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Abstract: The main aim of the paper is to give the crossing number of the join product G∗ + Dn. The
connected graph G∗ of order six is isomorphic to K3,3 \ e obtained by removing one edge from the
complete bipartite graph K3,3, and the discrete graph Dn consists of n isolated vertices. The proofs
were carried out with the help of several possible redrawings of the graph G∗ with respect to its
many symmetries.
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1. Introduction

The problem of reducing the number of crossings is interesting in many areas. One of
the most popular areas is the implementation of the VLSI layout, which has revolutionized
circuit design and has had a strong impact on parallel computing. Crossing numbers were
also studied to improve the readability of hierarchical structures and automated graphs.
The visualized graph should be easy to read and understand. For the sake of the clarity of
the graphical drawings, the reduction in crossings is likely the most important. Therefore,
the investigation on the crossing number of simple graphs is a classical but very difficult
problem. Garey and Johnson [1] proved that determining cr(G) is an NP-complete problem.

Let G be a simple graph. We use V(G) and E(G) to denote the vertex set and the
edge set of G, respectively. A drawing of G is a representation of G in the plane such
that its vertices are represented by distinct points and its edges by simple continuous
arcs connecting the corresponding point pairs. The crossing number cr(G) is the smallest
number of crossings of edge crossings in any drawing of G in the plane. It is easy to see that
a drawing with a minimum number of crossings (an optimal drawing) is always a good
drawing, meaning that no edge crosses itself, no two edges cross more than once, and no two
edges are incident with the same vertex cross. Let D be a good drawing of the graph G. We
denote the number of crossings in D by crD(G). Let Gi and Gj be edge-disjoint subgraphs of
G. We denote the number of crossings between edges of Gi and edges of Gj by crD(Gi, Gj),
and the number of crossings among edges of Gi in D by crD(Gi). It is easy to see that. for any
three mutually edge-disjoint subgraphs Gi, Gj, and Gk of G, the following equations hold:

crD(Gi ∪ Gj) = crD(Gi) + crD(Gj) + crD(Gi, Gj) ,

crD(Gi ∪ Gj, Gk) = crD(Gi, Gk) + crD(Gj, Gk) .

It was Turán [2] who introduced the concept of crossing numbers. In his Brick Factory
Problem, he investigated the minimal number of crossings among edges of the complete
bipartite graphs Km,n. Kleitman in [3] showed that
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cr(Km,n) =
⌊m

2

⌋⌊m− 1
2

⌋⌊n
2

⌋⌊n− 1
2

⌋
, if min{m, n} ≤ 6. (1)

For an overview of several exact values of crossing numbers for some families of
graphs, see Clancy [4]. The main aim of this survey was to compile all such published
results for crossing numbers together with references. The join product of two graphs Gi
and Gj, denoted Gi + Gj, is obtained from vertex-disjoint copies of Gi and Gj by adding all
edges between V(Gi) and V(Gj). For |V(Gi)| = m and |V(Gj)| = n, the edge set of Gi + Gj
is the union of the disjoint edge sets of the graphs Gi, Gj, and the complete bipartite graph
Km,n. Let Dn denote the discrete graph (sometimes called empty graph) on n vertices, and let
Kn be the complete graph on n vertices. The exact values for crossing numbers of G + Dn
for all graphs G of an order of at most four are given by Klešč and Schrötter [5], and also
for some connected graphs G of order five and six [6–29]. The main aim of this paper is to
extend the known results concerning this topic to new connected graphs. Note also that
cr(G + Dn) are known only for some disconnected graphs G; see [30–32].

