
Citation: Al-Zubaidie, M.

Implication of Lightweight and

Robust Hash Function to Support

Key Exchange in Health Sensor

Networks. Symmetry 2023, 15, 152.

https://doi.org/10.3390/sym15010152

Academic Editors: Takeshi Koshiba,

Milan Milosavljević, Yuan Ping and

Yuri Borissov

Received: 26 November 2022

Revised: 22 December 2022

Accepted: 30 December 2022

Published: 4 January 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Implication of Lightweight and Robust Hash Function to
Support Key Exchange in Health Sensor Networks
Mishall Al-Zubaidie

Department of Computer Sciences, Education College for Pure Sciences, University of Thi-Qar,
Nasiriyah 64001, Iraq; mishall_zubaidie@utq.edu.iq; Tel.: +964-61469869029

Abstract: Internet of Things (IoT) applications are critical for the fast delivery of health informa-
tion/data in different environments. The wireless sensor network (WSN) can be used within IoT
applications to collect this information in the electronic-health sector. However, the essential drawback
of WSN and health applications is ensuring that patient and healthcare provider data/information
is protected. In addition, exchanging keys and joining the network is the first/most important line
of defense to protect health information. Amid all this, the previous search has introduced many
key exchange protocols but still suffers from security and performance issues for WSNs and user
devices. In this research, we propose a new protocol for exchanging keys and joining the network
using security algorithms that are Elliptic-curve Diffie–Hellman (ECDH) and QUARK hash (qh).
We focused on applying lightweight and high-security techniques to reduce the burden on WSN
resources, by adopting a solid methodological approach to support security first and performance
second. The security analysis is simulated with the Scyther tool, and the results indicate that our
protocol is able to block key exchange attacks known in the existing research. Furthermore, we carried
out a comparison with the results of the recent search in terms of performance, our protocol provides
better performance results than the results of the existing search.

Keywords: ECDH-QUARK; e-health; IoT; key exchange attacks; QUARK; Scyther; sensors;
WSN security

1. Introduction

As part of the Internet of Things (IoT), small, dynamic, smart, fast, and wireless
nodes communicate with online platforms that provide various applications, including
electronic-health (e-health), electronic-banking (e-banking), smart cities, industry 4.0, and
smart homes. Recently, there has been a big surge in the use of IoT applications in the health
sector (home, clinic, health center, hospital or even health institutions that include the whole
city or country). One feature of the IoT which remains to be studied is the technology of
wireless sensor networks (WSNs). IoT has increased the level of investigation into WSNs
even more than before. The recent advancements in the field of telecommunications and
various services have made it possible to develop low-cost, low-power, compact, high-
performance sensors that are small enough to fit a variety of uses. Basically, WSNs consist
of four basic components: sensors (Ss), cluster heads nodes (CHs), base stations (BSs) nodes,
and interfaces (Is) [1,2]. The widespread use of WSNs that have been composed of resource-
limited sensors in connection with BSs in open-space environments and health sectors
focused on the necessity of a fast yet secure connection approach between users, Ss, CHs,
and BSs. Security is one of the essential controversies in WSNs, as weak precautions may
disrupt the whole WSN and may have a serious impact on data storage/transmission and
detection of secret keys. Additionally, security procedures for health records and databases
can significantly affect WSN performance. In the interests of balance, WSNs require safe
key exchange at a high rate while ensuring data integrity and lightweight processes. In
light of WSN limitations, elliptic-curve cryptography (ECC) sounds like the most attractive

Symmetry 2023, 15, 152. https://doi.org/10.3390/sym15010152 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15010152
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-3149-9129
https://doi.org/10.3390/sym15010152
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15010152?type=check_update&version=2

Symmetry 2023, 15, 152 2 of 25

option since it uses fewer resources than most other alternatives. For instance, standard
asymmetric algorithms are impractical. Most IoT devices in the health sector currently
handle the use of assorted types of symmetric algorithms such as shared and predistribution
keys algorithms. Cryptographic algorithms are compelling in maintaining the protection of
WSN data to curb the impact of such malicious threats in terms of key exchange [3–5].

WSN nodes are increasingly using asymmetric key cryptography to exchange and
authenticate keys while dealing with the Internet. Nonetheless, because of the resource
requirements of these sensors, it is frequently difficult to execute public key and hash
algorithms as these algorithms are computationally costly. Previously, some key exchange
administration implementations on WSN nodes depend on preshared symmetric keys.
Before the sensors are deployed, keys are pre-introduced on these implementations. This
manner does not provide adaptability to organizations that include a huge number of
sensors (tens of hundreds of thousands or even millions). For instance, pre-installing
10,000 advanced encryption standard (AES) keys with 128 bits length on a sensor needs
storage memory of 160 KB, and furthermore presents with critical look-up latency. Fur-
thermore, WSNs are decentralized and especially ad hoc, making customary key exchange
algorithms difficult to implement. An ad hoc structure has decentralized sensor placement,
uncontained fixed positions, and furthermore does not provide information about adjacent
sensors [1,6]. Numerous applications in WSNs should be secured in assorted aspects,
including pre-deployment, registration, distribution, routing, session key agreements, man-
agement, and key update. Cryptography approaches undertake a fundamental part in
the security construction of sensor networks. Hence, WSNs cannot adapt to conventional
cryptographic key exchange algorithms. Subsequently, there are three crucial difficulties
related to WSN’s protection solutions. First, the memory limit should be decreased, i.e., the
length and size of the key as well as the size of the encrypted and explicit data. Second, key
information over-burden ought to be limited since each data item moved consumes energy,
decreasing the sensors’ lifetime. Because of the nature of the radio frequency for wireless,
anybody can eavesdrop or take part in the connection [7]. Thirdly, the randomization of
the key should be appropriate to secure the network connection [8].

Indeed, even keys agreement protocols, which are a fundamental requirement of spe-
cific security schemes, are as yet the protocols that are not fully secure and not addressed
accurately. Because of the resource constraints in terms of computing cost, battery power,
and memory of low cost sensors and other limitations introduced in previous studies,
WSN is a predestined target for security threats and common security protocols are hard
to execute [9]. Protecting keys is a significant point in WSNs since messages are commu-
nicated/encrypted through channels using these keys wirelessly where adversaries (As)
might gain penetration to collected data if the keys are hacked. Some current solutions
do not take into account WSN limitations, such as constrained resources when addressing
critical resource-constrained nodes [10,11]. Guaranteeing the security of WSN collected
data and transmitted remains a real test for developers and researchers [10,12]. Certainly,
the absence of a trustworthy key management protocol does not support applying symmet-
ric cryptographic procedures. The low calculating and data storage capabilities of WSN
components complicate asymmetric cryptography execution. Furthermore, lightweight
computational sensors, which were deployed in the WSN framework, make security diffi-
culties for many existing health applications. The heuristic function obtained is adjusted to
decrease the divergence issue [10]. Because of such conditions, it is important to determine
the requirement for comprehensive and intact protection to guarantee WSNs are settled and
secured. Elliptic Curve Diffie Hellman (ECDH) is one of the most popular key exchange
protocols. In Aikins-Bekoe and Hayfron-Acquah [13] and Al Zubaidie et al. [14], the ECDH
algorithm for key exchange is analyzed and studied.

Henceforward, the fundamental issue with WSNs is to provide a more suitable and
protected network, for which the state-of-the-art needs to pay attention to the method of
setting up simple, reliable, robust, and secure networks. Due to the unusual/unpredictable
nature of wireless channels and network security, conventional key exchange mechanisms

Symmetry 2023, 15, 152 3 of 25

are unable to secure WSNs from threats. This comes up as a result of the many constraints
of resources such as limited energy, running time cost, and lower memory [13,15]. Cryptog-
raphy includes the procedures for protecting connections in the existence of third parties,
which are categorized into a hash function (one-way cryptography), session key, secret key
and public key cryptography based on the keys employed [13]. Asymmetric cryptography
relies on mathematical methods that can be calculated simply but are comparably strenu-
ous to calculate its opposite. Among the asymmetric algorithms used at present for key
generation/exchange, ECC is found to be the latest method to provide an elevated level of
protection [13].

