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Abstract: The problem of complete evaporation of a Schwarzschild black hole, the simplest spherically
symmetric vacuum solution of the Einstein field equation, posed by Hawking, is that when the black
hole mass M disappears, an explosion of temperature T = 1/8πM takes place. We consider the
Reissner–Nordstrom black hole, a static spherically symmetric solution to the Einstein–Maxwell field
equations, and show that if mass M and charge Q < M satisfy the bound Q > M−CM3, C > 0 for small
M, then the complete evaporation of black holes without blow-up of temperature is possible. We
describe curves on the surface of state equations such that the motion along them provides complete
evaporation without temperature explosion. In this case, the radiation entropy follows the Page curve
and vanishes at the end of evaporation. Similar results for rotating Kerr, Schwarzschild–de Sitter and
Reissner–Nordstrom-(Anti)-de Sitter black holes are discussed.

Keywords: black holes; near extremal black holes; Hawking radiation; black hole evaporation; black
information problem

1. Introduction

It was suggested by Hawking that the Schwarzschild black holes, simplest spherically
symmetric vacuum solution of the Einstein field equations, produce radiation like black
bodies with temperature of T = 1/8πM, where M is the mass of the black hole [1]. This
formula is derived for a fixed Schwarzschild background metric, where the mass could
be arbitrary small. Note that, temperature becomes infinite for vanishing mass. It is a
question whether to consider this formula till M = 0 or deal only with mass more than the
Planck mass. This question is closely related with the question whether is it possible to
consider complete black hole evaporation or one has to stop when the mass is close to the
Planck mass [1–5]. Here we do not discuss the process of evaporation of a dynamical black
hole with its well-known back reaction problems and quantum gravitational corrections
on Planck scales, however, for simplicity, we refer to the limit M → 0 as the complete
evaporation of a black hole. In this paper, we study under which conditions in classical
gravity the limit of a vanishing black hole mass is possible without T →∞.

According to the Stefan–Boltzmann law, the energy density E of black body radiation
with temperature T is given by E = π2T4/15. Therefore from Hawking’s formula for the
temperature, it follows that the energy density of the radiation, emitted by a black hole
behaves at small M as M−4. If the mass of the black hole disappears during evaporation,
then the black hole releases an infinite amount of energy, which is clearly unphysical.
Hawking drew attention to this problem in his first paper on the evaporation of black holes
with the title “Black hole explosions?” [6].

The information loss problem [2,7] is closely related to this unphysical behaviour,
since the radiation entropy SR diverges for small M as M−3. One can say that because of
this infinity, complete evaporation never occurs in nature, and we cannot obtain complete
evaporation, which ends only by thermal radiation being obviously a mixed state. Just the
evolution of the initially pure quantum state to this mixed state breaks unitarity and leads
to information paradox.
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In this paper, a possible mechanism for the complete evaporation without temperature
explosion of black holes in the framework of classical gravity is discussed. This mechanism
also ensures that the entropy of radiation vanishes in the limit when the mass of the black
hole tends to zero, which is consistent with unitary evolution. We note that the complete
evaporation without explosion of temperature and energy is possible if the black hole
possess addition parameters—a charge Q or an angular momentum a, or we deal with
non-zero cosmological constant and we are in near-extremal regimes.

In the case of the Reissner–Nordstrom black hole, a static spherically symmetric
solution to the Einstein–Maxwell field equations, if the mass M and charge Q < M satisfy
also the bound

Q > M −CM3, C > 0, (1)

for small mass M, then the Hawking temperature for the charged black hole

T = 1
2π

√
M2 −Q2

(M +
√

M2 −Q2)2
(2)

tends to 0 when M → 0.
We can describe special curves in the domain (1). The expression (2) defines the surface

Σ of the state equation T = T(M, Q) in the three-dimensional space with coordinates
(M, Q, T). The evaporation process is described by a curve σ on Σ, see Figure 1A in
Section 2. It is convenient to make the change of variables (M, Q) → (M, λ), λ =

√
M2 −Q2.

We describe an evaporation curve σ by a function λ = λ(M) and the charge belong this
curve is

Q2 = M2 − λ(M)2, (3)

where 0 < λ(M) < M. Obviously, the Reissner–Nordstrom solution of the Einstein equations
with parameters M and Q will still be a solution if the charge Q is taken to depend on the
mass M. The Hawking temperature T becomes

T = λ(M)
2π(M + λ(M))2 . (4)

If we take λ(M) such that for small M it obeys λ(M) = o(M2), then T tends to 0 as
M → 0 and we get the complete evaporation of the black hole. Therefore, for small M,
the evaporating black hole must be in a state close to the extreme one.

In this paper we consider two particular examples of near-extremal Reissner–Nordstrom
black holes.

• We take
λ(M) = CMγ, C > 0, γ > 2. (5)

This means that for small M we are dealing with almost extreme regime. An interesting
case is when γ = 2, i.e., λ(M) = CM2. In this case, the limit of temperature when
M → 0 is not equal to zero, but is equal to C/2π, although the mass and charge are
vanishing. In the cases with γ ≥ 2 the mass dependence of charge has a deformed
bell-shaped form (see Figure 2A below).

• We also consider the case then the function T = T(M) is given. In this case one can
solve the quadratic Equation (4) and find the function λ(M). We take as an example
the temperature of the form

T(M) = C
√

M(M0 − M), (6)

where C and M0 are positive constants and 0 ≤ M ≤ M0. The radiation entropy
Srad(M) is proportional to T3 so in this case one has SR(M0) = SR(0) = 0.

Note that we do not discuss here under what physical conditions Equations (5) or (6)
can be realised.
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As mentioned above, the problem of temperature explosion during evaporation of the
black hole is closely related with the information paradox. In the context of studying the
information paradox, Page [3,7] suggested that the Schwarzschild black holes evaporate
completely, and the radiation entropy of evaporating black holes first increases, but then
decreases and tends to zero when the black hole mass vanishes. This hypothetical behaviour
is known as the Page curve. Recent works devoted to the information paradox are aimed
to obtain the Page curve [8–10] for the entanglement entropy of radiation. In this work we
deal with the usual thermodynamic entropy for radiation that is proportional to T3. So if
temperature decreases with vanishing of mass then the entropy of radiation decreases too.
To get the time dependence of this evolution we consider charge and mass change during
the black hole evaporation.