Recently, the crossing numbers of complete multipartite graphs have attracted much
attention. Note that the crossing numbers of complete tripartite graphs Kk,l,n were deter-
mined for all cases where k + l ≤ 6, except for K3,3,n. In the case of complete fourpartite
graphs, Kk,l,m,n for all cases where k + l + m ≤ 6, except for K1,2,3,n. Ho [33] already con-
jectured that the crossing number of K3,3,n is equal to 6

⌊ n
2
⌋⌊ n−1

2
⌋
+ 2n + 2

⌊ n
2
⌋
+ 1 for all

n ≥ 1. He also showed that cr(K3,3,n) can be determined if the equality (1) holds for m = 7
and n ≤ 20. To date, this is not known to be true, and so the crossing number of K3,3,n
can only be given as a conjecture. Much attention began to focus on the crossing number
of G \ e obtained by removing one edge e from graph G. Conjectures about the crossing
numbers of Kn \ e and Km,n \ e are established, but not yet for tripartite graphs without one
edge. Recently, the crossing numbers of K1,4,n \ e and K2,3,n \ e have been well-known by
Su [34], and he also stated a question considering the exact values of the crossing numbers
of K1,5,n \ e, K2,4,n \ e and K3,3,n \ e. A partial answer to his question is offered in this paper
for the last mentioned graph K3,3,n \ e.

Let G∗ = (V(G∗), E(G∗)) be the connected graph of order six isomorphic to K3,3 \ e
obtained by removing one edge from the complete bipartite graph K3,3, and also let
V(G∗) = {v1, v2, . . . , v6}. Many possible drawings of the graph G∗ are partially solved us-
ing several redrawings of G∗ in Figures 1–3, thanks to which, it is not necessary to deal with
the considered drawings of G∗ in any optimal drawing of G∗ + Dn. The crossing number
of G∗ + Dn equal to 6

⌊ n
2
⌋⌊ n−1

2
⌋
+ n + 2

⌊ n
2
⌋

is determined in Theorem 1 with proof that is
strongly based on properties of cyclic permutations. Certain parts of the statements could
also be simplified with the help of software COGA by Berežný and Buša [35], generating
all cyclic permutations of six elements. In the statements of the paper, the term “region”
is also used for nonplanar drawings. In this case, crossings are considered to be vertices
of the “map”. Two regions are neighboring if their boundaries have a common edge or a
segment of an edge.
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Figure 1. Elimination of two crossings on edges of G∗ with vertex notation in a different order for both
bottom drawings. (a): the subdrawing of G∗ with two crossings on four edges v1v5, v3v5, v2v6, v4v6;
(b): the subdrawing of G∗ with four crossings on four edges v1v5, v3v5, v2v6, v4v6.
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Figure 2. Elimination of two crossings on edges of G∗ with vertex notation in a different order for
both bottom drawings, after which, edges of C4(G∗) do not cross each other. (a): elimination of one
crossing on edges of C4(G∗) with crD(G∗) = 7; (b): elimination of one crossing on edges of C4(G∗)
with crD(G∗) = 5; (c): elimination of two crossings on edges of C4(G∗).
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Figure 3. Elimination of two crossings on edges of G∗ with vertex notation in a different order
for both bottom drawings, after which, edges of C4(G∗) cross each other. (a): elimination of two
crossings on edges of C4(G∗) with crD(G∗) = 5; (b): elimination two crossings on edges of C4(G∗)
with crD(G∗) = 3.

2. Cyclic Permutations and Possible Drawings of G∗

The join product G∗ + Dn (sometimes used notation G∗ + nK1) consists of one copy of
the graph G∗ and n vertices t1, t2, . . . , tn, and any vertex ti is adjacent to every vertex of the
graph G∗. Let Ti, 1 ≤ i ≤ n, denote the subgraph induced by the six edges incident with
the vertex ti. Thus, T1 ∪ T2 ∪ · · · ∪ Tn is isomorphic to the complete bipartite graph K6,n,
which yields that

G∗ + Dn = G∗ ∪
( n⋃

i=1

Ti
)

. (2)