The problem of key exchange is crucial in WSNs. The unattended/decentralized
nature of some WSNs makes them susceptible to sensor compromise attacks. The network
and resource limitations alongside exceptionally various threats impose many severe
requirements for the security manner in WSNs. However, the reliable construction to
perform the best security is usually not performed during WSN which often relies on the
engaged keys and their management operation. In addition, longer cryptographic keys
need more space, more bandwidth and extra processor power. Furthermore, these keys take
time for key generation, registering and distributing, which is mostly associated with most
modern used cryptographic keys such as the RSA and ECDH [13]. Wireless sensors and
their data must be secured using a lightweight key exchange method to enable real-time
data access [16]. Many cryptography protocols have been designed using symmetric and
asymmetric algorithms. According to the security perspective, an asymmetric algorithm
is more attractive due to its improved security level. Digital Signature Algorithm (DSA),
Elgamal cryptosystem (ECS), ECC, Rivest–Shamir–Adleman (RSA), and other methods
have been designed for realizing asymmetric cryptosystems. These algorithms are basically
used to guarantee a reliable and secure connection. A smaller key size and the same level
of security are provided by ECC [17]. In this case, ECC-ECDH is used and both parties will
exchange keys based on the points that have been agreed upon [17].

Data connections are secure with a public-key cryptosystem since a secret/private
key is not shared between the client and server. A symmetric key cryptosystem is quicker
than an asymmetric one because of producing two keys. A lot of academics/developers
have designed many manners to increase the quickness and performance of asymmetric
public keys. ECDH has been designed with a less key size that supports high security.
ECDH is the best substitute for an RSA cryptosystem. RSA uses a 1024-bit key size while
ECDH uses only 160-bit for equivalent security. Among these different cryptographies
(RSA, Elgamal, ECDH, etc.), ECDH is effective in view of its higher security and more
modest key length [17].

1.1. Significance of Proposed

The exchange/collection of health data via IoT applications using WSN is a signifi-
cant/critical issue, as any manipulation of this data will generate negative consequences for
the health of patients and the reputation of the health institution. Any institution that does
not apply strict security measures in protecting patient data will be rejected by individuals
and society. It is well known that the exchange of keys in WSN is carried out through
insecure channels that are vulnerable to hacking at any time. In addition, the first line of
defense in cryptographic systems is to secure the exchange and management of keys for
user devices and sensors. If the adversary can hack and gain access to the keys, this means
that this adversary may be able to access the network and modify the health data, which
negatively affects the health of patients, especially in emergency, critical situations, and
online surgeries. Therefore, the security of key exchange is an important and crucial issue,
especially in health systems, as the motive of this research is to build a secure and robust
key exchange protocol and to overcome the shortcomings of previous protocols in terms of
key exchange.

Symmetry 2023, 15, 152 4 of 25

1.2. Main Contributions

We propose a new protocol for addressing security drawbacks in key exchange
schemes that is based on the following major contributions:

• Support for parameter security and public key exchange is through the establishment
of strict rules in the protocol methodology. Completely hiding public key exchange is
to prevent any information or parameters from being leaked to adversaries.

• Integration of QUARK with ECDH is to provide robust keys for both user devices and
WSN devices in the health sector.

• Providing a security analysis that tests the proposed protocol using the Scyther tool,
in addition to comparing performance and security with the results of recent research.

1.3. Paper Structure

Following is a description of how the research is structured: Section 1 provides a
comprehensive introduction. In Section 2, we provide a critique of recent research on key
exchange security. Basic concepts are introduced in Section 3. Section 4 provides details
of the proposed protocol. The proposal results and findings discussion are described in
Section 5. Limitations of the proposed protocol are presented in Section 6. In Section 7, we
briefly present the conclusions of this study and future work.

2. Keys Exchange Studies of Related Work

In this section, we will cover a set of recent protocols that suggested by existing
research around key exchange in IoT-WSN applications.

Wu et al. [18] provided a key agreement scheme using fog nodes secure authentication
for wearable health sensor application. The cloud server and the patients of smart wearable
medical devices (SWMDs) are connected by fog nodes. Through the connection protocol,
these patients’ sensors send data pertaining to their bodies to the fog node. However, our
protocol does not deal with the wireless body sensor network (WBSN). Furthermore, the
authors did not locate sensors on the patient’s body to assess performance in terms of
transmitted packets. In addition, the key exchange and authentication phase of their proto-
col performs heavy operations, for example, a wearable medical device performs seven
standard hashes. A data integrity scheme based on signatures and hashes was proposed
to alleviate security issues associated with wireless sensor networks for health applica-
tions [4]. The researchers focused on signatures for the integrity of patient data and did not
focus on important security issues in key exchange. In addition, Kim et al. [19] revisited
the three-party password-authenticated key exchange. Their protocol provides patients’
anonymity to prevent privileged insider and impersonation attacks. They presented an
authentication key agreement protocol in order to protect patient data and support efficient
performance. However, their protocol does not provide protection for most key exchange
threats such as key recovery and known session key. Alzahrani [20] designed a telecare
medical information system protocol using symmetric key exchange procedures. Their
protocol applied in electronic-health WSNs with three phases, which are Initialization, User
Registration, and Mutual Authentication. They claimed that their protocol was validated
with the ProVerif tool. The authors indicated that their protocol addresses preventing
attacks such as replay. However, their protocol does not address the issue of protecting
keys stored on users’ devices, sensors, and servers. Butpheng et al. [21] investigated the use
of intelligent security and privacy techniques in health applications and its evolution over
time (from 2017 to 2020), with a particular focus on IoT sensor devices and cloud computing.
They pointed out the issues of security, privacy and key exchange and the importance of
their application in health-WSN projects. In their review, they stated that security solutions
in health applications still are insufficient to protect health data and services.

Abdulhameed et al. [7] proposed a hybrid algorithm. The authors claimed that
their protocol provides confidentiality, authentication and integrity. They relied on the
algorithms Blowfisth, Rivest Cipher 4 (RC4) for encryption, ECDH for authentication,
and Message Digest 5 (MD5) for integrity. However, the algorithms Blowfish, RC4, and

Symmetry 2023, 15, 152 5 of 25

MD5 are vulnerable to attacks. Their proposed also does not have an accurate analysis
of the security keys of ECDH. ECDH-AES protocol [10] is proposed for key exchange in
WSN. The authors relied on classic ECDH which may not provide sufficient security to
protect data collected/transmitted by sensors. Furthermore, their protocol does not provide
perfect forward secrecy. Aikins-Bekoe and Hayfron-Acquah [13] implemented an analytical
study of key exchange protocols (ECDH and RSA) using the PyCryptodome package. The
obtained analysis results indicate that ECDH provides higher security with smaller keys
than RSA which makes it applicable in WSN. Kardi and Zagrouba [22] proposed a dynamic
hybrid protocol based on ECDH and RSA. This protocol takes advantage of the advantages
of ECDH and uses them to improve RSA. However, their protocol still uses long RSA keys
which are a significant cause of sensors running out of storage space and computational
complexity. Another paper Nagesh and S Naresh [17] improved the ECDH protocol to
Modified-ECDH (MOD-ECDH) to reduce the key size and improve performance. However,
there is no security analysis of their proposed protocol and nor did the authors provide an
in-depth analysis of key sizes and lengths.