The loss of the mass and charge during evaporation of the Reissner–Nordstrom black
hole is a subject of numerous considerations. Changes in mass and charge during the
evaporation of a RN black hole satisfy a system of two coupled equations (see below
Equations (28) and (29)). Assuming that the relation between mass and charge is fixed, we
are left with a single non-linear differential equation

dM
dt

= − f (M), (7)

where an explicit expression for the function f (M) is given in Section 2.3. For small M and
λ(M) = CMγ, γ > 2 we get mass evolution in the form

M(t) = M0

(1+ Bt)1/(3γ−6) , t ≥ 0, (8)

where M0 and B are positive constants. This form of time dependence of the mass of an
evaporating black hole, together with the dependence of the entropy of radiation as T3,
gives the Page form of the evolution of the entropy of radiation over time, see Section 2.3.
If γ = 2 then M(t) = M0e−Bt. In this case, the lifetime of a black hole is infinite.

For Kerr (axially symmetric rotating black hole), Schwarzschild-de Sitter (spherically
symmetric solution to the Einstein field equation with positive cosmological constant)
and Reissner–Nordstrom-(Anti)-de Sitter (spherically symmetric solution to the Einstein–
Maxwell field equations with (negative) positive cosmological constant) black holes, we
also indicate the curves on the equation of the state surfaces along which the complete
evaporation of black holes occurs without thermal explosions.

The paper is organised as follows. In Section 2 models of complete evaporation
of the Reissner–Nordstrom black hole accompanied by the temperature goes to 0 are
considered. In Section 3 the models of complete evaporation of the Kerr black hole are
investigated and in Section 4 these results are generalised to the Kerr–Newman black hole.
Complete evaporation of the Schwarzschild–de Sitter black hole is considered in Section 5.
In Section 6 we discuss complete evaporation of Reissner–Nordstrom-(Anti)-de Sitter black
holes. Section 7 contains summary and discussions.

2. Complete Evaporation of the Reissner–Nordstrom Black Hole

We consider a model of complete evaporation of a Reissner–Nordstrom (RN) black
hole with the following metric

ds2 = − f (r)dt2 + f (r)−1dr2 + r2dΩ2, (9)

where

f (r) = 1− 2M
r

+ Q2

r2 , (10)
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here M and Q are mass and charge of the black hole. It is assumed that M2 ≥ Q2. The
blackening function (10) can be presented as

f = (r − r+)(r − r−)/r2, (11)

where
r± = M ±

√
M2 −Q2. (12)

The temperature of the Reissner–Nordstrom black hole is

T = 1
2π

√
M2 −Q2

(M +
√

M2 −Q2)2
(13)

2.1. Evaporation Curves and Bell-Shaped Temperature

We take Q to be a function on M of the form (3). The Hawking temperature T under
this constraint becomes equal to

T = λ(M)
2π(M + λ(M))2 . (14)

Depending on the behaviour of the function λ(M) we have:

• if λ(M) satisfies for small M the bounds

0 < λ(M) ≤ CMγ, C > 0, γ > 2 (15)

then T → 0 as M → 0 and one gets the complete evaporation of black hole;
• if the function λ(M) satisfies the bounds

0 < λ(M) ≤ C
Mγ

A + Mγ+1 , C > 0, A > 0, γ > 2 (16)

then the temperature T → 0 also for M →∞;
• if the function λ(M) is

λ(M) = Mγ

A + Mγ−1 , A > 0, γ > 3, (17)

then the temperature T → 0 and Q → 0 also for M →∞. Note that the asymptotic of T
at M →∞ coincides with the Schwarzschild case.

The entropy and the free energy under constraint (3) are equal

SRN = πr2
+ = π(M + λ(M))2 (18)

GRN = M − TS = M − 1
2

λ(M) (19)

Note that the entropy SRN and the free energy GRN go to 0 as M → 0 for λ satisfy-
ing (15).

Let us suppose that the temperature is given by a function T = T(M). We solve the
quadratic Equation (14) and find two functions

λ±(M) = 1− 4πMT ±
√

1− 8πMT
4πT

(20)

Both solutions are real for
1− 8πMT(M) ≥ 0. (21)
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2.2. Examples
2.2.1. Deformed Bell-Shaped Dependence of Charge on Mass M

Equation (13) defines the surface Σ of the state equation for Reissner–Nordstrom
black hole. This surface is shown in Figure 1A. The same surface is shown in Figure 1B in
(M, λ, T) coordinates, Equation (14).

Σ

σ3

σ1

σ2 Σ

σ3

σ1

σ2γ = 1

γ = 1.4

γ = 2

γ = 2.5

γ = 3

A B

Figure 1. (A) The 3D plot shows the dependencies of the temperature on the mass M and the charge
Q. 3D curves σγ show the dependence of the temperature on the mass along the constrains (3) with
λ(M) = Mγ, γ = 1, 1.4, 2, 2.5, 3. (B) The 3D plot shows the dependencies of the temperature on the
mass M and λ. 3D curves σγ show the dependence of the temperature on the mass along the constrain
(3) with λ(M) = Mγ, γ = 1, 1.4, 2, 2.5, 3.

The 3D curves in Figure 1A,B show the dependence of temperature on mass along
the curves

λ(M) = ( M
m0

)
γ

. (22)

with different γ = 1, 1.4, 2, 2.5, 3. We see that on some curves the temperature tends to
infinity as M → 0 (for these curves γ < 2), while on curves with γ > 2 the temperature tends
to zero as M → 0.

