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Abstract: The advancement of the Internet of Things (IoT) has promoted the development of embed-
ded devices. It is important to ensure data transmission security on embedded devices with limited
computing power and storage space. However, the traditional block encryption algorithm cannot
run efficiently on embedded devices because of the large amount of computation. In this paper, a
lightweight length-preserving-encryption algorithm (LILP) is proposed to convert an n-bit block
cipher into a special block cipher that supports an arbitrary length of no less than 2n bits as input.
LILP adopts the involution design method based on a Lai–Massey structure and lightweight compo-
nents to adapt to the limited computing power of embedded devices. In particular, a lightweight
compression function (LCF) is designed to process the data during iteration, which improves security
without reducing the efficiency of the algorithm. The experimental results show that LILP is more
efficient than traditional similar algorithms in encrypting data for resource-constrained devices while
ensuring data security in the IoT.

Keywords: length-preserving encryption; lightweight cryptography; involution; internet of things

1. Introduction

Internet of Things (IoT) is a network composed of many devices, such as physical
gadgets, domestic appliances and microcontrol equipment. A large number of resource-
constrained embedded devices are used in the IoT. The data generated by these devices
cannot use traditional encryption algorithms that require large computing resources to
ensure confidentiality. Therefore, lightweight encryption algorithms are required to ensure
data security in resource-constrained devices. The existing blockciphers have limitations
on block length. To design an encryption algorithm that accepts plaintext input of any
length without selecting an encryption mode is more suitable for the IoT with diverse data,
limited computing power and storage space.

The structure of IoT can be divided into the perception layer, the network layer and
the application layer. As shown in Figure 1, wireless sensor networks (WSNs) play an
important role in the perception layer. This has already been applied in many areas of the
IoT, such as smart transportation, smart homes and smart healthcare. WSNs collect, process
and transmit the information of the perceived area through a large number of sensor nodes.

For example, in a smart home, sensor nodes in a WSN collect the private data of the
house and transmit them to the sink node. Sink nodes upload the sensing information to an
IoT cloud server. Users can download and view private family data by using mobile phones
when they leave home. Data containing personal privacy may be transmitted through
an untrusted network layer or stored in untrusted cloud services. The confidentiality
of sensitive data is potentially subject to cyber attacks [1,2]. In addition, the perception
layer also has the risk of being attacked [3]. Hence, the perception layer requires security
measures for information acquisition in the IoT [4].

However, the cost and performance of protecting data in the perception layer are
critical issues that must be considered in combination. Due to the limited computing
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capabilities and power of components in WSNs, ensuring the communication security of
WSNs requires high performance costs [5]. For example, the main frequency of the remote
terminal unit (RTU) used as the sink node in smart transportation is only 48 Mhz, and the
memory is only 1 M byte.

Standard encryption algorithms used in RTU can provide high security, such as sym-
metric encryption algorithm (e.g., AES) and asymmetric encryption algorithm (e.g., Elliptic
Curve Cryptography). Since these algorithms involve a great deal of computation, the limited
processing and storage capacity of sensors cannot effectively support them. This fact drives
the demand for more secure, less computational and more flexible encryption algorithms.

A variety of lightweight symmetric block ciphers have been designed. Lightweight
symmetric cryptography in resource-constrained devices is a hotspot in current research of
information safety [6]. However, existing lightweight symmetric cryptography research
mainly focuses on the optimization of single-block encryption. The processing methods be-
tween blocks with a large impact on efficiency and security have not been emphasized. The
traditional processing methods for encrypting a long message are composed of encryption
modes and length-preserving-encryption algorithms.

The classic encryption modes include Electronic Codebook (ECB), Cipher Block Chain-
ing (CBC), Cipher Feedback (CFB), Output Feedback (OFB) and Counter mode (CTR) in
the DES modes of operations [7]. Generally, the bit length of plaintext is not an integer
multiple of the block length. The ciphertext is longer than the plaintext if a mode similar
to ECB is used. It means that more storage and transmit space is needed to temporarily
store these data on embedded devices. In addition, it cannot meet the existing security
requirements if the CTR mode is used.