Phimphinith et al. [23] proposed an ECDH-key agreement based on cureve25519 in IoT
applications for communications between ESP866. They indicated that their scheme resists
man in the middle (MITM) attacks, replay and modification. Nonetheless, their protocol
requires additional hardware/software to support its use ESP8266. Moreover, their protocol
relies on a key of length 192 which is not very safe against attacks. In addition, there are
some clearly published parameters such as ID that can lead to hacking and exposing
the keys. Another paper Hasan and Farhan [24] proposed a scheme for key distribution
protection using logistic map Diffie Hellman (LMDH), SubMAC to prevent replay and
MITH attacks, and RSA to improve key cryptographic security in WSN-ZigBee. However,
their scheme does not provide enough randomness for key generation. Additionally,
recent studies have indicated that RSA is not very suitable for application in a WSN. In
addition, the authors did not discuss key-bargaining attacks. Lin [25] introduced a key
synchronization protocol to support hierarchy in WSN-IoT by proposing a hierarchy-based
cluster elliptic curve key agreement named (HCECKA). They claimed that their protocol
provides efficiency and speed in key agreement and data transfer. Their protocol relies
on an elliptic curve key agreement to accomplish group key agreements. They indicated
that RSA and Diffie Hellman are inappropriate for group key agreements in WSN. In
addition, they pointed out that ECDH provides keys that are safe and small compared
to previous algorithms. However, the authors do not describe a threat model for their
proposed protocol, as it is not possible to determine how their protocol is able to fend
off key exchange attacks. Rangwani et al. [26] proposed a lightweight authentication
and session key negotiation scheme that uses ECDH and SHA256 for agricultural WSN.
They claimed that their scheme is able to fend off attacks such as the impersonation, key
compromise, known session-specific temporary information, sensor node capture, and
session key leakage attacks. However, they did not specify the key length used for ECDH.
In addition, using SHA256 will perform heavy computations on the sensors, which can
lead to a rapid loss of sensor power. Recently, another paper Thabit et al. [27] proposed
a lightweight cryptographic algorithm to secure shared keys and data. Their algorithm
consists of a 128-bit block cipher and a 128-bit key. They pointed out that their symmetric
algorithm requires efficient execution time for key generation and data encryption in
cloud computing applications but that their algorithm is not suitable for large WSNs, as
symmetric algorithms are known to suffer from scalability problem.

Gope and Sikdar [28] proposed a key exchange protocol based on the principle of
reconfigurable physical unclonable functions. They indicated that their protocol provides
efficient security in smart grids and that it provides low communication and computation
costs. They claimed that their protocol counteracts several threats such as session-key
and impersonation. However, their protocol does not provide protection against critical
attacks for key exchange protocols such as stolen verify, key recovery and session key
computation. Mehra et al. [29] proposed a lightweight routing protocol based on attested

Symmetry 2023, 15, 152 6 of 25

key exchange in wireless sensor networks. The authors pointed out that performance
efficiency greatly affects security and makes it more challenging, especially on source-
restricted devices. Their protocol relies on codeword, hash function and one-time password
authentication to fend off WSN key exchange attacks. However, their protocol does not
provide randomness when calculating the hash function in the registration phase of the
user’s device and sensor, which makes their protocol vulnerable to session key computation
threat. Another paper Wu et al. [30] proposed the three factors (password, biometric and
smart card) authentication key exchange protocol to prevent impersonation threats and
known session specific temporary information. They indicated that their protocol provides
perfect forward secrecy and anonymity for WSN health applications. However, their
protocol does not provide a security condition for session key and random parameters
detection. Wu et al. [31] proposed an authentication key exchange (AKE) that relies on relay
sensors to improve the performance and security of their protocol. The authors pointed
out that their protocol uses elliptic curve, bitwise operation, and hash function techniques
to ensure network security. However, their protocol suffers from the threat of sensor
impersonation and does not provide the user/sensor session key verification property.

3. Preliminary Techniques for Key Exchange

In this section, we will cover some basic concepts/algorithms in key exchange protocols.

3.1. Elliptic Curve Diffie-Hellman (ECDH)

Standard Diffie-Hellman (DH) was proposed in 1976 by Whitfield Diffie and Martin
Hellman. An elliptic curve with DH was used to solve the problem of large key sizes
and lengths. A secret key is generated using an elliptic curve Diffie-Hellman analog.
With ECDH, Diffie-Hellman key agreement is enhanced using elliptic curves instead of
conventional Diffie-Hellman analog. Through the Diffie-Hellman method, two parties
create secret keys that are shared between them, keeping the secrets from third parties. An
elliptic curve Diffie-Hellman algorithm is a key agreement protocol that permits network
entities, Alice (A) and Bob (B), to create shared secret keys that are used for public key
protocols. Public information is exchanged between the two parties. A shared secret key
could be generated by two parties using public and private information. It is impossible for
third parties without any knowledge of both parties’ private information to calculate the
shared secret key from publicly accessible parameters [13,22]. The ECDH protocol presents
parties with public and private keys for encrypting data they transact among one another
in an insecure environment. As a result, these derived keys can be used as keys to secure
subsequent data transactions between the channel’s parties. For sending and receiving
keys, ECDH algorithms follow the following steps [17] (Figure 1 describes these steps).

• First, all parties should agree publicly on elliptic curve parameters (p: prime, a and
b: define a curve, G: curve’s generator, n: large integers, h: cofactor) and generate an
elliptic curve together.

– Elliptic curve equation values and p,
– Elliptic group from elliptic curve equation values
– G is calculated from that equation of elliptic group

• Next, each party should generate a pair of keys: a private key (PrK), a random point
on the curve, and a public key (PuK) derived from PrK.G.

– PrK is a random integer, n, chosen from [1, p−1]
– PuK is the product of base point and private key (i.e., PuK = PrK.G)

• Suppose the keys of sender (Alice) be (PrKA, PuKA) and keys of the receiver (Bob)
be (PrKB, PuKB). In order for a message to be encrypted/decrypted, the sender must
share their or her PuK with others during communication.

• In the ECDH protocol, a message or data denotes a point in the elliptic curve (x, y).
• The receiver can calculate the point (x, y) and decrypt the message using PuKB.PrKA

or PuKA.PrKB.

Symmetry 2023, 15, 152 7 of 25

• Asymmetrical property of ECDH encrypted messages is as follows: PrKA.PuKB =
PrKA.PrKB.G = PrKB.PrKA.G = PrKB.G [3,17].

With ECDH, two parties can share secrets over an insecure channel by having a
pair of public and private keys. Assuming A has a private key (PrKA) and a public key
(PuKA) pair based on an elliptic-curve of characteristic p, and B has a private key (PrKB)
and public key (PuKB) pair. The two parties are then able to come to an agreement on
a secret key (PrKA.PrKB.G) or some function of it, since: PrKA.PuKB = PrKB.PuKA =
PrKA.PrKB.G [3].

Using the public key, PuK = PrK.G, each party creates a secret key by multiplying PuK
by the secret integer (i.e., Prk.PuK) [13]. ECDH keys can be static (ECDHS) or ephemeral
(ECDHE). Static keys can be vulnerable to a variety of attacks as they allow an adversary
to perform analytic attacks. ECDH security is determined by the difficulty of solving the
discrete logarithm problem on elliptic curves. Solving the ECDLP is more difficult than
solving many problems such as the discrete logarithm problem (DLP) and the integer
factorization problem (IFP). ECDH is more lightweight as compared to classic DH because
ECDH depends on the elliptic curve. Many recent studies have implemented ECDH with
source-restricted devices such as WSN because this protocol provides relatively small keys
compared to existing public-key protocols. Figure 2 shows a hypothetical use of the ECDH
protocol within hospital WSN. After ECDH keys are safely generated and distributed to
network entities, encryption (symmetric or asymmetric) and signature algorithms can
be applied.

Figure 1. ECDH protocol.

Figure 2. Using ECDH protocol in hospital WSN.