Q(M, 1, 1) + 0.01

Q(M, 2, 1)

Q(M, 2.5, 1)

T(M, 1, 1)

T(M, 2, 1)

T(M, 2.5, 1)

0.0 0.2 0.4 0.6 0.8 1.0
M

0.1

0.2

0.3

0.4

0.5

0.6

T,Q
Q(M,γ,m0), T(M,γ,m0),m0=1

SR(M, 1, 1) SR(M, 2, 1) SR(M, 2.5, 1)

SBH(M,1,1)

3000

SBH(M,2,1)

3000

SBH(M,2.,1)

3000
1
150

G(M, 1, 1)

1
150

G(M, 2, 1) 1
150

G(M, 2.5, 1)

0.0 0.2 0.4 0.6 0.8 1.0
M

0.001

0.002

0.003

0.004

S,G
SR(M,γ,m0), SBH(M,γ,m0)/3000, G(M,γ,μ)/150, m0=1

A B

Figure 2. (A) The graph shows charge Q (magenta) and temperature T (red) versus M for different
values of the scaling parameter γ, γ = 1, 2, 2.5. (B) The graph shows dependencies of free energy
G (green), black hole entropy S (blue) and radiation entropy (dark cyan) on M for scale parameter
γ = 1, 2, 2.5. The black lines show the boundaries of the allowed regions for M.

Mass dependence of charge Q, temperature T, entropy and free energy at (22) with
different γ parameters and the same µ = 1 parameter are shown in Figure 2. We see that for
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all γ > 1 there is a restriction on M, M ≤ 1. The temperature and entropy of the radiation
tend to zero at M → 0 for γ > 2, to a nonzero constant for γ = 2, and to infinity for γ < 2.
In this case, the temperature and radiation entropy SR at γ > 2, starting from the initial
value at M = 1, increase to a certain maximum value, then decrease to zero, i.e., the mass
dependencies T and SR have deformed bell shapes (the thickest red and dark cyan lines in
Figure 2A,B, respectively). In the case of a slow dependence of mass on time during black
hole evaporation, the dependence of radiation entropy on mass, represented in Figure 2B
by the dark cyan line, leads to the Page form of the time evolution of radiation entropy, see
Section 2.3. The entropy of a black hole and the free energy tend to zero at M → 0 for all
values of γ. We also see, Figure 2A, that the shape of Q versus M is a deformed bell (except
in the case of γ = 1 and Q = 0, which corresponds to the Schwarzschild case). Note that in
Figure 2B one can see that the free energy increases as the black hole mass decreases. This
corresponds to the region M, where the charge increases with decreasing mass M.

In our recent paper [11] we found restrictions on γ in (22) under which the entangle-
ment entropy calculated with the island formula has no explosion at M → 0.

2.2.2. Semi-Circle Dependence of Temperature on Mass M

One can take the semi-circle form of T dependence on M (6) with C = 1. The condition
(21) gives a restriction on possible values on admissible M0. Indeed, substituting (6) to the
condition (21) we get

1− 8πM
√

M(M0 − M) ≥ 0, (23)

that should be satisfied for all M < M0. This can be realised for M0 ≤ M0,cr = 21/2/π1/233/4 ≈
0.35.

We plot in Figure 3A λ as a function of M for two branches λ± = λ±(M) given by
(20), where T is defined by (6). We see that for small M0 ⪅ 0.35 both λ± are real. For
M0 ⪆ 0.35 two solutions λ± are real only on parts of the interval [0, M0] (dashed blue lines
in Figure 3A). For small M and M0 ⪅ 0.35 we have

λ−(M, M0) = 2πM5/2√M0 +O(M7/2), (24)

λ+(M, M0) = 1
2π

√
M

√
M0

+O(M1/2), (25)

and in accordance with (21) we consider only the λ−-branch.
We plot in Figure 3B the mass dependence of the charge Q, that is defined by (3) with

λ = λ−(M).
We have the following asymptotic behaviour of T(M, M0), SBH(M, M0), G(M, M0)

and SR(M, M0) for small M

T(M, M0) =
√

M
√

M0 +O(M1/2), SBH(M, M0) = πM2 +O(M7/2) (26)

G(M, M0) = M +O(M5/2), SR(M, M0) = M3/2M3/2
0 +O(M5/2). (27)

The plot in Figure 4A shows the dependences of the temperature and the entropy
of radiation on M ≤ M0 for two different M0, M0 < M0,cr and M0 = M0,cr ≈ 0.35. As has
been noted above, there is no real solution for M0 > M0,cr. The plot in Figure 4B shows
dependences of the entropy (blue) and free energy (green) of the Reissner–Nordstrom black
hole on M calculated on the branch λ− for different M0 ≤ M0,cr. The vertical black lines
indicate the value of M0, M ≤ M0. It is interesting to note that both entropies, the black hole
entropy and the radiation entropy, have the form suitable to realize the Page curves—they
first increase from some initial values, in particular from zero values for the case of the
radiation entropy, up to some maximal value, then start to decrease to zero at M → 0.
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∗

∗

λ+(M, 0.3)

λ-(M, 0.3)

λ+(M, 0.35)

λ+(M, 0.35)

λ+(M, 0.4)

λ-(M, 0.4)

M

0.0 0.1 0.2 0.3 0.4
M

0.2

0.4

0.6

0.8

1.0
λ

λ+(M,M0), λ-(M,M0)

Q2(M, 0.3)

Q2(M, 0.35)

Q2(M, 0.4)

M2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
M

0.02

0.04

0.06

0.08

0.10

0.12

0.14
Q2

Q2(M,M0)

A B

Figure 3. (A) λ as a function of M for two branches λ± = λ±(M) given by (20), where T is defined by
(6). The dashed red line corresponds to λ = M and we see that the λ+ is not a physical solution, since
λ+ > M. We also see that real solutions exist for all M ≤ M0 if M0 < M0,cr ≈ 0.35 (blue solid lines) and
for M < Mcr(M0) for M0 > M0,cr (dashed blue line). We do not consider the right part of λ−, since it
does not admit the M → 0 limit. (B) Q2 vs M for λ−(M) as in (A). Solid magenta lines correspond to
M0 < M0,cr and the dashed magenta line to M0 > M0,cr. The points indicated by ∗ correspond to the
Schwarzschild case.