The classic length-preserving-encryption algorithms include Arbitrary Block Length
Mode (ABL) [8], a Variable-Input-Length Enciphering Mode (HCTR) [9] and the Extended
Codebook Mode (XCB) [10], which allow devices to store the ciphertext without additional
storage space. For example, XCB can be used to encrypt an arbitrary block length and
provide the best possible security in the light of disk-block encryption. However, such
methods are devised for common devices but not resource-constrained devices.

Therefore, the problems come from two aspects. One is how to ensure that as much
data as possible can be stored on the resource-constrained devices, the other is how to make
the encryption algorithm for processing large amounts of data run efficiently in such devices.
Focusing on these questions, we design a scheme that uses length-preserving-encryption
algorithms to provide a variety of optional input lengths and reduce pressure on data
transmission in the IoT. In addition, by converting the existing length-preserving-encryption
algorithm, a lightweight version can be obtained, which reduces the consumption of
computing resources.

We propose a lightweight length-preserving symmetric enciphering algorithm (LILP),
which is based on the Lai–Massey [11] structure. LILP accepts any plaintext whose length
is greater than or equal to the length of two blocks. LILP consists of a compression
function, a counter mode (CTR), whitening key additions and S-boxes. Specifically, the
main contributions of LILP in this paper are as follows.

• The decryption process of LILP can reuse its encryption process because it uses
symmetric structures and involuntary components.

• A lightweight compression function (LCF) is carefully designed for running on 32-bit
platforms, which gives LILP an advantage over existing length-preserving-encryption
algorithms in terms of speed and cost.

• LILP can accept different bit-level input sizes so that the caller has flexibility in
choosing the size of the encrypted data.
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Figure 1. Application of a wireless sensor network in IoT.

The remainder of this paper is organized as follows. In Section 2, we introduce the
LILP. In Section 3, the security of LILP is discussed. In Section 4, we present the software
implementation results of LILP. Finally, we conclude our work in Section 5.

2. The Proposed Encryption Algorithm

LILP is a lightweight encryption algorithm that generates multiple subkeys from one
master key for use by various components. The length of the master key is designed as
double the key size of an underlying block encryption algorithm. LILP uses a symmetrical
structure, which can be divided into five layers in total—namely, two XOR layers, two
Lai–Massey layers and a CTR layer. Figure 2 shows the encryption of LILP.
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Figure 2. The encryption process of LILP.
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2.1. Encryption Algorithm

The description of the notation used in the proposed LILP is listed in Table 1. LILP
makes use of a pair of block encryption and decryption algorithms and a specific com-
pression function H. Suppose that the blockcipher is E : {0, 1}k × {0, 1}n → {0, 1}n, then
LILP[E, H] is

LILP[E, H] : {0, 1}2k × {0, 1}≥2n → {0, 1}≥2n, (1)

where {0, 1}≥2n =
⋃

m≥2n{0, 1}m. Algorithm 1 shows LILP[E, H] in detail.

Table 1. Description of the notations used in the proposed LILP.

Symbol Description

‖ concatenation of two strings.

�n left shift by n bits.

�n right shift by n bits.

⊕ bitwise exclusive-OR operation.

a(b) b denotes the bit length of a.

0 · · · 0 a string of 0s.

{0, 1}k the set of all strings of the length of k.

Algorithm 1 The proposed LILP encryption

Input: P, K
Output: C

1: (bk0, bk1, bk2, f k0, f k1)← KeyForBC(K)
2: (hk0, hk1)← KeyForHash(K)
3: (wk0, wk1)← KeyForWhiting( f k0, f k1, i)
4: L0 ← P[0, n− 1]
5: R0 ← P[n, len(P)− 1]
6: (L1 ‖ R1)← XORLayer(E, L0, R0, bk0, wk0)
7: (L2 ‖ R2)← LaiMasseyLayer(L1, R1, hk0)
8: (L3 ‖ R3)← CTRLayer(L2, R2, bk1)
9: (L4 ‖ R4)← LaiMasseyLayer(L3, R3, hk1)

10: (L5 ‖ R5)← XORLayer(D, L4, R4, bk2, wk1)
11: return: (L5 ‖ R5)

We provide a concrete instance that takes the Piccolo [12] block cipher as the underling
block encryption algorithm. A variable-input-length block cipher that accepts message
sizes larger than or equal to 128 bits is created. Piccolo is a variant of a generalized Feistel
network. It supports 64-bit block size with 80-bit and 128-bit keys through 25 and 31 rounds,
respectively.