We consider a good drawing D of G∗ + Dn. The rotation rotD(ti) of a vertex ti in
the drawing D as the cyclic permutation that records the (cyclic) counter-clockwise order
in which the edges leave ti was defined by Hernández-Vélez et al. [36] or Woodall [37].
We use the notation (123456) if the counter-clockwise order of the edges incident with
the vertex ti is tiv1, tiv2, tiv3, tiv4, tiv5, and tiv6. We have to emphasize that rotation is a
cyclic permutation. Let rotD(ti) denote the inverse permutation of rotD(ti). In the given
drawing D, it is highly desirable to separate n subgraphs Ti into four mutually disjoint
subsets depending on how many times edges of G∗ could be crossed by Ti in D. Let us
denote by RD, SD, and TD the set of subgraphs for which crD(G∗, Ti) = 0, crD(G∗, Ti) = 1,
and crD(G∗, Ti) = 2, respectively. Edges of G∗ are crossed by each remaining subgraph Ti

at least three times in D. Moreover, let Fi denote the subgraph G∗ ∪ Ti for Ti ∈ RD ∪ SD,
where i ∈ {1, . . . , n}.

First, note that if D is a good drawing of G∗ + Dn with the empty set RD ∪ SD, then
∑n

i=1 crD(G∗, Ti) ≥ 2n implies at least 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ n + 2

⌊ n
2
⌋

crossings in D provided by

crD(G∗ + Dn) = crD(K6,n) + crD(G∗, K6,n) + crD(G∗)

≥ 6
⌊n

2

⌋⌊n− 1
2

⌋
+ 2n ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n + 2

⌊n
2

⌋
.

Taking into account the expected result of the main Theorem 1, this leads to a consid-
eration of the nonempty set RD ∪ SD in all good drawings of G∗ + Dn.
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Let us discuss all possible drawings of G∗ induced by D with the degree sequence
(2, 2, 3, 3, 3, 3). The graph G∗ contains a cycle C4 induced on four vertices of degree 3 as a
subgraph (for brevity, we write C4(G∗)), and let v1, v2, v3, and v4 be their vertex notation
in the appropriate order of the cycle C4(G∗). In the rest of the paper, suppose also that
deg(v5) = 2 and deg(v6) = 2 for v1v5, v3v5 ∈ E(G∗) and v2v6, v4v6 ∈ E(G∗). Note that
edges of C4(G∗) can cross each other in some discussed good subdrawings D(G∗).

In Figure 1, we can redraw two crossings on four edges incident with different vertices
of C4(G∗) to obtain a new drawing of G∗ induced by D (with the vertex notation in
a different order for both bottom drawings) with fewer edge crossings. Based on this
argument, these four edges of G∗ do not cross each other in such a way in any optimal
drawing of G∗+ Dn. Both redrawings of the graph G∗ in Figure 1 give almost no constraints
on the behavior of the four remaining edges of the cycle C4(G∗), and so many subdrawings
of G∗ induced by D are eliminated. Clearly, we also have other possibilities for some special
redrawings of G∗ presented in Figures 2 and 3.

Taking into account the assumption that it does not matter which of the regions in
D(G∗) are unbounded in our considerations, we will deal with the subdrawings of G∗

given in Figures 4 and 5. Since the graph G∗ consists of the edge disjoint subgraphs
C4(G∗) and 2P3, we only need to consider possibilities of crossings between subdrawings
of subgraphs C4(G∗) and 2P3 (the edges of both paths P3 can cross themselves in the
considered subdrawings). If we consider a good subdrawing of G∗ in which edges of
C4(G∗) cross each other, then edges of 2P3 do not cross edges of C4(G∗) only in one case,
which is shown in Figure 4a. If edges of C4(G∗) are crossed at least once by some edge
of 2P3, then there are four next possibilities due to all previous restrictions, and they are
shown in Figure 4b–e. Similarly, using all previous observations, if edges of C4(G∗) do
not cross each other, then we obtain seven other possible nonplanar subdrawings of G∗