∗

∗

∗

∗
T(M, 0.3) T(M, 0.35) T(M, 0.4)

5SR(M, 0.3) 5SR(M, 0.35)

5SR(M, 0.4)

0.1 0.2 0.3 0.4
M

0.05

0.10

0.15

0.20

T,S
T(M,M0), SR(M,M0)

SBH(M, 0.3)

G(M, 0.3)

SBH(M, 0.35)

G(M, 0.35)

SBH(M, 0.4)

G(M, 0.4)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
M0.0

0.2

0.4

0.6

0.8

G,S
SBH(M,M0), G(M,M0)

A B

Figure 4. (A) The plot shows mass dependences of the temperature (red) and the entropy of radiation
(cyan) for three different M0: M0 = 0.3, M0 = 0.35 and M0 = 0.4. In the first two cases (solid lines)
M ≤ M0, and in the third one (dashed line) M < Mcr(M0), M0 > M0,cr = 0.3501. (B) The plot shows
mass dependences of the entropy (blue) and free energy (green) of the Reissner–Nordstrom black
hole for the same M0 as in (A). The vertical solid black lines indicate the value of M0 and M ≤ M0

and the dashed vertical line shows Mcr(0.4).

2.3. Time Evolution

The loss of the mass and charge during evaporation of RN black hole is a subject of
numerous consideration [12–20] and references therein.

In the case of fixed relations (3), we consider the following system of equations

dM
dt

= −AσT4 + Q
r+

dQ
dt

, (28)

dQ
dt

= M − λλ′√
M2 − λ2

dM
dt

, (29)

where A is a positive constant and the cross-section σ is proportional to M2 for small M.
The first equation in the system of Equations (28) and (29) coincides with the equation
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considered in [17], and the second is obtained by simply differentiating the relation (3).
From (28) and (29) we get

dM
dt

= −AσT4(M + λ)
λ(1+ λ

′)
. (30)

For λ(M) = CMγ and small M one gets

dM
dt

= −C1M3γ−5. (31)

This equation for γ > 2 and M(0) = M0 has a solution

M(t) = M0

(1+ B t)
1

3(γ−2)
, B = 3(γ − 2)C1

M6−3γ
0

, γ > 2, (32)

where M0 and B are positive constants. For γ = 2 we have

M(t) = M0e−C1t. (33)

One obtains an infinitely large time of the complete evaporation of charged black hole
under constraint (3).

In Figure 5 we present two different regimes of mass versus time, Figure 5A,D, the for-
mer with a finite decay time and the latter with an infinite decay time. Because of the
dependence of radiation entropy on mass shown in Figure 5B, these two different types
of time dependence on mass result in two different entropy versus time dependences,
Figure 5C,E. However, these two graphs do not differ significantly if we consider them
on the interval (0, t1), here tPage < t1. In both cases, entropy first increases with time, then
decreases after Page time tPage. Note that if Mm > M1 > MPlack, we can ignore the effects of
quantum gravity in the above consideration.

tPage t1 tevap M1 Mm Min

Min

M1

Mm

t1

S1

Sin
S1

Sin

tevaptPage

tPage t1 tPage t1

Mm

M1 Sin

S1

0.5 1.0 1.5 2.0 t

12

13

14

15

M

0.5 1.0 1.5 2.0
M

12

13

14

15

SR

0.0 0.5 1.0 1.5
t0

2

4

6

8

10

12

14

SR

A B C

0.5 1.0 1.5 2.0 t0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M

0.2 0.4 0.6 0.8 1.0
t

0.156

0.158

0.160

0.162

0.164

0.166

0.168

0.170
SR

D E

Figure 5. Page curves for radiation entropy and mass dependencies of the radiation entropy. (A) Time
dependence of the mass of a black hole that evaporates in a finite time. (B) Dependence of the
radiation entropy of on the mass of a black hole. (C) Time dependence of the radiation entropy of a
black hole evaporating in a finite time. (D) Time dependence of the black hole mass, which evaporates
infinitely. (E) Time dependence of the radiation entropy of a black hole which evaporates indefinitely.
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3. Complete Evaporation of the Kerr Black Hole

The Kerr metric in Boyer–Linquist coordinates reads

ds2 = −∆ − a2 sin2 θ

Σ
dt2 − 2a sin2 θ

r2 + a2 −∆
Σ

dtdφ

+ (r2 + a2)2 −∆a2 sin2 θ

Σ
sin2 θdφ2 + Σ

∆
dr2 +Σdθ2 (34)

where

Σ = r2 + a2 cos2 θ ,

∆ = r2 − 2Mr + a2 = (r − r+)(r − r−) .
(35)

The outer and inner horizon are located at r = r+, r− respectively and

r± = M ±
√

M2 − a2 (36)

The temperature of the Kerr black hole is

TKerr =
1

4π

√
M2 − a2

M(M +
√

M2 − a2)
(37)

When M equal to a one gets an extremal black hole with T = 0.

If the angular momentum a < M also satisfies the bound

a > M −CM3, C > 0, (38)

for small mass M, then the Hawking temperature TKerr tends to 0 when M → 0.

If we take a to be a function of M of the form

a2 = M2 − λ(M)2, (39)

where the function 0 < λ(M) ≤ M, then the temperature T becomes equal to

TKerr =
λ(M)

4πM(M + λ(M))
, (40)

and the entropy and the free energy are

SKerr = πr2
+ = π(M + λ(M))2, (41)

GKerr = M − TKerrSKerr = M − λ(M)(M + λ(M))
4M

. (42)

If λ(M) = o(M2) as M → 0, then TKerr → 0.
Similar to the RN case, if one takes the function λ(M) as

λ(M) = Mγ

A + Mγ−1 , A > 0, γ > 3, (43)

then the temperature T → 0 and a → 0 also for M →∞.