The 80-bit key version of Piccolo was chosen in our design. Thus, a 160-bit master key,
twice key size of Piccolo, is used to generate a series of subkeys. The length of plaintext
is at least 128 bits. A plaintext P is divided into two parts L0 and R0, in which L0 is the
first 64 bits of the plaintext while R0 is the remainder of the plaintext. Then, five layers of
operations continue to perform.

In the first layer, L1 is obtained from running a block encryption on L0. R1 is obtained
by XOR R0 with whitening key wk0 at the same time. The whitening key wk0 is obtained
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by iteratively using Piccolo with reduced rounds. The detailed process is expressed by the
formula as follows: {

P = L0 ‖ R0,
L1 ‖ R1 = (E(bk0, L0)) ‖ (R0 ⊕ wk0).

(2)

The Lai–Massey structure is applied in the second layer, which is characterized by
involution. L1 is first filled by padding zero bits. The length of L1 after filling is equal to the
length of R1. Then, a result of XOR is input into LCF. Assuming that the value generated
by compression function is H0, then H0 and H

′
0 is XOR with L1 and R1, respectively. An

operation similar to filling L1 needs to be performed on H0 before the XOR operation with
R1. The process of the second layer is represented by the formula as follows:

L
′
1 = L1 ‖ 0 · · · 0,

H0 = LCF(hk0, L
′
1 ⊕ R1),

H
′
0 = H0 ‖ 0 · · · 0,

L2 ‖ R2 = (L1 ⊕ H0) ‖ (R1 ⊕ H
′
0).

(3)

In the third layer, a initial vector T0 is formed by inputting L2 into the nonlinear
component INV. It refers to sixteen identical and involutive S-boxes. Enough intermediate
state T1 is formed after T0 is input into the CTR layer. A partial input R3 of the next round
is obtained from T1 and R2. The detailed process of the third layer is shown by the formula
as follows: 

T0 = INV(L2),
T1 = CTR(bk1, T0),
L3 ‖ R3 = L2 ‖ (R2 ⊕ T1).

(4)

The operation in the fourth layer is similar to the second layer. The XOR of left and
right parts is input into the compression function to obtain a 64-bit compression value. The
value is mixed into the left and right parts. The process of the fourth layer is expressed by
the formula as follows: 

L
′
3 = L3 ‖ 0 · · · 0,

H1 = LCF(hk1, L
′
3 ⊕ R3),

H
′
= H1 ‖ 0 · · · 0,

L4 ‖ R4 = (L3 ⊕ H1) ‖ (R3 ⊕ H
′
1).

(5)

The block decryption algorithm D and whitening key addition are used in the fifth
layer. The output of the block decryption algorithm and the results of XORing R4 with
whitening key wk1 are spliced together to obtain the final ciphertext C. The process of the
last layer is formulated as follows:{

L5 ‖ R5 = (D(bk3, L4)) ‖ (R4 ⊕ wk1),
C = L5 ‖ R5.

(6)

2.2. Key Schedule

As shown in Figure 3, the key schedule divides a 160-bit primary key PK into four
40-bit subkeys ki(40)(0 ≤ i < 4), which provides three bki(80)(0 ≤ i < 3) and two
f ki(80)(0 ≤ i < 2) as follows:{

bk0 = k0 ‖ k1, bk1 = k0 ‖ k2, bk2 = k0 ‖ k3,
f k0 = k1 ‖ k2, f k1 = k1 ‖ k3.

(7)
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In order to generate the keys required for the compression function, PK is denoted
as five 32-bit subkeys ei(32)(0 ≤ i < 5) as PK = e0 ‖ e1 ‖ e2 ‖ e3 ‖ e4. Then, the generation
method of hk0(32) and hk1(32) is expressed by the formula as follows:{

hk0 = e0 ⊕ e1 ⊕ e2 ⊕ e3 ⊕ e4,
hk1 = (hk0 � 1)⊕ (hk0 � 1).

(8)

SHIFT

hk0

hk1

bk0 bk1 bk2 fk0  fk1

PK

Figure 3. The key schedule of LILP.