induced by D in Figure 5.
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Figure 4. Five considered nonplanar drawings of the graph G∗ in which edges of C4(G∗) cross
each other. (a): the drawing of G∗ with all six vertices of G∗ located in one region of D(G∗) and
crD(G∗) = 1; (b): the drawing of G∗ with five vertices of G∗ located in one region of D(G∗) and
crD(G∗) = 2; (c): the drawing of G∗ with all six vertices of G∗ located in one region of D(G∗) and
crD(G∗) = 3; (d): the drawing of G∗ with five vertices of G∗ located in one region of D(G∗) and
crD(G∗) = 5; (e): the drawing of G∗ with five vertices of G∗ located in one region of D(G∗) and
crD(G∗) = 3.
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Figure 5. Seven considered nonplanar drawings of the graph G∗ in which edges of C4(G∗) do not
cross each other. (a): the drawing of G∗ with five vertices of G∗ located in one region of D(G∗) and
crD(G∗) = 1; (b): the drawing of G∗ with all six vertices of G∗ located in one region of D(G∗) and
crD(G∗) = 3; (c): the drawing of G∗ with five vertices of G∗ located in one region of D(G∗) and
crD(G∗) = 3; (d): the drawing of G∗ with all six vertices of G∗ located in one region of D(G∗) and
crD(G∗) = 3; (e): the drawing of G∗ with all six vertices of G∗ located in one region of D(G∗) and
crD(G∗) = 3; (f): the drawing of G∗ with five vertices of G∗ located in one region of D(G∗) and
crD(G∗) = 3; (g): the drawing of G∗ with five vertices of G∗ located in one region of D(G∗) and
crD(G∗) = 3.

Lemma 1. For n ≥ 1, let D be a good drawing of G∗ + Dn. If the vertices v5 and v6 are placed
in different regions of the good subdrawing D(C4(G∗)) except for the drawing of G∗ given in
Figure 4b, then there are at least 6

⌊ n
2
⌋⌊ n−1

2
⌋
+ n + 2

⌊ n
2
⌋

crossings in D.

Proof. The set RD must be empty assuming that vertices v5 and v6 are located in different
regions of D(C4(G∗)). For easier reading, let s = |SD| and t = |TD|. Now, we discuss
two cases.

1. Let us first suppose that 2s + t ≤ 2d n
2 e; that is, −2s− t ≥ −2d n

2 e. The number of
crossings in D satisfies

crD(G∗+ Dn) = crD(K6,n)+ crD(K6,n, G∗)+ crD(G∗) ≥ 6
⌊n

2

⌋⌊n− 1
2

⌋
+ 1s+ 2t+ 3(n− s− t)

= 6
⌊n

2

⌋⌊n− 1
2

⌋
+ 3n− 2s− t ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ 3n− 2

⌈n
2

⌉
≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n + 2

⌊n
2

⌋
.
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2. Now, let 2s + t > 2d n
2 e, which yields that 2s + t ≥ 2d n

2 e + 1 and also that s ≥ 1.
By fixing the subgraph G∗ ∪ Ti for some Ti ∈ SD, we have

crD(G∗ + Dn) = crD(K6,n−1) + crD(K6,n−1, G∗ ∪ Ti) + crD(G∗ ∪ Ti)

≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 6(s− 1) + 5t + 4(n− s− t) + 1 = 6

⌊n− 1
2

⌋⌊n− 2
2

⌋
+ 4n + 2s + t− 5

≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 4n + 2

⌈n
2

⌉
+ 1− 5 ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n + 2

⌊n
2

⌋
,

where we can verify over all possible regions of D(G∗ ∪ Ti) that the edges of G∗ ∪ Ti

are crossed at least six, five, and four times by each subgraph T j ∈ SD, j 6= i, Tk ∈ TD,
and Tl 6∈ SD ∪ TD, respectively.

The results of both subcases complete the proof of Lemma 1.