3.1. Examples
3.1.1. Deformed Bell-Shaped Evaporation Curves

As in the previous Section 2, we first consider the case (22). The behaviour of the
charge a, the temperature T, the entropy and the free energy as functions of M for the
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curves (39) with different scaling parameter γ and the same parameter µ = 1 are presented
in Figure 6. These plots are very similar to the plots presented in Figure 2 for the RN
case. For all γ > 1 there is a restriction on M, M ≤ 1 and the temperature and the radiation
entropy go to zero as M → 0 for γ > 2, to a non-zero constant for γ = 2 and to the infinity
for γ < 2. Moreover, the radiation entropy at γ > 2, starting from the initial value at M = 1,
first increases to a certain maximum value, then decreases to zero, i.e., has a form that,
in the case of a slow decrease in mass during evaporation, provides the form of the Page
dependence of the radiation entropy on time, see Figure 5. The black hole entropy (blue
lines, Figure 2B) and the free energy (green lines, Figure 2B) go to zero when M → 0 for
γ ≥ 1. We also see, Figure 6A, that the form of dependence of a on M is a deformed bell,
compare with Figure 2A.

a(M, 1, 1) + 0.01

a(M, 2, 1)

a(M, 3, 1)

T(M, 1, 1)

T(M, 2, 1)

T(M, 2.5, 1)

0.0 0.2 0.4 0.6 0.8 1.0
M

0.1

0.2

0.3

0.4

0.5

0.6

T,Q
T(M,γ,m0), a(M,γ,m0), m0=1

103 SR(M, 1, 1)

103 SR(M, 2, 1)

103 SR(M, 2.5, 1)

SBH(M, 1, 1)

SBH(M, 2, 1)

SBH(M, 2.5, 1)

G(M, 1, 1)

G(M, 2, 1)

G(M, 2.5, 1)

0.0 0.2 0.4 0.6 0.8 1.0
M
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0.4

0.6

0.8

T,S
103SR(M,γ,m0), SBH(M,γ,m0), G(M,γ,m0), m0=1

A B

Figure 6. The plot shows the dependence of the temperature T (red), the angular momentum a
(brown), the free energy G (green), the black hole entropy S (blue) and the radiation entropy (cyan)
for the curves (39) with function λ given by (22) with different scaling parameter γ = 1, 2, 2.5, 3 and
µ = 1.

3.1.2. Semi-Circle Dependence of Temperature on Mass M

If the function T(M) is given, then from Equation (40) we obtain

λ(M) = 4πM2T(M)
1− 4πMT(M)

. (44)

Unlike (14), now the equation relating T and λ, i.e., Equation (40), is linear on λ which
gives us (44). Assuming the temperature dependence on M is the same as for the RN case,
(6), we get

λ(M, M0) =
4πM2

√
M(M0 − M)

1− 4πM
√

M(M0 − M)
. (45)

Note that the explicit forms of λ(M) in the RN and Kerr cases are different, compare
(20) with (44).

For small M0 from (45) follows that λ(M, M0) < M and the constraint (39) corresponds
to positive values of a2. At the critical value of M0,cr the following equation

M2 − 16π2M5(M0 − M)

(1− 4πM
√

M(M0 − M))
2 = 0, (46)

has one real solution, M0,cr ≈ 0.35003, and M1 ≈ 0.261. For M0 > M0,cr Equation (46) has
two real solutions, for example, for M0 = 0.4 shown in Figure 7, there are two real solutions
M1 = 0.199, M2 = 0.368. Indeed, in the plots in Figure 7A we see that λ(M, M0) < M for
M0 < 0, 35 and for M0 > 0, 4 there are two intersections of the gray dashed line represented
λ(M, M0) with the red dotted line. The case of one real root of Equation (46) is shown by
thick blue line in Figure 7A and thick blue line in Figure 7B.
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The plots in Figure 7C show mass dependences of the temperature T(M, M0) and the
entropy of radiation, S(M, M0) and the plot in Figure 7D show mass dependences of the
black hole entropy and the free energy on M for different M0.
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λK (M, 0.35)

λK (M, 0.4)

M
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T(M, 0.3)

T(M, 0.35)

T(M, 0.4)
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5SR(M, 0.4)

0.0 0.1 0.2 0.3 0.4
M0.00

0.05

0.10

0.15

0.20

T,S
T(M,M0), SR(M,M0)

SK (M, 0.3)

SK (M, 0.35)

SK (M, 0.4)

G(M, 0.3)

G(M, 0.35)

G(M, 0.4)

0.1 0.2 0.3 0.4
M

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

S,G
SBH(M,M0), G(M,M0)

C D

Figure 7. (A) The plots show the dependence of λ on M given by (45) for M0 = 0.3, 0.35, 0.4. (B) The
plots show curves corresponding to the curves presented in (A). Plots in (C) show the mass depen-
dencies of the temperature and the radiation entropy for the curves presented in (B), and the mass
dependencies of the free energy and the black hole entropy for these curves are presented in (D).

4. Complete Evaporation of the Kerr–Newman Black Hole

The Kerr–Newman (KN) metric is

ds2 = − 1
ρ2 (∆r − a2 sin2 θ)dt2 +

ρ2

∆r
dr2 + ρ2dθ2 (47)

+ 1
ρ2 [(r2 + a2) −∆ra2 sin2 θ] sin2 θdϕ2 − 2a

ρ2 [(r2 + a2) −∆r] sin2 θdtdϕ,

where ρ2 = r2 + a2 cos2 θ, ∆r = (r2 + a2) − 2Mr + q2. Here the parameters M, a and q are
the mass, the angular momentum, and the charge of the black hole, respectively. The
electromagnetic potential is

Aµ = −
qr
ρ2 (1, 0, 0,−a sin2 θ). (48)

There are two horizons r± and

r+ = M +
√

M2 − (a2 + q2). (49)
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The Hawking temperature of the black hole horizon is given by

TKN = r+ − M
2π(r2+ + a2)

. (50)

We can put the constraint

a2 + q2 = M2 − λ2(M), (51)

where λ(M) is a function of M. Substituting (51) into (50) we get

TKN = λ(M)
2π(2M2 + 2λM − q2)

. (52)

From the first equality in (52) for q = 0 we get (40) and from the second for a = 0 we
get (40).

Assuming that λ(M) < CMγ, γ > 1, from (51) we get that a2 + q2 = O(M2). The re-
quirement that T → 0 for M → 0 forces us to assume γ > 2.