A variable-length whitening key wki(0 ≤ i < 2) is generated by using a reduced-
round block cipher RE. The so-called reduced-round block cipher refers to a block cipher
that reduces the number of encryption rounds. R0 can be divided into m groups according
to 64 bits as a group. The last group, if less than 64 bits, are also counted as a group. A
constant block 064 is encrypted by using the reduced-round block cipher RE. 064 is a 64-bit
string of 0s.

The results of the encryption are used as the first part of whitening key. The remaining
parts of the whitening key are obtained from performing iterative encryption. The parame-
ter i of RE refers to number of generation reduction rounds. The value is recommended as
3 during our experiments. We use Pad(X) to append 0s to turn the bit length of X into 64.
The specific process of the generating whitening key wk0 is as follows:

vt0 = RE(064, f k0, i),
vtj = RE(vtj−1, f k0, i) (1 ≤ j ≤ m− 1),
wk0 = vt0 ‖ vt1 ‖ · · · ‖ Pad(vtm−1).

(9)

The process of generating wk1 is essentially the same as wk0. The difference is that
vtm−1 in wk0 is used instead of 064 in calculation. A different subkey f k1 is also used.

vp0 = RE(vtm−1, f k1, i),
vpj = RE(vpj−1, f k0, i) (1 ≤ j ≤ m− 1),
wk1 = vp0 ‖ vp1 ‖ · · · ‖ Pad(vpm−1).

(10)

2.3. LCF

The execution flow of LCF is presented in Figure 4. The design inspiration of LCF
comes from the Murmurhash2B function. Diffusivity is the main indicator to be considered
when modifying the Murmurhash2B function to achieve the LCF. The implementation cost
of LCF is also concerned. Currently, many embedded chips have multipliers. However,
there are still many MCUs that do not have multipliers due to cost constraints. Multiplica-
tion needs to be implemented through addition and shift instead. In short, the advantage
of using addition outweighs multiplication in terms of the cost and performance.
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Therefore, we suggest replacing certain multiplication operators in the Murmurhash2B
function with the modular addition of a lightweight component. A search algorithm is
devised to realize the above idea. This algorithm attempts to use as many modular addition
operations as possible in LCF, rather than multiplication operations. The search algorithm
is described as Algorithm 2.

h = RMF(state,seed,len,cons)

input n,state,seed,cons,len

n == 0

begin

n%2 == 0

temp = m[1] ⊕ s[3]

ncons = m[0]||temp||m[2]||m[3]

temp = m[2] ⊕ s[3]

ncons = m[0]||m[1]||temp||m[3]

h = RMF(state,seed,len,ncons) output h

end

N

YN

Y

n = len % 8 

Figure 4. The execution flow of LCF.

Algorithm 2 The search algorithm

1: for multis = 0 to 7 do
2: success = 0
3: for cond = 0 to 7 do
4: start = 64 + cond
5: end = 1920 + cond
6: for const = 0x5b000000 to 0x5c000000 do
7: f lag = 0
8: min = 1
9: for i = start to end do

10: if i%8 == 0 then
11: rate = CheckDu f f sion(i)
12: if rate < 0.45 then
13: break
14: else
15: f lag ++
16: min = MinRate(min, rate)
17: Record(cond, constant, min)
18: count ++
19: Recordn(cond, count)
20: CheckSuccess(multis)

The goal of the search algorithm is to make the function LCF obtain a better diffusion
rate when processing data of different lengths. The results of the search algorithm are con-
stants that can be used in LCF. Constants within a certain range are searched in Algorithm 2
to make the diffusion rate of LCF reach the target for each data length. In other words, LCF
can choose different constants according to the length of the data.

In our experiment, suppose that the multiplication operations can be reduced by 4
to 14 times. multis represents the number of multiplication used in LCF. The data lengths
processed by LCF range from 64 bits to 1927 bits, and these will be divided into eight groups.
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Each group is characterized by the same results when the elements in the group are
treated with mod 8. For each group, constants from 0x5b000000 to 0x5c000000 are sought
when the number of multiplication operations used is determined. The function Record is
used to record the group number, constant and lower limit of the diffusivity if the constant
makes all points in a group meet the diffusivity condition. Recordn is used to record the
number of constants in each group that meet the conditions. CheckSuccess is used to check
the constant results for each group after searching the eight groups.