We have to emphasize that, in Lemma 1, the assumption except for the drawing of
G∗ given in Figure 4b is inevitable. In this case, we cannot use the idea presented in the
second part of the proof mentioned above because there is a possibility of an existence of
subgraph Tl 6∈ SD ∪ TD with crD(G∗ ∪ Ti, Tl) = 3 for some fixed subgraph Ti ∈ SD with
rotD(ti) = (153462). This subcase will be solved by fixing the subgraph Ti ∪ T j in the proof
of Theorem 1.

Since the same argument with at least five crossings on edges between two different
subgraphs from the nonempty set SD can also be applied for other drawings of G∗ induced
by D, the proofs of Corollaries 1 and 2 can be omitted.

Corollary 1. For n ≥ 1, let D be a good drawing of G∗ + Dn such that both vertices v5 and v6
are placed in the same region of D(C4(G∗)). If exactly one of them is not contained in the region
of D(G∗) with five vertices of G∗ on its boundary, then there are at least 6

⌊ n
2
⌋⌊ n−1

2
⌋
+ n + 2

⌊ n
2
⌋

crossings in D.

Corollary 2. For n ≥ 1, let D be a good drawing of G∗ + Dn such that both vertices v5 and v6
are contained in the region of D(G∗) with five vertices of G∗ on its boundary. If there are at most
two possibilities of crossing one edge of G∗ in an effort to obtain a subdrawing G∗ ∪ Ti for some
subgraph Ti ∈ SD, then there are at least 6

⌊ n
2
⌋⌊ n−1

2
⌋
+ n + 2

⌊ n
2
⌋

crossings in D.

Assume that there is a good drawing D of the join product G∗ + Dn with D(G∗) = 1
only among edges of the cycle C4(G∗). For this purpose, let us consider the nonplanar
drawing of the graph G∗ as shown in Figure 4a. For subgraphs Ti ∈ SD, we establish all
possible rotations rotD(ti) that could appear in the considered drawing D. There is only
one subdrawing of Fi \ {v1, v2, v3, v4}, and, therefore, we have just four possibilities of
obtaining a subdrawing of Fi depending on which of the edges v3v5, v1v5, v2v6, and v4v6
is crossed by edge tiv1, tiv3, tiv4, and tiv2, respectively. These four possibilities under our
consideration can be denoted by Ap for p = 1, 2, 3, 4. We will call them the configurations of
corresponding subdrawings of the subgraph Fi in D and suppose that their drawings are as
shown in Figure 6 because it does not matter which of the regions in D(Fi) is unbounded
in our considerations.

In the rest of the paper, we present a cyclic permutation by the permutation with 1 in
the first position. Thus, the configurations A1, A2, A3, and A4 are represented by the cyclic
permutations (134625), (135462), (153642), and (153426), respectively. Clearly, in a fixed
drawing of the graph G∗ + Dn, some configurations from M = {A1,A2,A3,A4} need
not appear. We denote byMD the set of all configurations that exist in the drawing D
belonging to the setM.
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Figure 6. Drawings of four possible configurations Ap of subgraph Fi for Ti ∈ SD.

Our aim is to establish a minimum number of edge crossings between two different
subgraphs Fi and Fj using the idea of mentioned configurations. For two configurations
X and Y fromMD (not necessarily different), let crD(X ,Y) denote the number of edge
crossings in D(Ti ∪ T j) for two different subgraphs Ti, T j ∈ SD such that Fi, Fj have con-
figurations X , Y , respectively. We denote by cr(X ,Y) the minimum value of crD(X ,Y)
over all pairs X and Y fromM among all good drawings D of the join product G∗ + Dn.
In the following, our goal is to determine the lower bounds of cr(X ,Y) for all possible pairs
X ,Y ∈ M. In particular, the configurationsA1 andA2 are represented by the cyclic permu-
tations (134625) and (135462), respectively. Each subgraph T j with conf(Fj) = A2 crosses
edges of each Ti with conf(Fi) = A1 at least four times provided that the minimum number
of interchanges of adjacent elements of (134625) required to produce (135462) = (126453)
is four, i.e., cr(A1,A2) ≥ 4. For more details, see also Woodall [37]. The same reason
gives cr(A1,A3) ≥ 4, cr(A1,A4) ≥ 4, cr(A2,A3) ≥ 4, cr(A2,A4) ≥ 4, and cr(A3,A4) ≥ 4.
Clearly, also cr(Ap,Ap) ≥ 6 for any p = 1, 2, 3, 4. Moreover, by a discussion of possible
subdrawings, we can verify that cr(A1,A4) ≥ 5 and cr(A2,A3) ≥ 5.