Symmetry 2023, 15, 152 8 of 25

3.2. QUARK Hash Function

QUARK was proposed by Aumasson et al. in 2010. The stream ciphers Grain and
KATAN are used in QUARK’s permutation function (Pb), depending on sponge construc-
tion. In QUARK, the permutation function is implemented using feedback shift registers
(FSRs). QUARK uses three FSRs: two of which are non-linear, and one of which is linear.
Three versions are included in this hash function: the u-QUARK (136 bits), the d-QUARK
(176 bits), and the s-QUARK (256 bits). In this algorithm, shift registers replace the s-
box in SPONGENT and PHOTON hashes, and it is inspired by the Grain (stream) and
KATAN (block) ciphers. It also uses sponge construction to improve operation and core
permutation. Researchers pointed out that there are devices constrained source (such as
sensors, radio frequency identification (RFID) . . . etc.) that uses little power at the same
time, these devices need protection from attacks. Results discussed by researchers that
this algorithm implements short light calculations, leading to reduced time (reduction of
consumption energy) to generate keys in addition to the QUARK algorithm’s ability to
repel the attacks [32].

According to the inputs of all three FSRs, QUARK used the “h” function. To update
the first non-linear FSR (NFSR), the “h” function is used in conjunction with another “f”
function and the second NFSR values. In addition, the second NFSR updates are performed
based on “h” function and “g” function. A linear FSR (LFSR) is updated based on an
independent “p” function. Inputs to the first NFSR are derived from the “f” function, and
inputs to the second NFSR are derived from the “g” function. A digest with the same length
as the input state is generated after four rounds of updates. The highest area requirement
for this hash function is 4640 GE, in contrast, 1379 GE is the lowest requirement. Figure 3
shows the permutation treatment of a function.

There are three properties of QUARK: length, capacity, and rate. This can be referred
to as QUARK-n/c/r. The internal state has a size of b bits, where b equals the sum of
capacity and rate. This hash function provides three different versions representing three
different levels of security: u-QUARK (64-bit security), d-QUARK (80-bit security), and
s-QUARK (112-bit security). An initialization phase begins with padding the message and
dividing it into r-bit blocks, as the last bits in the internal state of the absorbing phase
are permutated, it is XORed with the last bit in the internal state of the absorbing phase.
After that comes the squeezing phase, which involves making r-bits until each n-bit hash is
returned [33].

Figure 3. QUARK permutation function.

It incorporates three FSRs that include two NFSRs that contain f, g (such as the Grain
algorithm), and h; and LFSR that contains p. The Pb function goes through three phases:
initialization, state updating, and result computation. Each version has different non-linear
capabilities f, g, and h [33]. The last version is c-QUARK (160-piece security) that developed
in 2012. It is designed for the situation of key exchange and authentication protocols with
related information [32]. Our research focuses on the version of s-QUARK (QUARK-256)
and c-QUARK (QUARK-384). Abed et al. [33] pointed out that QUARK is better than the
popular lightweight hashes (SPONGENT and PHOTON) in terms of power and energy
and therefore may be better to implement in WSN. Figure 4 shows the advantage of

Symmetry 2023, 15, 152 9 of 25

QUARK over SPONGENT and PHOTON in terms of power and energy consumption. In
addition, QUARK hash function is designed to resist slide resynchronization, side channel,
simple truncated differential, conditional differential, cube threats and cube testers, and is
supported by the principles of resistance for collision, pre-image and second pre-image [34].

Figure 4. Power and energy consumption in QUARK, SPONGENT and PHOTON.

4. The Proposed ECDH Protocol

This section will describe the proposed protocol for secure key exchange that ensures
that subsequent procedures such as authentication, authorization, access control, data
availability . . . , etc. are performed reliably. The proposed protocol contains five phases
which are pre-deployment, registration, key update, session key distribution and session
key protection, which will be described in the following subsections.

4.1. Trust Model and Threat Model

In terms of the trust model, we considered that our protocol has confidence aspects,
including that the sensors have a specific distance to transmit the signal, such, for instance,
that the sensors’ signal does not extend beyond the boundaries of the area of specific fields
such as a hospital or health center. In addition, all sensors are placed in specific locations,
and any sensor that sends data from different locations will be rejected. If the sensor
locations are changed legitimately, this should be specified in the BS. Furthermore, requests
to send and receive between BS and remote servers in IoT applications are secure. The
security of remote servers is behind this study.

In terms of the threat model, we defined a range of attacks/threats tested under the
proposed key exchange protocol. We considered attacks that are known session key, stolen
verify, condition for the session key, forward secrecy, exposing the random parameters, key
recovery, known session-specific temporary information, user-impersonation, sensor node
impersonation, postdeployment, session key verification property, session key computation,
offline password guessing and jamming to be within our field of study. These attacks target
key exchange protocols to hack either by changing them or using them to access the network
legitimately. Adversaries (As) try to penetrate session keys, or even private keys. These
threats are considered serious due to the frequency explained in much research. In addition,
adversaries use analytical methods, mathematical algorithms and deception methods to
penetrate these keys and destroy key exchange protocols.

4.2. Network Model

In this section, we will explain the network model of our proposed protocol. Our
proposed protocol goes through several phases until the key exchange is completed securely.
It is designed to operate in health environments (hospitals, health centers . . . , etc.), our
model is made up of sensors, BS and users’ devices as well as remote servers. It achieves five
phases before the legitimate keys are approved. First, the pre-deployment phase takes place
where both sensors and users’ devices are configured with security parameters, then the
registration phase is completed to ensure that the devices use legitimate security parameters

Symmetry 2023, 15, 152 10 of 25

with validation of these parameters and proof of registration. Next, the protocol uses the key
update phase to ensure freshness and randomness. Then our protocol covertly implements
public key distribution. Furthermore, session keys are generated to be protected by the
session key protection phase. Figure 5 shows the network model of the proposed key
exchange protocol.

As shown in Figure 5, the sensors are only directly connected to the BS. Users’ devices
are connected with BS and remote servers, for example, a user (patient, caregiver) can
access the old medical records of a particular patient after passing the authentication and
authorization procedures, whereas BS is associated with sensors and users as well as remote
servers to store medical reports and data collected by WSN (in the case of sending from a
BS to medical database servers) or to receive medical instructions from a doctor or health
caregiver (in the case of receiving from medical servers to BS).

Figure 5. Proposed network model.

4.3. The Proposed Phases

A detailed description of the phases of the proposed protocol will be presented in this
section.

4.3.1. Pre-Deployment Phase

In this phase, all network model devices are loaded with default security parameters
to allow sensor devices and users’ devices to complete the registration process in BS. All
sensors have equipped sensor identifier (SID), location (Loc), default public (PuKS) and
private (PrKS) keys of 224-bit length, and a secret key domain (which consists of a file
containing a 60 message digest) of 256 s-qh length. Users’ devices (UDs) are equipped with
the user identifier (UID), password (PW), biometric (BM) and default public (PuKU) and
private (PrKU) keys of 384-bit length. After the sensors are deployed and the parameters
are uploaded to the users’ devices, the network is ready to start the registration phase.

At this point, the security and network parameters will be uploaded to the sensors and
users’ devices before communicating and exchanging public or session keys. For example,
each node (user device) will have UID, elliptic curve, points, PW, BM, default public and
private keys, and a file (pool of message digest (MD)) of 708 MD. Each node (sensor) will
have a SID, location, elliptic curve, points, a default public and private key, and a file of
60 MD. All devices require these parameters to securely complete the registration and key
exchange phase. Because sensors have limited resources compared to users’ devices, we

Symmetry 2023, 15, 152 11 of 25

use s-qh-256 with sensors while we use c-qh-384 with users’ devices. Furthermore, the
proposed protocol uses ECDH-224 with sensors while ECDH-384 with users’ devices.

4.3.2. Registration Phase

After loading the initial parameters of the user devices (UDs) and sensors (Ss), the
sensor devices are placed in fixed locations, whether in the hospital or health center. All
devices, whether users’ devices or sensors, must complete the registration phase to become
legitimate in the network (the registration phase is shown in Figure 6), thus allowing these
devices to perform the remaining key exchange phases. To complete the registration phase
on the UD side, it performs the following steps:

1. UD retrieves default parameters received from BS.
2. The user’s BM is computed by one of the input devices either a finger scanner

or a camera for IRIS capture. The UD calculates a timestamp (TS) to use in the
following steps.