It is possible to use modular addition instead of multiplication if all eight groups have
results. A constant is selected from the numerous constants after the search algorithm is
completed. Not only can this make the LCF obtain an equilibrium diffusion rate but it can
also deduce other constants from it. In other words, the selected constants can make the
diffusion effect of LCF independent of the data length.

Finally, the fourteen multiplication operations in Murmurhash2B are simplified into
four multiplication operations through experiments. The corresponding constants are
analyzed to obtain the constant 0x5be5e995 used to design LCF. The selected constant
can make the lower limit of diffusivity for LCF reach 0.47. In particular, the diffusivity of
LCF can reach 0.5 when LCF uses eight times the data. In conclusion, the proposed LCF
processes data faster and more cheaply than Murmurhash2B. The performance comparison
between LCF and other functions is in Section 4. LCF is described in Algorithm 3.

LCF receives two parameters: key (seed) and data (state). A seed is provided by the key
processing function, which is divided into four words. The bit length of each word is 8 bits.
The bit length of the state and seed together determine the constant to be used when calling
function RMF in LCF. cons can evolve 32 values under different conditions. This is used
directly as an argument to RMF when the bit length of state is an integer multiple of 8. A
conditional judgment is executed in other cases. The first or second word in cons is changed
to create a new constant (ncons) after the condition is determined. ncons is generated by
XOR operation on the third byte of seed and cons. LCF has a 64-bit compressed value by
calling RMF after determining the constant. RMF is described in Algorithm 4.

Each basic operation processes 32-bit data in RCF. h0 and h1 are generated by process-
ing every eight bytes of the state through modulo addition, shift and XOR operations. The
first four bytes of a group with less than eight bytes are processed similarly to the previous
step. The last three bytes are connected and added to h1. Then, h0 and h1 are mixed by XOR,
shift and multiplication operations. The final value res is the combination of h0 and h1.

Algorithm 3 The lightweight compress function LCF

Input: state, seed
Output: h

1: seed = s[0] ‖ s[1] ‖ s[2] ‖ s[3]
2: cons = m[0] ‖ m[1] ‖ m[2] ‖ m[3] = 0x5be5e995
3: len = Length(state)
4: n = len%8
5: if n 6= 0 then
6: if n%2 6= 0 then
7: temp = m[1]⊕ s[3]
8: ncons = m[0] ‖ temp ‖ m[2] ‖ m[3]
9: else

10: temp = m[2]⊕ s[3]
11: ncons = m[0] ‖ m[1] ‖ temp ‖ m[3]
12: h = RMF(state, seed, len, ncons)
13: else
14: h = RMF(state, seed, len, cons)
15: return: h
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Algorithm 4 The revised murmurhash2B function RMF

Input: state, seed, len, m
Output: res

1: h0 = seed⊕ len
2: h1 = 0
3: r = 24
4: while len ≥ 8 do
5: k0 = NextWord(state)
6: k0 = k0 + m, k0 = k0 ⊕ (k0 >> r) + m
7: h0 = (h0 + m)⊕ k0
8: len = len− 4
9: k1 = NextWord(state)

10: k1 = k1 + m, k1 = k1 ⊕ (k1 >> r) + m
11: h1 = (h1 + m)⊕ k0
12: len = len− 4
13: if len ≥ 4 then
14: k2 = NextWord(state)
15: k0 = k0 + m, k0 = k0 ⊕ (k0 >> r) + m
16: h0 = (h0 + m)⊕ k0
17: len = len− 4
18: temp = state[2] ‖ state[1] ‖ state[0]
19: h1 = (h1 ⊕ temp) + m
20: h0 = h0 ⊕ (h1 � 18), h0 = h0 ∗m
21: h1 = h1 ⊕ (h1 � 22), h1 = h1 ∗m
22: h0 = h0 ⊕ (h1 � 17), h0 = h0 ∗m
23: h1 = h1 ⊕ (h1 � 19), h1 = h1 ∗m
24: res = h0‖h1
25: return: res

2.4. Decryption Algorithm

The shared key between the encrypting party and the decrypting party can be ex-
changed through a secure key exchange protocol. There are many such key exchange
protocols, such as those proposed in [13–15]. The encryptor sends the PK to the receiver
of the ciphertext through a secure key exchange protocol. The receiver of the ciphertext
uses the PK to generate a series of subkeys for decryption. The decryption operation of
the proposed LILP is the same as the encryption operation. However, each subkey needs
to be applied in reverse order when decrypting. Assuming that the order of keys used in
encryption is bk0, wk0, hk0, bk1, hk1, bk2, wk1, and then the order of keys used in decryption
is wk1, bk2, hk1, bk1, hk0, wk0, bk0.