Now, assume that the nonplanar subdrawing of the graph G∗ induced by a drawing
D of G∗ + Dn are as shown in Figure 5a. For Ti ∈ SD, again, we only have four possibilities
of obtaining a subdrawing of Fi depending on which of the edges v4v6, v1v2, v2v6, or v1v4
is crossed by the edge tiv3. These four ways under our consideration are denoted by Bp
for p = 1, 2, 3, 4, and we assume that their drawings are as shown in Figure 7. Thus,
the configurations B1, B2, B3, and B4 are described by the cyclic permutations (143625),
(146235), (146325), and (134625), respectively. Because some configurations from N =
{B1,B2,B3,B4}may not appear in a fixed drawing of G∗+ Dn, we denote byND the subset
of N consisting of all configurations that exist in the drawing D.

The verification of the lower bounds for the number of crossings between two configu-
rations from N proceeds in the same way as above. Thus, all lower bounds for the number
of crossings between two configurations fromM as well as from N are summarized in the
common symmetric Table 1.
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Figure 7. Drawings of four possible configurations Bp of subgraph Fi for Ti ∈ SD.

Table 1. The minimum number of crossings between Ti and T j for two configurations Xp and Xq of
subgraphs Fi = G∗ ∪ Ti and Fj = G∗ ∪ T j, where X = A and X = B for configurations inM and
N , respectively.

- X1 X2 X3 X4

X1 6 4 4 5
X2 4 6 5 4
X3 4 5 6 4
X4 5 4 4 6

3. The Crossing Number of G∗+ Dn

In the following, we are able to compute the exact values of crossing numbers of join
products of the graph G∗ with both discrete graphs D1 and D2 using the algorithm located
on the website http://crossings.uos.de/ (accessed on 26 May 2022). This algorithm can
find the crossing numbers of small undirected graphs. It uses an ILP formulation, based
on Kuratowski subgraphs, and solves it via branch-and-cut-and-price. The system also
generates verifiable formal proofs, as described by Chimani and Wiedera [38].

Lemma 2. cr(G∗ + D1) = 1 and cr(G∗ + D2) = 4.

Theorem 1. cr(G∗ + Dn) = 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ n + 2

⌊ n
2
⌋

for n ≥ 1.

Proof. In Figure 8, the edges of K6,n cross each other

6
(
d n

2 e
2

)
+ 6
(
b n

2 c
2

)
= 6

⌊n
2

⌋⌊n− 1
2

⌋
times, each subgraph Ti, i = 1, . . . , n−1

2 on the left side crosses edges of G∗ exactly four
times, and each subgraph Ti, i = n+1

2 , . . . , n on the right side does not cross edges of G∗.
The edges of G∗ cross each other once, and so 6

⌊ n
2
⌋⌊ n−1

2
⌋
+ n + 2

⌊ n
2
⌋

crossings appear
among edges of the graph G∗ + Dn in this drawing for n odd. In Figure 9, we also obtain

http://crossings.uos.de/
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the drawing of G∗ + Dn with the same number of crossings because each subgraph Ti

crosses edges of G∗ twice. Lemma 2 confirms the result for n = 1 and n = 2. To prove
the reverse inequality by induction on n, suppose now that there is a good drawing D of
G∗ + Dn with

crD(G∗ + Dn) < 6
⌊n

2

⌋⌊n− 1
2

⌋
+ n + 2

⌊n
2

⌋
for some n ≥ 3, (3)

and that

cr(G∗ + Dm) = 6
⌊m

2

⌋⌊m− 1
2

⌋
+ m + 2

⌊m
2

⌋
for any positive integer m < n. (4)