Solving Equation (52) in respect to λ we get

λ± =
±
√
−16π2a2T2 − 8πMT + 1− 4πMT + 1

4πT
(53)

Note, that q does not enter to (53). This Equation (53) is analogous to Equation (20),
which does not contain Q. Equation (20) follows from (53) for a = 0. The equivalent
representation is

λ(M) =
2πT(2M2 − q2)

1− 4πMT
, (54)

from which we get (44) for q = 0.
Assuming that

T =
√

M(M0 − M) (55)

and substituting this expression in (53), we get

λ± = λ±(M, M0, a). (56)

λ± have different asymptotic for small M

λ+ = 1
2π

√
M0M

+O(M1/2), (57)

λ− = 2πa2
√

M0M +O(M3/2), (58)

and we take the second branch λ−. On this branch we find the form of the KN black hole
entropy and the free energy

SKN,− = π(M + λ−)2 (59)

GKN,− = M − λ−(M + λ−)2

2((λ− + M)2 + a2)
(60)

The dependence of the entropy of radiation of KN black hole on M for the constraint
corresponding to λ−, is presented in Figure 8A. The dependence of the KN black hole
entropy on M for the constraint corresponding to λ−, is presented in Figure 8B. Here these
dependences are shown by gray lines for a = 0 and blue lines for a = 0.2. In Figure 8B we
show also the free energy as functions of M for zero a (brown lines for free energy) and
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a = 0.2 (green lines for free energy) for two choices of M0 in Equation (55), M0 = 0.25, 0.3.
To different choices of M0 correspond the lines of different thickness.
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SR(M, 0.3, 0)

SR(M, 0.35, 0)

SR(M, 0.4, 0)

SR(M, 0.25, 0.2)

SR(M, 0.3, 0.2)

SR(M, 0.35, 0.2)

SR(M, 0.4, 0.2)
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SR(M,M0,a)

SKN(M, 0.25, 0)

SKN(M, 0.3, 0)

GKN(M, 0.25, 0)

GKN(M, 0.3, 0)

SKN(M, 0.25, 0.2)

SKN(M, 0.3, 0.2)

GKN(M, 0.25, 0.2)

GKN(M, 0.3, 0.2)
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0.3

0.4

S,G
SKN(M,M0,a),GKN(M,M0,a)

A B

Figure 8. (A) The KN black hole entropy as function of M for special constraint providing the
semi-circle dependence of temperature on M for zero a (gray lines) and a = 0.2 (blue lines). (B) The
KN black hole entropy and free energy as functions of M for zero a (gray lines for entropy and brown
lines for free energy) and a = 0.2 (blue lines lines for the entropy and green lines for the free energy)
for two choices of M0 in Equation (55), M0 = 0.25, 0.3. To different choices of M0 correspond the lines
of different thickness.

5. Complete Evaporation of the Schwarzschild–de Sitter Black Hole

The line element has the form

ds2 = − f (r)dt2 + f (r)−1dr2 + r2dΩ2, (61)

where
f (r) = 1− 2M

r
− Λ

3
r2, (62)

M is the mass of the black-hole and Λ > 0 is the positive cosmological constant. For

0 < 3M
√

Λ < 1 (63)

there are three horizons: the black hole horizon

r+ = 2√
Λ

sin (1
3

arcsin 3M
√

Λ), (64)

the cosmological horizon

rc = 2√
Λ

sin(1
6
(2 arccos(3

√
ΛM) +π)) (65)

and the negative non-physical one.
The Hawking temperature of Schwarzschild–de Sitter is

TSdS = 1
4πr+

(1−Λr2
+), (66)

where r+ is given by (64). We can represent the temperature as

TSdS(M, Λ) =
1− 4 sin2( 1

3 arcsin(3
√

ΛM))
8π sin( 1

3 arcsin(3
√

ΛM))

√
Λ (67)
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We see that for fixed Λ the temperature becomes infinite when M → 0. We note that
the nominator is equal to zero at Λ = 1/9M2 and this value of Λ realizes the bounded value
of Λ admissible by inequality (63).

By analogy with the cases of RN and Kerr considered in the previous sections, we
can consider Λ to be dependent on M and parametrize this dependence by a function
λ = λ(M) > 0, i.e.,

Λ = 1− λ(M)2

9M2 . (68)

We assume that λ = λ(M) satisfies the bounds 0 < λ ≤ 1. One can check that if

λ(M) = o(M), M → 0, (69)

then T → 0 as M → 0.
Indeed, since now the temperature is

TSdS =
√

1− λ2

3M
1− 4 sin2(π

6 −
1
3 arcsin λ)

8π sin(π
6 −

1
3 arcsin λ)

(70)

and assuming (69) we get the asymptotic expansion for small M as

TSdS = λ

6
√

3πM
+ λ2

27πM
+O(λ3). (71)

We see that if λ ∼ Mγ, γ > 1, then T → 0 when M → 0.
In Figure 9 we present dependence of the temperature (red lines), the black hole

entropy (blue lines), the free energy G(green) and the radiation entropy S (cyan) on M for
different forms of λ(M), λ(M) = kMγ. Here γ = 0.7, 1, 1.1 and 1.5. Plots in darker tones
correspond to γ ≤ 1 and light tones to γ > 1. We see that for the later cases T → 0 at M → 0.
To guarantee Λ > 0 it is assumed that λ(M) < 1.
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Figure 9. Cont.
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Figure 9. The plot shows the dependence of the temperature T (red), the entropy SSdS (blue), the free
energy G(green) and the radiation entropy S (cyan) on M for functions λ(M) = kMγ with different
scaling parameter k and γ. Plots in light tones correspond to parameters describing dependencies
with T → 0 at M → 0. Darker tones correspond to increasing temperature at M → 0, or T(0) ≠ 0 (thick
darker red line, γ = 1).