3. Security Analysis
3.1. Avalanche Effect

This part analyzes the security of LILP by diffusion and confusion tests. In the first
step, a plaintext is created randomly and changes a bit randomly to create another plaintext.
Then, the two plaintexts are encrypted by LILP to generate two results for comparison to
obtain the diffusion degree. Finally, the above steps are repeated 100,000 times to calculate
the average diffusivity. For plaintexts with lengths from 128 to 1499 bits, the average
diffusion rates under different plaintext lengths are calculated, respectively. The test results
are shown in Figure 5.

The degree of confusion is another important test to measure the security of an
algorithm. Similar to the steps of the diffusion test, a key is generated at random. A bit of
the key is randomly changed to generate another key. Encryption is repeated several times
to calculate the average confusion rate. The test result is shown in Figure 6. According to the
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results shown in Figures 5 and 6, the diffusion and confusion rates of LILP can both reach
0.5. In other words, LILP is safe in terms of randomness defined by the avalanche effect.
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Figure 5. Diffusion analysis of the proposed LILP.

LILP

D
eg

re
e 

of
 C

on
fu

si
on

0.4992

0.5

Plaintext Length(bits)
0 250 500 750 1000 1250 1500

Figure 6. Confusion analysis of the proposed LILP.

In addition, different key schedules are studied according to the degree of confusion,
which can be divided into four cases.

• The first case is that the underlying block encryption and decryption algorithm uses
the same key as the CTR mode. A fixed key is used for a compression function. In this
case, the confusion rate of an algorithm can only reach 0.33.

• The second case is that the underlying block encryption and decryption algorithm
mode use different keys. The compression function uses a fixed key. However, the
confusion rate cannot be improved in this case.

• The third case is that a master key is simply processed to generate keys used by the
compression function. In this case, the confusion rate will be significantly improved.

• The last case is that the key schedule function is precisely devised so that a change
of the master key may result in as many changes of subkeys as possible. Then, the
confusion rate of an algorithm in this case can reach about 0.5.

3.2. Discussion

In terms of security, the LILP has a structural design similar to XCB. Therefore, the
security analysis of XCB mode can be directly applied to LILP mode. In [16], XCB is
proven to be secure as long as a block cipher is used in the security model based on a
specific reduction that can be considered as a secure pseudorandom permutation. In this
instance, we can assume that LILP is also safe. A different design in LILP is to add two
whitening keys.

Key whitening includes the steps of combining the key with the state part before the
first round of encryption and after the last round of encryption in LILP. This is intended to
increase the complexity of violent attacks and increase the effective size of the key without
requiring significant changes to the algorithm. In the structure of the XCB, the right part of
the state is placed in the compression operation, which directly influences the compression
value. LILP places the entire state into a compression function to distinguish it from XCB.



Symmetry 2023, 15, 177 11 of 16

This practice makes the hash value more unpredictable. In other words, any change in an
original state results in a different compression value.

4. Performance Analysis
4.1. Overall Comparison

As shown in Table 2, length-preserving-encryption algorithms can accept input of any
length. Some components of the length-preserving algorithms can be operated in parallel.
In addition, algorithms using the Luby–Rackoff structure do not input the entire plaintext
into the compression function, which affects the diffusion effect of the algorithms. The
Lai–Massey structure adopted by LILP can solve this problem. It is worth noting that
the GHash-like compression functions used by ABL, XCB and HCTR need to implement
multiplication over finite fields. A simple implement of multiplication is much slower than
one AES call [17]. However, the compression function LCF used by LILP does not require
such a large computational cost. In order to adapt to resource-constrained devices, LCF
also takes cost, security and performance into consideration comprehensively.

Table 2. The design criteria of ABL, HCTR, XCB, HCH and LILP.

