governed by an HFNSEHVI with a non-local
condition was then shown using restricted Lagrange optimal systems. The optimum control
outcomes are attained without taking into account how distinctive the solutions of the
control system are. Finally, an example is used to demonstrate the major conclusion. In the
next paper, it will be explored if there are any mild solutions and what the best controls are
for HF stochastic integro-differential evolution HVIs with non-local conditions.
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Abbreviations
The following abbreviations are used in this manuscript:

HF Hilfer fractional
HFD Hilfer fractional derivative
HVI Hemivational inequality
HVIs Hemivational inequalities
FDEs Fractional differential equations
SDEs Stochastic differential equations
SEEs Stochastic evolution equations
SEHVIs Stochastic evolution hemivational inequalities
HFNSEHVI Hilfer fractional neutral tochastic evolution hemivational inequality
R-L Riemann–Liouville
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