6. Complete Evaporation of RNdS/AdS Black Holes

The blackening functions for the Reissner–Nordstrom–de Sitter/Anti de Sitter (RNdS/AdS)
black holes are

f = 1− 2M
r

+
q2

r2 + ε
r2

`2 ,
1
3

Λ = 1
`2 , (72)

where ε = +1 for AdS and ε = −1 for dS.
For the dS case there is the domain of parameters (0 ≤ q ≤ M ≤ Mcr(q, `)), where the

equation f (x) = 0 has four real roots r−− ≤ r− ≤ r+ ≤ rc where the last three roots ( r− horizon,
event horizon r+ and cosmological horizon rc ) are positive and the first r−− is negative.
For the AdS case there is also the domain of parameters where two roots (event horizon r+
and cosmological horizon rc, we keep for them the same notations) are positive. The last
two roots are complex. In both cases, dS and AdS, in the domain of existence of the event
horizon, we obtain the expressions for the black hole mass and the temperature in term of
x ≡ r+ (see for example [21])

M = 1
2

x +
q2

2x
+ ε

x3

2`2 , (73)

T = 1
4π

(1
x
−

q2

x3 + ε
3x
`2 ). (74)

We consider the following curve on the equation of state surface

q2 = x2 − µ2(x), (75)

where the function λ(x) satisfies the bounds

0 < µ(x) ≤ x. (76)
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Equation (75) gives the following expressions for M and T in terms of λ

M = x −
µ2

2x
+ ε

x3

2`2 , (77)

T = 1
4πx

(
µ2

x2 + ε
3x2

`2 ). (78)

We denote by m(x) the expression

m(x) = x −
µ2

2x
+ ε

x3

2`2 (79)

The function λ(x) should be such that Equation (77)

M = m(x), (80)

has a positive solution x = x(M) for sufficiently small M. We suppose that m′(x) > 0
for small x ≥ 0, m(0) = 0, then m(x) is an increasing function and Equation (80) has an
unique positive solution for sufficiently small M. Hence the function λ(x) should satisfy
the following relation for small x

(
µ(x)2

2x
)
′
< 1+ 3ε

x2

2`2 (81)

Furthermore, to obtain M and T vanishing in the limit x → 0 we assume the bound

µ(x) = o(x3/2) (82)

In the next subsections we demonstrate numerically behaviour of temperature along
the curves (75)

6.1. RNdS

Let us first consider the RNdS case, ε = −1, in more detail. For instance, we can take

µ(x) = Cxα. (83)

• All the requirements (including the positivity of the temperature) are satisfied if

3
2
< α < 2, (84)

see Figure 10. In the top of Figure 10A we present the dependence of temperature
on mass M and q (the cyan surface). The coloured curves show dependencies of
temperature along curves q = q(x) given by Equations (75) and (83) with different
γ under restriction (84) and C = 1, here ` = 1. In the right plot we also show this
dependence at ` = ∞ (the pink surface). In both cases the curves are very closed to the
critical line M = q.

• γ = 2 corresponds to

q = x
√

1−Cx2 (85)

The behaviour of temperature along the curves (85) for x → 0 is presented on Figure 11.
As in Figure 10 cyan and pink surfaces show the dependence of temperature on mass
M and q for ` = 1 and ` = ∞, respectively. The coloured curves show dependence of
the temperature along curves (85) for different C. As in the previous case the curves
are very closed to the critical line M = q.
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Figure 10. (A). Top: The cyan surface shows the dependence of temperature on mass M and
q. The coloured curves show dependencies of temperature along curves q = q(x) given by
Equations (75) and (83) with different γ. Here ` = 1. Bottom: dependence of the temperature
along the curves given by Equations (75) and (83) with different γ indicated on the legends to this
plot. (B). Top: The pink surface show the dependence of temperature on mass M and q for flat case
(` = ∞). The light coloured curves show dependencies of temperature along curves q = q(x) given
by Equations (75) and (83) with different γ for flat case. The cyan surface and darker curves are the
same as on (A).

From Figure 10 we see that all curves with α > αcr = 1.5 that show vanishing of the
temperature for M → 0. This concerns the finite `, Figure 10A, as well as ` →∞, Figure 10B.
Note that vanishing of the temperature at M → 0 show all curves with γ > γcr = 2 presented
in Figure 2A. Let us explain relation between these critical αcr = 1.5 and γcr = 2. To this
purpose let compare the parametrization used near M → 0 in Section 2 and parametrization
near M → 0 used here,

q2 = M2 − λ2(M) (86)

q2 = x2
+ − µ2(x+) (87)

Taking into account relation (77) at ` = ∞, i.e.,

M = x+ −
µ2

2x+
, (88)
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and (86) and (86) we get

µ2(x+) = x2
+ − (x+ −

µ2

2x+
)2 + λ2(x+ −

µ2

2x+
) (89)

Supposing that

µ(x) = xα, λ(M) = ( M
m0

)
γ

(90)

we get equation

F(x, α, γ) = ( x
m0

)
2γ

(1− 1
2

x2(α−1))
2γ

− 1
4

x4α−2 (91)

If α > 0 for small x in the leading order we get identity if

mγ
0 = 2, γ = 2α − 1. (92)

In particular, we see that α = 3/2 correspond to γ = 2. This is in agreement with plots
presented in Figures 2A and 10B, since in both case the temperature go to constant values
for α = 3/2 and γ = 2, respectively.

q=x 1 - 15 x^2

q=x 1 - 50 x^2

q=x 1 - 100 x^2

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
M0.00
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0.14

q
Q(M)

q=x 1 - 15 x^2

q=x 1 - 50 x^2

q=x 1 - 100 x^2

A B

Figure 11. The cyan surface in the top of the coulomb (A) shows the temperature dependence of the
black hole temperature on the black hole mass M and the charge q for ` = 0.5. The coloured curves
show dependence of the temperature along spacial curves q = x

√
1−Cx2. A top view on the curves

depicted in the 3D plot shown in the top line of (A) is shown in the bottom of (A). The pink surface
in the top of the coulomb (B) shows the temperature dependence of the black hole temperature
on the black hole mass M and the charge q for ` = ∞. The cyan surface here is the same as in (A).
The coloured curves here correspond to q = x

√
1−Cx2 on both surfaces.