Compression
Method

Variable
Input Length Parallelizable Structure

ABL [8] GHash
√

Partially Luby–Rackoff

HCTR [9] GHash
√

Partially Luby–Rackoff

XCB [10] AXUHash
√

Partially Luby–Rackoff

HCH [17] Wegman-Carter
√

Partially Luby–Rackoff

LILP LCF
√

Partially Lai–Massey

We implemented LILP on the 1.6 GHz Intel(R) Core i5-8250U CPU, which uses the
Intel C++ compiler to run a 64 bit operating system. In addition, there are devices used
for data acquisition, control and communication functions in the perception layer. They
often have more abundant computing resources and storage resources when compared
with sensor nodes, such as RTU [18]. The frequency range of the embedded processing
chips typically used is from tens of MHZ to hundreds of MHZ [19–21]. Compared with the
dominant frequency of GHZ on the server, the data processing capability is still relatively
weak. Therefore, we also implemented LILP on RTU, which uses a 32-bit 48 MHz ARM
processor with 32 single byte general-purpose registers, 1 M byte SRAM and 8 M byte
programmable flash memory.

First of all, LILP is a lightweight and improved version of XCB. We compare the
encryption and decryption speed of LILP with XCB. We prepare 10 GB and 1 GB of data for
each plaintext length on PC and RTU, respectively, to calculate the average running time of
LILP and XCB. The comparison results are shown in Figure 7, and these indicate that LILP
is faster than XCB in processing data on both PC and RTU.

In addition, we select several existing length-preserving-encryption algorithms of the
same type as LILP to compare the encryption and decryption speed. Since algorithms, such
as ABL and HCTR, do not have a specific key schedule function, for the sake of fairness, all
keys required by the algorithm are prepared in advance. The running time of the algorithm
on RTU is also calculated and compared. As shown in Figure 8, we observed that LILP
shows better performance to achieve length-preserving encryption of 128-bit to 1499-bit
data. The comparison with other ciphers for encrypting 1000-bit plaintext is shown in
Table 3. In terms of the throughput, LILP is faster than ABL, HCTR and XCB.
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Figure 7. Comparisons of the execution time of LILP and XCB.
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Figure 8. Comparison of the execution time of ABL, HCTR, XCB and LILP.

Table 3. Comparison of CMC ABL, HCTR, XCB and LILP.

Algorithms Execution Time
(Microseconds) Throughout (kbit/s)

ABL 428 2281

HCTR 712 1371

XCB 643 1518

LILP 405 2411

4.2. Comparison of the Key Schedule

We suppose that the underlying block encryption algorithm can generate 64-bit cipher-
text by using 80-bit keys after 25 rounds of transformation. The key schedule algorithm
of XCB uses an 80-bit master key to generate a 64-bit and three 80-bit subkeys. The 64-bit
subkey is ciphertext generated by encrypting all zero constants with a block cipher. The
80-bit subkeys are results of encrypting different constants by calling the block encryption
algorithm twice. The advantage of XCB using such a key schedule is to save space for
storing keys.

However, if such a key schedule is used in resource-constrained embedded devices, it
requires seven times the block encryption algorithms to generate four subkeys, which will
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undoubtedly reduce the operating efficiency of the entire system. Therefore, it is necessary
to run a simple and fast key schedule function on resource-constrained embedded devices
to ensure a certain degree of security.

In this paper, the reduced round block encryption algorithm is used to generate the
whitening keys. The keys required for the block encryption algorithm and compression
function are realized through the operations of grouping, splicing and shifting. The time
required to generate a whitened key varies with the length of plaintext. The advantage of
using the reduction round method is to reuse existing components. In addition, whiten-
ing keys can be generated safely and quickly when plaintext of a certain length range
is encrypted.

For example, compared with the large amount of time spent on the XCB key schedule,
the time for LILP to complete the key schedule in the case of plaintext lengths from 448
to 640 bits is equivalent to the time of calling the block cipher twice. It can be seen from
Figure 9 that, when the plaintext length is less than 1600 bits, the execution time of LILP is
significantly shorter than XCB in the key schedule. Some security risks may be hidden in a
length-preserving-encryption algorithm without a key schedule function. For example, the
ciphertext generated by HCH [17] encryption does not have strong randomness without
processing a master key.
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Figure 9. Comparison of the execution time of key schedules.