3. The UD executes a QUARK hash (qh or c− qh) on (UID||PW||BM||TS) to obtain a
384-bit MD.

4. The user application retrieves the MD from the file stored by default in the user
application. This file contains 708 MD (which represents the largest value of time
multiplied by 12 × 59). One MD is retrieved depending on the time. For example,
if the time is 3:20, the hours are multiplied by minutes to obtain the required input
(60). The user application will extract the MD at entry 60 from the c− qhs file and
perform the operation qh1 ⊕ qh60 to obtain qh2 and to support randomness in the
registration phase.

5. Then, the user application generates a user registration request (URR) by calculating
PuK⊕ qh2 ⊕UN||TS⊕ qh (where UN is a user name and c− qh is QUARK hash with
384-bit length to specify the user in registration phase), and then sends the URR to BS.

6. When BS receives the URR from the user’s device, initially, it truncates TS⊕ qh to
distinguish the user.

7. BS specifies UN, PuKU and TS based on qh.
8. Furthermore, it retrieves qhi based on TS (the number of hours is multiplied by the

number of minutes to specify the qhi entry in the stored file).
9. Then BS extracts qh2 by calculating PuKU ⊕UN ⊕URR.
10. Next, BS extracts qh1 based on qh2⊕ qhi, and then calculates qh′1 through qh′1(UID||PW

||BM||TS). At this point, BS tests qh′1 = qh1. If the result matches, it accepts the regis-
tration process for that user otherwise the registration process is invalid.

11. If the registration is successful, BS generates new public and private keys PuK′B and
PrK′B and calculating a new TS′ time to check these parameters in the UD. In addition,
it prepares two new qh′ and qh′i.

12. BS computes confirmation of user registration (CUR) through qh′⊕ qh||qh′i⊕ qhi||PuK′B
⊕PuKU ⊕ TS′ and then sends CUR to the intended UD.

13. The user device receives CUR from BS and then extracts qh′ by truncating the first
384 bits of CUR and compute it with qh to obtain qh′. In the same way, qh′i is obtained,
but with the second 384-bit truncation of CUR.

14. The user’s device extracts PuK′B from the third 384 bits in CUR.
15. The user’s device calculates the current time TS and then checks that CUR has reached

within the permissible limits of TS. Then the user’s device stores qh′ and qh′i in the qh
file instead of the old ones.

Symmetry 2023, 15, 152 12 of 25

To complete the registration phase on the sensor’s device side, it performs the follow-
ing steps:

1. Each sensor uses its stored default parameters (SID, Loc, PuKS and PrKS) to start the
registration process.

2. Each sensor calculates the current timestamp to prevent many threats such as replay
attacks, as well as time is important in our proposal to specify the qhi entry in the
hashes file.

3. The sensor obtains qhi by calculating the number of hours (Hs) multiplied by the
number of minutes (Ms) to arrive at an entry in the file qh.

4. It uses the public key and qh (qhi ⊕ PuKS) to obtain qh1.
5. The sensor calculates qh2 by calculating the QUARK hash (s− qh) 256-bit for the input

(SID||Loc||TS) since all sensor parameters (SID, Loc and TS) are hidden and not
clearly transmitted in the unsecured channel.

6. The sensor performs the operation qh3 = qh2 ⊕ PuKB to hide the public key of BS.
7. At this point, the sensor computes a sensor registration request (SRR) by executing

qh1 ⊕ qh3||qh⊕ TS, and then sends it to BS. It is clear that all parameters are hidden
when the SRR request goes from the sensor to BS.

8. BS Receives an SRR request from the sensor. In the same way, it truncates qh⊕ TS
from SRR and characterizes the sensor by qh.

9. In addition, it checks TS for attacks.
10. BS retrieves the stored PuKS to extract qh1 via qhi ⊕ PuKS where qhi depends on TS.
11. Then BS calculates qh3 by executing the first 256 bits of SRR and qh1 (SSR(2561st ⊕

qh1). Next, use qh3 ⊕ PuKS to calculate qh2.
12. BS computes a QUARK hash (qh′2 256-bit) by executing SID||Loc||TS. Then it checks

qh2 = qh′2 If the result matches, then BS completes the rest of the registration proce-
dures. Furthermore, matching the result proves that SID is for a legitimate sensor,
the sensor location has not changed and the time is within the specified time period
of BS.

13. Furthermore, BS generates new parameters (PuK′B, PrK′B and TS) to be used in the
next phases.

14. BS prepares new MDs (qh′ and qh′i) to be stored in BS instead of the old ones, and
also sent to the sensor to prevent old MD from being used.

15. BS prepares a new confirmation of sensor registration (CSR) containing qh′, qh′i, PuK′B
and TS′ and sends them to the sensor where all parameters are hidden and inaccessible
to the adversary (A).

16. When the sensor receives a CSR request from BS, it uses temporary parameters such
as qh1, qh2 and the quasi-permanent parameters SID, Loc and PuKS to extract new
parameters such as qh′, qh′i, PuK′B and TS′.

17. Then BS checks TS′ to make sure that the CSR request was sent within the time
specified on the sensor.

18. BS stores the new parameters qh′, qh′i and PuK′B to be used in the next phases.

Symmetry 2023, 15, 152 13 of 25

User registration phase:
Uses received UID, PW, PuKU

and PrKU

Performs BM
Gets timestamp (TS)
Computes qh1 = h(UID||PW||

BM||TS)
qhi depends on TS
Computes qh2 = qh1 ⊕ qhi

Generates URR = PuKU ⊕ qh2⊕
UN||TS⊕ qh

Sends URR

BS receives URR
Cuts TS⊕ qh
Specifies user depending on qh
Specifies PuKU , UN and TS

by qh
Retrieves qhi depending on TS
Extracts qh2 by PuKU ⊕UN

⊕URR
Extracts qh1 = qh2 ⊕ qhi

Computes qh′1
Check qh′1 = qh1

Computes PuK′B , PrK′B and TS′

Preparses qh′ and qh′i
Computes CUR = qh′ ⊕ qh||qh′i

⊕qhi ||PuK′B ⊕ PuKU ⊕ TS′

Sends CUR

User receives CUR:
Uses qh to extract qh′

Uses qhi to extract qh′i
Uses PuKU to extract PuK′B
Computes TS

Check TS′

Stores qh′ , qh′i and PuK′B

Sensor registration phase:
Uses the stored SID, Loc,

PuKS and PrKS

Gets timestamp
Ritrieves qhi by M * H
Computes qh1 = qhi ⊕ PuKS

Computes qh2 = h(SID||Loc
||TS)

Computes qh3 = qh2 ⊕ PuKB

Computes SRR = qh1 ⊕ qh3||qh
⊕TS

Sends SRR

BS receives SRR
Cuts qh⊕ TS
Specifies sensor by qh
Checks TS
Retrieves PuKS

Computes qh1 = qhi ⊕ PuKS

Computes qh3 = SRR(2561st

⊕qh1)

Computes qh2 = qh3 ⊕ PuKB

Executes qh′2 = h(SID||Loc||TS)
Checks qh2 = qh′2

Computes PuK′B , PrK′B and TS′
Prepares qh′ and qh′i

Computes CSR = qh′ ⊕ qh1⊕
SID||qh′i ⊕ qh2 ⊕ Loc
||PuK′B ⊕ PuKS ⊕ TS

Sends CSR

Sensor receives CSR:
Gets qh′ by qh1 ⊕ SID
Gets qh′i by qh2 ⊕ Loc
Gets PuK′B by PuKS ⊕ TS

Check TS′

Stores qh′ , qh′i and PuK′B

Figure 6. User and sensor registration phase.