One can use another parametrization of mass, charge and cosmological constant
and obtain results similar to results obtained above. In this parametrization mass and
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cosmological constant are written in terms of ratio of event horizons to cosmological
horizon, x = r+/rc and the electric charge q [22]

M =
(x + 1)(x2r2

c + q2x2 + q2)
2x(x2 + x + 1)rc

, x = r+/rc (93)

Λ =
3(xr2

c − q2)
x(x2 + x + 1)r4

c
(94)

The expressions for temperatures for black hole horizon reads

T+ =
(x − 1)(q2(x(3x + 2) + 1) − r2

c x2(2x + 1))
4πx3(x2 + x + 1)r3

c
(95)

Tc =
(x − 1)(x(x + 2)r2

c − q2(x(x + 2) + 3))
4πx(x2 + x + 1)r3

c
(96)

We set
q2 = x2r2

c − ρ2(x) (97)

One can see that if ρ(x) satisfies for small x the bound

C1xβ+3r2
c < ρ2(x) < C2r2

c xβ+2, 4 > β > 3 (98)

then mass (93) behaves as M = rcx + o(x) and temperatures (95) and (96) for x → 0 behave
as T+ → 0 and Tc → const.

For example one can take in (97)

ρ = C1r2
c xβ+3, (99)

then for small x we get

M = r+ −
1
2

C1
rβ+1
+

rβ+1
c

+ ... (100)

T+ = − 3r+
4πr2

c
+ C1

4πr1+β
c

rβ
+ + ..., (101)

i.e., we get that the temperature goes to zero for β > 0.

6.2. RNAdS

In this subsection we consider the AdS, and deal with Formulas (73) and (74) for
mass and temperature for ε = 1. As in the previous subsection we consider the same
parametrisation as in (75) and take

λ(x) = Cxγ,
3
2
< γ < 2 (102)

(we take for simplicity C = 1) and consider the behaviour of the temperature near x = 0.
The typical behaviour is shown in Figure 12. We see that for 3

2 < γ < 2 the temperature
decreases, for γ = 1.5 goes to finite values and for γ < 3/2 goes to infinity.
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Figure 12. (A). Top: The cyan surface shows the dependence of temperature on mass M and q.
The coloured curves show dependencies of temperature along curves q = q(x) given by Equations (75)
and (102) with different γ. Here ` = 1. Bottom: dependence of the temperature along the curves given
by Equations (75) and (102) with different γ indicated on the legends to this plot. (B). Top: The pink
surface show the dependence of temperature on mass M and q for large ` (` = 100). The light-coloured
curves show dependencies of temperature along curves q = q(x) given by Equations (75) and (102)
with different γ for large `. The cyan surface and darker curves are the same as in (A).

7. Conclusions and Discussion

As already mentioned in the Introduction, the problem of complete evaporation of
Schwarzschild black holes is that when the black hole mass M tends to zero, an explosion
of temperature T = 1/8πM occurs. Models of complete evaporation of black holes without
blow-up of temperature are considered. In these models, the black holes metric depends
not only on the mass M but also on additional parameters (thermodynamics variables)
such as the charge Q and the angular momentum a and special relations between the mass
and these parameters are assumed.

The Hawking temperature defines a state equation surface Σ in the space of thermo-
dynamics variables. Curves on the surface Σ such that evaporation along them provides
complete evaporation without blow-up of temperature are described. In the models under
consideration, there are two possible forms of projections of these curves on (M,Q)-plane
(here Q can be Q or a), see Table 1.

• In the first case, we are dealing with a deformed bell form of constraint (see a schematic
plot in the first row, first coulomb in Table 1). Under additional restrictions on the
parameter γ, specifying the form of constraints (3) with (22), (γ > 2 in the text), we get
complete evaporation of black holes with zero temperature at the end of evaporation.
The Hawking temperature and the radiation entropy for this case first increase with
decreasing of mass and get the maximal values, then they begin to decrease to zero
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values at zero mass (see a schematic plot in the first row, second and third coulombs in
Table 1). Increasing of temperature with decreasing of mass corresponds to increasing
of radiation entropy. Comparing the plot in the first row, first coulomb, Table 1 and
the plot in the first row, second coulomb, Table 2, we see that recharging of the black
hole is accompanied by increasing of free energy, that requires some extra forces.

• In the second case, constraints are given by curves in the (M,Q)-plane that correspond
to small deviations from corresponding extremal curves (see a schematic plot in the
second row, first coulombs in Table 1). The mass dependence of temperature has the
form of the semi-circle and the dependence of the radiation entropy on mass has the
bell-shaped form (plots in the second row, second and third coulombs in Table 1).
The plots in second row of Table 2 show dependencies SBH(M), G(M) and SR(T).

Table 1. Evaporation curves in (M,Q), (M, T) and (M, SR)-planes.

Q =Q(M) T = T(M) SR(M)

1-st

Q

M

Q2

M

T

M

SR

2-nd

M M

T

M

SR

Table 2. Evaporation curves in (M, SBH), (M, G) and (T, SR)-planes.

SBH = SBH(M) G = G(M) SR = SR(T)

1-st

M

SBH

M

G

T

SR

2-nd

M

SBH

M

G

T

SR

Summing up the consideration in asymptotically flat cases we obtain the mass de-
pendence of the entropy of radiation, which is schematically presented in Figure 5B, or in
the third column of Table 1. Assuming a slow monotonic dependence of the mass on
the time during the evaporation of the black hole, from such mass dependence of the
radiation entropy we get the Page curve for time dependence of the radiation entropy.
We also generalised the above consideration to the case of Schwarzschild–de Sitter and
Reissner–Nordstrom-(Anti)-de Sitter black holes.

An important question is why the black holes follow evaporation curves avoided the
blow-up of temperature? If one means realistic black holes, this question could be answered
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in the spirit of the anthropic principle, since otherwise an explosion of temperature occurs.
Or in other words, we can say that we have to use a kind of black hole censorship.

The problem of complete evaporation is also discussed in [23], where the singularity
of temperature is attributed to the singularity of the Kruskal coordinates in the limit M → 0
and alternative coordinates are proposed which describe a temperature distribution and
are regular for vanishing mass.
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