4.3. Comparison of Compression Function

Since the choice of compression function has a great impact on the performance and
security of the proposed LILP, it is necessary to analyze and compare compression functions.
The specific results of analysis and comparison are as follows. First, the performance of three
compression algorithms—namely, AXUHash, GHash and Murmurhash2B are compared.
A special AXU (AlmostXorUniversal) function can accept X of any length by dividing X
into X = X1 · · ·Xm. If the length of Xm is less than n, then enough 0 bits are filled in the
end of Xm to make the bit length of Xm equal to n. |X| refers to the bit length of X. h is a
parameter similar to the key that needs to be specified separately. A special AXUHash is
defined as follows:

Hh(X) = X1 · hm+1 ⊕ · · · ⊕ Xm0∗ · h2 ⊕ |X| · h (11)

This compression function is based on multiplication and addition over finite fields. A
fixed-length value is formed by dividing input into blocks for absorption. The advantage
of the above compression functions is that it can be implemented efficiently on a high-
performance server. However, its disadvantage is also obvious. If the platform uses 32-bit
or less algorithms, there is no data type long enough to effectively implement operations
over finite fields. Therefore, the implementation of multiplication is more complicated,
which will greatly reduce the operational efficiency of this compression function. Similar to
AXUHash, GHash is also based on polynomial operations over finite fields. The specific
calculation details of GHash are shown in [8].

In addition, the influence of different compression functions on the diffusion effect of
the algorithm is also studied. When all inputs are 0, AXUHash and GHash will not work,
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which means that the compressed value will also be 0 or a simple value. This is because
any element in a finite field multiplied by 0 will be 0.

The experimental results show that Murmurhash2B has a good diffusion effect. It uses
XOR, shift, normal addition and multiplication to obtain a 64-bit value [22]. The running
time of these three compression functions is tested multiple times with 5 GB data. The
average running time obtained is shown in Table 4. In addition, the advantage of using
Murmurhash2B is that it can directly process the byte stream submitted by the bottom layer.
The byte stream needs to be formatted before using GHash and AXUHash, which reduces
the running efficiency of the whole algorithm to a certain extent.

Table 4. The execution time of the compression function.

Functions Execution Time (Microseconds)

GHash 151,947,619

AXUHash 138,007,244

Murmurhash2B 19,061,279

LCF 17,017,134

4.4. Application

The proposed LILP is applied to protect sensor data in WSNs. In addition, a lightweight
key exchange security framework [23] is used for key transmission. WSNs consist of sensor
nodes, such as temperature sensors, soil sensors, humidity sensors, light sensors and soil
pH sensors. These sensor nodes are installed manually on the WSN to collect environmental
data before transmission to the sink node. Then, the sink node transmits the data to the
user through a common channel.

Users make choices and take necessary actions on sensor data property based on the
environmental facts obtained. RTU is used to collect sensor data in a monitoring area with
100 monitoring points. Each monitoring point uses temperature and humidity sensors,
light sensors and carbon dioxide sensors to monitor the environmental information of the
crops. The sensor data is encrypted on the RTU and transmitted to the cloud server through
the 4G network.

We stipulate that the temperature and humidity information occupies 4 bytes, the
light information occupies 3 bytes, the carbon dioxide information occupies 2 bytes, and
the location code occupies 1 byte. When RTU reads sensor data from 100 nodes, the data
size to be encrypted is 1000 bytes. The experimental results show that it takes 0.02 s to call
LILP to encrypt such sensor data. The advantage of LILP in encryption speed makes it
have less impact on other services running in the RTU. In addition, LILP has the advantage
of adapting to sensor data of different lengths. For example, sometimes adding monitoring
nodes or damaging sensors will cause changes in the amount of data.

5. Conclusions

In this paper, we first analyzed certain traditional algorithms that are not suitable for
encrypting large amounts of data on resource-constrained devices. Then, a lightweight
encryption algorithm LILP was proposed. LILP uses a provably secure Lai–Massey struc-
ture and two variable length whitening keys to ensure its security. The most significant
characteristic of LILP is that the encryption and decryption are consistent, which enables
LILP to reuse code.

In addition, a lightweight compression function LCF was designed to give LILP fast
encryption and decryption speeds with a low cost. Finally, we tested the performance
of LILP in terms of the execution time and throughput. The execution time for LILP to
encrypt an 1000-bit plaintext was 405 microseconds with the throughput of 2411 kbps. The
results show that LILP was superior to traditional algorithms in the speed of encryption
and decryption for lightweight enciphering.
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