4.3.3. Keys Update Phase

After legitimate users and trusted sensors are properly and legally registered, the key
update phase comes to ensure that fresh/new keys are used and that safe keys are used,
Figure 7 describes the keys update phase. User device side:

1. Initially the UD generates keys (private PrK′U and public PuK′U) using the ECDH-384
bits protocol.

2. Then the UD computes qh1 by h(BM) which is used to hide the new public key
through user key update (UKU)= PuK′U ⊕ PuKB ⊕ qh1.

3. Next, the UD computes qh2 to produce a MD that depends on the password. This
operation is important to hide the new public and private keys on the UD and store
them on the user’s device through the two operations (qh2 ⊕ PuK′U and qh2 ⊕ PrK′U).

4. At this point, the user’s device sends UKU to BS.
5. BS receives the update request UKU from the UD. Then it performs the operation qh1

(because BS has databases of BM, UID . . . etc.) to extract the new public key (PuK′U)
associated with a given UD and store it instead of the old one.

6. Then BS generates public PuK′B and private PrK′B to connect to the intended user’s device.
7. BS computes BS key update (BKU) to hide the public key of BS by PuK′B ⊕ PuKU ⊕ qh1.
8. Then, BS computes qh2 through the operation h(UID) to hide the public and private

keys of the BS by qh2 ⊕ PuK′B and qh2 ⊕ PrKB and then stores them on the BS device.
At this point, BS sends BKU to the intended UD.

9. Finally, the UD receives BKU from BS and retrieves PuK′U to extract PuK′B by the
operation BKU ⊕ PuKU ⊕ qh1 and store it on the UD for use in future connections.

Sensor device side:

Symmetry 2023, 15, 152 14 of 25

1. First, each sensor uses ECDH-224 to generate the public PuK′S and the private PrK′S.
2. Then each sensor uses qh1 through h(Loc) to hide the PuK′S public key associated

with the sensor using the SKU = PuK′S ⊕ PuKS ⊕ qh1 operation.
3. Next, each sensor uses qh2 = h(SID) to hide the sensor’s public and private keys,

then each sensor stores the new keys and sends sensor key update (SKU) to BS to
update the public key.

4. The BS receives SKU and retrieves the location of the sensor to extract the new
public key by the operation SKU ⊕ PuKS ⊕ qh1 and then stores it in place of the old
public key.

5. Furthermore, BS generates the public keys PuK′B and the private PrK′B and stores
them after they are hidden by the qh2 operation.

6. BS computes BKU by BKU = PuK′B ⊕ PuKS ⊕ qh1 and then sends BKU to sensor.
7. Sensor receives BKU and retrieves PuK′S to extract PuK′B by the operation BKU ⊕

PuKS ⊕ qh1 and then stores the public key PuK′B for the BS.

User key update phase:
Generates ECDH’s PuK′U and

PrK′U
Computes qh1 = h(BM)

Computes UKU = PuK′U⊕
PuKB ⊕ qh1

Computes qh2 = h(PW)

Computes PuK′U = qh2 ⊕ PuK′U
Computes PrK′U = qh2 ⊕ PrK′U
Stores PuK′U and PrK′U
Sends UKU

Sends UKU
BS receives UKU
Retrieves BM
Performs qh1 = h(BM)

Extracts PuK′U by
UKU ⊕ PukB ⊕ qh1

Stors PuK′U

Generates ECDH’s keys
Computes BKU = PuK′B⊕

PuKU ⊕ qh1

Computes qh2 = h(UID)

Computes PuK′B = qh2 ⊕ PuK′B
Computes PrK′B = qh2 ⊕ PrK′B
Stores PuK′B and PrK′B
Sends BKU

Sends BKU

User receives BKU:
Retrieves PuK′U
Extracts PuK′B = BKU ⊕ PuKU

⊕qh1

Stores PuK′B

Sensor key update phase:
Generates ECDH’s PuK′S and

PrK′U
Computes qh1 = h(Loc)
Computes SKU = PuK′S⊕

PuKB ⊕ qh1

Computes qh2 = h(SID)

Computes PuK′S = qh2⊕ PuK′S
Computes PrK′S = qh2 ⊕ PrK′S
Stores PuK′S and PrK′S
Sends SKU

Sends SKU

BS receives SKU
Retrieves Loc
Performs qh1 = h(Loc)
Extracts PuKS′ by

SKU ⊕ PukB ⊕ qh1

Stores PuK′S

Generates ECDH’s keys
Computes BKU = PuK′B⊕

PuKS ⊕ qh1

Computes qh2 = h(SID)

Computes PuK′B = qh2 ⊕ PuK′B
Computes PrK′B = qh2 ⊕ PrK′B
Stores PuK′B and PrK′B
Sends BKU

Sends BKU

Sensor receives BKU:
Retrieves PuK′S
Extracts PuK′B = BKU⊕

PuKS ⊕ qh1

Stores PuK′B

Figure 7. User and sensor key update phase.

4.3.4. Session Key Distribution Phase

After the legitimate devices (users’ devices and sensors) have completed the regis-
tration and update/exchange of public keys phases securely, the session key distribution
phase begins through which data and information packets can be transmitted securely,
Figure 8 depicts the steps of session key distribution phase.

1. Initially, the UD enters UID, BM and PW and generates RNUi to increase the ran-
domness of the session key SK. It then extracts the public and private keys (PrKU and
PuKU) using ⊕qh2.

2. The UD calculates SKU by h(PuKU ||BM||PW||RNUi), where SKU can be divided into
SKU1 and SKU2 to be used in the final SK production. Then, the user’s device performs

Symmetry 2023, 15, 152 15 of 25

three processes (P1, P2 and P3) to hide the initial session key, the random number and
the user ID (UID). Then the UD sends user’s session key request (SKU R) containing
P1, P2 and P3 to BS.

3. At this point, BS receives the SKU R request from the UD. BS uses the public key
(PuKB) to obtain the UID, then uses the latter to obtain RNUi . Then BS calculates SKU
by P1 ⊕ PuKU ⊕ RNUi . Next, BS uses PuKU , BM and PW stored plus RNUi obtained
to find SK′U , and then checks the obtained SKU equals SK′U computed, if they match,
then BS completes the procedures of the session key distribution phase, otherwise BS
refuses to complete the distribution of the SK and stops the connection.

4. If SK′U is validated, BS generates a new random number RNBi and calculates the
temporary session key SKB by h(PuKB||SID||UID||RNBi). Then BS divides both
SK′U and SKB into two parts (SKU′1

and SKU′2
, SKB1 and SKB2) to obtain a temporary

session key through SKtmp = SKU1 ||SKB2 . Finally, BS completes three processes to
hide the temporary session key, UID, SID and RNBi and to create SKB1 R by P1||P2||P3
then send it to the intended sensor.

5. When the sensor receives a SKB1 R request, it uses both the public key (PuKS) and
the sensor identifier (SID) to obtain UID and RNBi . This procedure also enables
the sensor to validate both PuKS and SID. Then the sensor extracts the temporary
session key SKtmp by P1 ⊕ PuKB ⊕ RNBi , where SKtmp consists of SKU1 and SKB2 .
Then, the sensor computes SK′B by h(PuKB||SID||UID||RNBi) which consists of SK′B1
and SK′B2

. The sensor tests for a match of SKtmp2 = SK′B2
, if it matches it means that

the temporary SK is valid otherwise the sensor will refuse to connect and consider
the SK to be fake.

6. If they are identical, the sensor generates a new RNSi and calculates the initial session
key SKS by h(PuKS||Loc||SID||RNSi) which consists of SKS1 and SKS2 . At this point,
the sensor SK between the sensor and BS is SKSB consisting of SKtmp2 and SKS1 . It
will be used in subsequent encryption and signatures operations that are beyond the
scope of this research. Finally, the sensor hides the final session key SKSB, the sensor
location Loc, and the SID by P1, P2 and P3 and then sends these processes after being
combined in SKSR into BS.