For easier reading, if r = |RD| and s = |SD|, then the assumption (3) together with
crD(K6,n) ≥ 6

⌊ n
2
⌋⌊ n−1

2
⌋

using (1) imply the following relation with respect to the edge
crossings of G∗ in D:

crD(G∗) + ∑
Ti∈RD∪SD

crD(G∗, Ti) + ∑
Ti 6∈RD∪SD

crD(G∗, Ti) < n + 2
⌊n

2

⌋
,

i.e.,
crD(G∗) + 0r + 1s + 2(n− r− s) < n + 2

⌊n
2

⌋
. (5)

The obtained inequality (5) forces r + s ≥ 1, and so there is at least one subgraph Ti by
which edges of G∗ are crossed at most once in D. Now, we will show that a contradiction
with the assumption (3) can be obtained in all following subcases:

Case 1: crD(G∗) = 1. Let us first consider the subdrawing of G∗ induced by D given
in Figure 4a. Since the set RD ∪ SD is nonempty, two possible subcases may occur.

(a) Let RD be the nonempty set; that is, there is a subgraph Ti ∈ RD. The reader can easily
see that the subgraph Fi = G∗ ∪ Ti is uniquely represented by rotD(ti) = (153462).
By fixing the subgraph G∗ ∪ Ti, if edges of G∗ ∪ Ti are crossed by any other subgraph
T j at least five times, we obtain

crD(G∗ + Dn) = crD(K5,n−1) + crD(K5,n−1, G∗ ∪ Ti) + crD(G∗ ∪ Ti)

≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 5(n− 1) + 1 ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n + 2

⌊n
2

⌋
.

If there is some subgraph T j with crD(G∗ ∪ Ti, T j) < 5, then the vertex tj cannot be
placed in the outer region of subdrawing D(G∗) with all six vertices of G∗ on its
boundary, and crD(G∗ ∪ Ti, T j) = 4 enforces crD(Ti, T j) = 0. Thus, by fixing the
subgraph Ti ∪ T j, we have

crD(G∗ + Dn−2) + crD(Ti ∪ T j) + crD(K6,n−2, Ti ∪ T j) + crD(G∗, Ti ∪ T j)

≥ 6
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ n− 2+ 2

⌊n− 2
2

⌋
+ 6(n− 2) + 4 = 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n+ 2

⌊n
2

⌋
,

where edges of Ti ∪ T j are crossed by each other subgraph Tk at least six times using
crD(K6,3) ≥ 6 again due to (1). Both considered subcases contradict the assumption (3)
in D.

(b) Let RD be the empty set; that is, there is a subgraph Ti ∈ SD. As s ≥ 1, we deal
with possible configurations Ap from the nonempty setMD. For any p ∈ {1, 2, 3, 4},
if there is a subgraph T j, j 6= i such that crD(G∗ ∪ Ti, T j) < 5 and crD(Ti, T j) = 0 with
conf(Fi) = Ap, the same fixation of Ti ∪ T j like in the previous case also confirms a
contradiction with (3) in D.
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Now, let us turn to the possibility of obtaining the minimum value 4 in Table 1; that is,
cr(Ap,Aq) = 4 could be achieved in D for two different Ap,Aq ∈ MD. In the rest of
the paper, assume that there are two different subgraphs Ti, T j ∈ SD such that Fi and
Fj have mentioned configurationsAp andAq, respectively. Then, crD(Ti ∪ T j, Tk) ≥ 9
holds for any Tk ∈ SD with k 6= i, j by summing two corresponding values in
Table 1. We can easily verify in six possible regions of D(G∗ ∪ Ti) and D(G∗ ∪ T j)
that crD(G∗ ∪ Ti, Tk) ≥ 2 + 3 = 5 and crD(G∗ ∪ T j, Tk) ≥ 2 + 3 = 5 are fulfilling for
any Tk ∈ TD, which yields that crD(G∗ ∪ Ti ∪ T j, Tk) ≥ 2 + 3 + 3 = 8 trivially holds
for any such subgraph Tk. Moreover, each of n− s− t subgraphs Tk 6∈ SD ∪ TD of
K6,n−2 crosses G∗ ∪ Ti ∪ T j at least six times. As crD(G∗ ∪ Ti ∪ T j) ≥ 7, by fixing the
subgraph G∗ ∪ Ti ∪ T j, we have