7. BS receives a SKSR request and uses PuKB to extract SID and Loc to extract RNSi .
Then BS calculates SKBS (where SKBS = SKSB) by P1 ⊕ PuKS ⊕ RNSi consisting of
SKS1 and SKB2 . Then BS tests SKB2 = SK′B2

. If they match then SKBS = SKS1 ||SKB2

is the final session key between BS and the sensor otherwise it refuses to connect.
Then BS generates a new RNBi with the final session key SKBU (that consists of SKB1

and SKU2) between BS and user, then hides final SKBU and RNBi by the processes
P1, P2 and P3 to prevent adversaries from exposing the exchanged keys and network
security parameters. Finally, BS sends a SKB2 R request containing P1||P2||P3 to the
UD to complete the session key distribution phase.

8. On the UD side, the UD receives the SKB2 R request and extracts UID to validate the
request and extracts RNBi to calculate the session key. The user’s device extracts SKUB
(where SKUB = SKBU) by P1 ⊕ PuKB ⊕ RNBi . Then the UD splits SKUB2 into SKUB1

and SKUB2 and tests that SKU2 = SKUB2 if identical then SKUB is the final session key
between the user and BS, otherwise the key is modified by adversaries as the UD will
reject it.

Symmetry 2023, 15, 152 16 of 25

User session key distribution phase:
Inputs UID, BM and PW
Generates RNUi
Extracts PuKU = PuKU ⊕ qh2

Extracts PrKU = PrKU ⊕ qh2

Computes SKU = h(PuKU ||BM||PW
||RNUi)

SKU = SKU1 ||SKU2
Computes P1 = SKU ⊕ PuKU ⊕ RNUi
Computes P2 = UID⊕ RNUi
Computes P3 = UID⊕ PuKB

Sends SKU R = P1||P2||P3

Sends SKU R

BS receives SKU R
Uses PuKB to obtain UID
Uses UID to obtain RNUi
Computes SKU = P1 ⊕ PuKU ⊕ RNUi

Retrieves PuKU , BM and PW
Computes SK′U
Checks SKU = SK′U
If valid
Genereates RNBi
Computes SKB = h(PuKB ||SID||UID||RNBi)

SK′U = SK′U1
||SK′U2

SKB = SKB1 ||SKB2
SKtmp = SK′U1

||SKB2
Computes P1 = SKtmp ⊕ PuKB ⊕ RNBi
Computes P2 = SID⊕ RNBi
Computes P3 = UID⊕ PuKS

Sends SKB1 R = P1||P2||P3

Sends SKB1 R

Sensor session key distribution phase:
Uses SID and PuKS to extract

UID and RNBi
Extracts SKtmp = P1 ⊕ PuKB ⊕ RNBi
SKtmp = SKtmp1 ||SKtmp2
Computes SK′B = h(PuKB ||SID||UID

||RNBi)

SK′B = SK′B1
||SK′B2

Checks SKtmp2 = SK′B2

If valid
Generates RNSi

Computes SKS = h(PuKS ||Loc||SID
||RNSi)

SKS = SKS1 ||SKS2
Session Key: SKSB= SKS1 ||SKtmp2
Computes P1 = SKSB ⊕ PuKS ⊕ RNSi
Computes P2 = Loc⊕ RNSi
Computes P3 = SID⊕ PuKB

Sends SKS R = P1||P2||P3

Sends SKS R

BS receives SKS R
Uses PuKB to extract SID
Uses Loc to extract RNSi
Computes SK′BS = P1 ⊕ PuKS ⊕ RNSi
SK′BS = SK′S1

||SK′B2
Checks SKB2 = SK′B2

If valid
SKBS is session key between BS & S
BS generates RNBi
SKBU = SKB1 ||SKU2
SKBU is session key between BS & U
Computes P1 = SKBU ⊕ PuKB ⊕ RNBi
Computes P2 = UID⊕ RNBi
Computes P3 = UID⊕ PuKB

Sends SKB2 R = P1||P2||P3

Sends SKB2 R

User receives SKB2 R:
Gets UID by P3 ⊕ PuKB

Gets RNBi by UID⊕ P2

Extracts SKUB = P1 ⊕ PuKB ⊕ RNBi
SKUB = SKUB1 ||SKUB2
Checks SKU2 = SKUB2

If valid
SKUB is session key between U & BS

Figure 8. User and sensor session key distribution phase.

4.3.5. Session Key Protection Phase

To make a session key secure against attacks, the keys stored on the devices must
be protected. On the user’s device, it first requires extracting the private key in the
process PrKU = PrKU ⊕ qh2 and then doing the operation SK′UB = SKUB ⊕ PrKU ⊕ qh2 ⊕
PW to hide the SK on the device the user. As for the sensor, it performs the operation
PrKS = PrKS ⊕ qh2. Next, the sensor performs the operation SK′SB = SKSB ⊕ PrKS ⊕
qh2 ⊕ SID to hide the SK in the sensors. Implementing these operations provides security
robustness to protect exchanged keys, especially session keys.

Symmetry 2023, 15, 152 17 of 25

5. Proposal Results and Findings Discussion

This part of the research will deal with the results obtained from the proposed key
exchange protocol in addition to evaluating the results during their discussion with the
results of the existing research.

5.1. Analysis of the Proposed Protocol Security

For security analysis, this section will include an extensive formal and informal
security analysis.

5.1.1. Informal Analysis of the Proposed Protocol Security

This section will address the attacks identified in the threat model (scope of the study)
section and demonstrate the ability of the proposed key exchange protocol to resist these
threats. In addition, Table 1 shows a comparison of the threat resistance (TR) between the
proposed key exchange protocol and the existing protocols.

• Known session key threat (KSKT) resistance: In insecure environments, the adversary
tries to use the keys of the previous sessions to gain access to the keys of the current
session. If the adversary can derive the keys of the current session, it becomes legiti-
mate and can perform malicious activities. In the proposed key exchange protocol,
all previous and updated session keys are hidden (e.g., P1 = SKtmp ⊕ PuKB ⊕ RNBi)
and not sent explicitly. Furthermore, there is no correlation or relationship between
the previous and updated keys. Additionally, there is high randomness using RNBi to
support robust session key protection. Therefore, the proposal resists this attack with
high rigidity.

• Resistance of stolen verify threat (SVT): In this type of attack, the adversary tries to steal
security parameters, whether related to users’ devices, sensors, or the network. Stolen
validation parameters can simply give the adversary authentication and verification
in the network. The adversary tries to access the database containing confidential
information by hacking users’ devices and sensors. In the proposed key exchange
protocol, all security parameters such as PW and keys are either session or private
keys, even public keys are not explicitly stored. For example, the public key of a
particular user’s device is hidden by PuK′U = qh2 ⊕ PuK′U , also, the password is not
stored on the user’s device (qh2 = h(PW)). Therefore, the adversary cannot derive the
keys and security parameters. The proposed protocol thus successfully counters the
threat of a stolen verifier.

• Session key and security condition (SKSC): In order for a session key to be secure, it
must be protected from accessing its analysis and derivation by the adversary. In our
protocol, the adversary cannot access, derive or analyze security parameters or keys
because first the session key is not repeated in subsequent sessions and second, the
session key between the user’s device and BS such as SKBU = SKB1 ||SKU2 is different
from the session key between BS and S as SKSB = SKS1 ||SKtmp2 . Furthermore, all
security parameters such as sensor location P2 = Loc⊕ RNSi and keys such as the
public key are sent to the recipient anonymously as P3 = SID ⊕ PuKB. Therefore,
deriving or computing the session key by the adversary is very difficult in our protocol.
Thus, the security condition of the session key in our protocol is high and suitable for
protecting patients’ data.

• Providing perfect forward secrecy (PFS): In this attack, the adversary tries to take
advantage of the current session key and long-term security parameters (assuming
that it can access the session key); it cannot take advantage of this key in subsequent
sessions because in our protocol the keys for subsequent sessions do not depend on
the keys of the current sessions. Furthermore, the session key in our protocol is unique
and random through the execution of SKB = h(PuKB||SID||UID||RNBi), even if the
adversary can access the long-term parameters such as SID, UID . . . , etc. It cannot
be used to derive subsequent (future) session keys because the RNBi value in our

Symmetry 2023, 15, 152 18 of 25

proposed protocol provides randomness within the implementation of the qh function.
Hence our proposed protocol efficiently provides PFS.