crD(G∗ + Dn) ≥ 6
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 10(s− 2) + 8t + 6(n− s− t) + 7

≥ 6
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 6n + 2

(
2
⌈n

2

⌉
+ 1
)
− 13 ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n + 2

⌊n
2

⌋
,

where the modified inequality (5), for 1s + 2t + 3(n− r− s− t) < n + 2b n
2 c, forces

2s + t > 2d n
2 e if r = 0 and t = |TD|.

The obtained number of crossings contradicts the assumption (3). Finally, let us
consider that cr(Ap,Aq) ≥ 5 holds for all Ap,Aq ∈ MD with p, q ∈ {1, 2, 3, 4}.
By fixing the subgraph G∗ ∪ Ti for some Ti ∈ SD, we have

crD(G∗ + Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 6(s− 1) + 5t + 4(n− s− t) + 2

≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 4n + 2

⌈n
2

⌉
+ 1− 4 ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n + 2

⌊n
2

⌋
.

This again confirms a contradiction with (3) in D.

If we assume the subdrawing of the graph G∗ induced by D given in Figure 5a, the set
RD is empty, which is caused by at most five vertices of G∗ on the boundary of each region
in D(G∗). As the set SD must be nonempty, the proof can proceed similarly for possible
configurations Bp from the nonempty setND like in the previous subcase for configurations
Ap ∈ MD.

Case 2: crD(G∗) ≥ 2. For all such subdrawings of the graph G∗ in Figures 4 and 5, if all
six vertices of G∗ are included in one region of D(G∗) and the set RD is nonempty, then the
same technique like in the first part of Case 1 can be applied. To finish the proof of this case,
let RD be the empty set. Let any subgraph Ti ∈ SD be crossed at least once by each other
subgraph T j, because otherwise fixing Ti ∪ T j results in at least 6

⌊ n
2
⌋⌊ n−1

2
⌋
+ n + 2

⌊ n
2
⌋

crossings in D. This assumption solves the problem of the drawing of G∗ given in Figure 4b
described above after the proof of Lemma 1. Finally, for all remaining subdrawings of G∗

induced by D with any Ti ∈ SD, we can verify over all possible regions of D(G∗ ∪ Ti) that
the edges of G∗ ∪ Ti are crossed at least five times by each other subgraph T j, j 6= i. Again,
by fixing the subgraph G∗ ∪ Ti, we have

crD(G∗ + Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 5(n− 1) + 2 ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n + 2

⌊n
2

⌋
.

We have shown that there are at least 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ n + 2

⌊ n
2
⌋

crossings in each good
drawing D of G∗ + Dn, and this completes the proof of Theorem 1.
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Figure 8. The good drawing of G∗ + Dn with 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ n + 2

⌊ n
2
⌋

crossings for n odd.

v
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Figure 9. The good drawing of G∗ + Dn with 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ n + 2

⌊ n
2
⌋

crossings for n even.

4. Conclusions

We expect that similar forms of discussions can be used to estimate unknown values
of the crossing numbers of other graphs on six vertices with a much larger number of
edges in join products with discrete graphs, and also with paths and cycles. The result of
K3,3 \ e+ Dn could also be useful for confirming Ho’s conjecture [33] mentioned in Section 1
for the complete tripartite graph K3,3,n.
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