• Random parameters detection threat (RPDT) resistance: The goal of this attack is to
obtain random parameters to help expose the session key and other keys to network
entities. The adversary tries to detect random parameters such as RNUi , RNBi , and
RNSi to obtain the other security parameters. Even if the adversary exposes the ran-
dom parameters, he/she cannot access the session key because the initial session key
for each entity consists of two parts such as SKU = SKU1 ||SKU2 and the final session
key is agreed as SKUB = SKUB1 ||SKUB2 between entities depending on multiple pro-
cesses as shown in Figure 8. Moreover, random parameters are not explicitly sent over
the network such as SKU = P1 ⊕ PuKU ⊕ RNUi . Therefore, our proposed protocol
withstands RPDT.

• Key recovery threat (KRT) resistance: In this type of attack, the adversary tries to
extract the key assuming that the attacker has the plaintext and ciphertext. This
attack is not viable if the security parameters are chosen appropriately. The proposed
ECDH protocol generates security keys of sufficient length (384 bits) to block this
attack. Furthermore, our protocol does not suffer from information leakage or security
parameters that help to extract the keys. Moreover, random key generation in addition
to the regular generation of these keys prevents hacking of our protocol. Therefore,
our proposed protocol successfully counteracts this threat.

• Known-session-specific temporary threat (KSSTT) resistance: Detection of some tem-
porary information can lead to session key exposure in vulnerable key exchange
protocols. For example, the adversary tries to reveal temporary random values or
parameters to obtain the session key. In our proposed protocol, it is very difficult
for the adversary to obtain the random values, such as RNUi , but if we assume that
the adversary can obtain the random values in the session, he/she cannot obtain the
session key (SKU = h(PuKU ||BM||PW||RNUi)) because it relies on other permanent
parameters such as BM or semi-permanent parameters such as PW and not stored by
users’ devices. Even if the adversary can obtain the random value and the qh value, it
will not be able to reveal the session key. Thus, our protocol reliably combats a KSSTT.

• User impersonation threat (UIT) resistance: To accomplish the impersonation threat,
the adversary needs to prepare a login request that contains valid information (such
as keys and security parameters) for a legitimate user. Fortunately, our protocol relies
on the security parameters BM and PW (two factors authentication), the adversary
does not have access to these security parameters because these parameters are not
stored on UDs and are not explicitly transmitted from sender to recipient. Thus, the
adversary cannot imitate the user’s device, i.e., our protocol aptly resists this threat.

• Sensor node impersonation threat (SIT) resistance: Similar to the previous attack,
the adversary needs secret information to imitate the sensor. In our protocol, the
adversary can only imitate sensors when secret parameters such as SID, Loc, PuKS
and PrKS are obtained. As all these parameters are hidden securely, whether in storage
or transmission. For instance, even if the adversary penetrates the sensor, he/she
cannot extract the private key PrK′S = qh2 ⊕ PrK′S. Therefore, our proposed protocol
successfully resists the SIT.

• Post-deployment keys threat (PDKT) resistance: Sometimes the adversary exploits
key exchange vulnerabilities post-deployment of sensors, adding a user device to
the network or in the case of updating the public/private keys of users’ devices and
sensors. In all of these cases, the adversary tries to derive, alter or block/intercept the
keys. Our protocol generates public and private keys on a regular basis. In the phase
of user and sensor key update (Figure 7), the adversary cannot derive the keys because
they are hidden (UKU = PuK′U ⊕ PuKB ⊕ qh1) when transmitting via the unsecured
channel and protected (PuK′U = qh2⊕ PuK′U) when stored in users’ devices or sensors.
Furthermore, the adversary cannot prevent the user/sensor update request for the
keys from reaching the intended target because the user/sensor device will wait

Symmetry 2023, 15, 152 19 of 25

for the BKU request which means the key update is completed. Thus, our protocol
successfully resists PDKT.

• User/sensor session key verification (U/SSKV) threat resistance: In this attack, the
adversary attempts to fail the session key verification completion to prevent the use of
a legitimate session key between entities. In our protocol, all entities (UD, BS and S)
produce primary keys (SKU , SKB and SKS) to eventually obtain final keys (SKSB, SKBS,
SKBU and SKUB) after completion of P1 = SKBU ⊕ PuKB⊕RNBi in verification request
SKB2 R. The adversary does not know the parameters of the verification request SKB2 R
and cannot falsify it because it is hidden and any manipulation of it will be clear to
the receiver. As a result, our protocol worthily provides U/SSKV property.

• Session key computation threat (SKCT) resistance: This attack relies on obtaining a
session key creation/updating request. The adversary tries to analyze the session
key request to compute it. In our protocol, each session key consists of two parts
(SKU1 ||SKU2 , SKB1 ||SKB2 and SKS1 ||SKS2), one part is used to produce the final session
key and the other part is used for verification (see Figure 8). For example, SKU1 (on the
user’s device side) is used to produce the session key while SKU2 is used to verify the
session key. In our protocol, the adversary cannot compute the session key because
first, all the parameters are hidden, secondly, the adversary does not know how to
generate the initial and final keys for the session keys. Thus, our protocol ably resists
this threat.

• Resistance of off-line password guessing threat (OPGT): In this threat, the adversary
tries to guess the passwords in the requests transmitted between the sender and
the recipient. After the adversary obtains some key exchange or registration request,
he/she tries different methods, such as a dictionary and brute force, to guess the correct
passwords. In our protocol, first, the passwords are not stored on UDs. Furthermore,
users’ passwords are not explicitly transmitted over the network. Throughout our
protocol phases (Figures 6–8), passwords are used within a QUARK hash of length
256 MD with Si or 384 MD with UDi (i.e., qh1 = h(UID||PW||BM||TS)) which it is
impossible for an adversary to extract the password from qh1 even if the adversary
has some parameters such as UID and PuKU . Therefore, our protocol successfully
resists the OPGT.

• Resistance of jamming threat (JT): This is a type of service obfuscation threat that
mainly targets servers and BSs. The adversary sends unnecessary packets at the
same network frequency to stop services. The adversary can use it in many forms
such as constant, deceptive, random and reactive. Our protocol uses authentication
procedures that greatly mitigate this threat. Since our protocol uses TS⊕ qh in BSs to
authenticate the registration of both the user and sensor. Thus, our protocol provides
resistance to this type of threat.

Table 1. Resistance of threats to both the proposed protocol and existing protocols.

TR Ametepe
et al. [10]

Kardi
and

Zagrouba
[22]

Lin [25] Rangwani
et al. [26]

Thabit
et al. [27]

Gope and
Sikdar

[28]

Mehra
et al. [29]

Wu et al.
[30]

Wu et al.
[31] Proposed

KSKT X
SVT X X X X

SKSC X X X
PFS X X X X X X

RPDT X X X
KRT X X X

KSSTT X X X X
UIT X X X X X X
SIT X X X

PDKT X
U/SSKV X X X

SKCT X X X X X
OPGT X X X X X

JT X X

Symmetry 2023, 15, 152 20 of 25

5.1.2. Formal Analysis of the Proposed Protocol Security

To verify the ability of key exchange protocols to fend off security threats, researchers
and academics use formal tools such as Scyther to demonstrate that designed security
protocols are immune to known attacks and are free from vulnerabilities. In this section,
we will provide a Scyther summary, proposed ECDH-QUARK protocol with Scyther and
results.

Scyther Summary:

Among the formal tools for checking vulnerabilities is the Scyther checker tool. This
tool is effective in testing and analyzing vulnerabilities of security protocols [35]. It is
very popular for testing key exchange and security protocols. This tool has the ability
to analyze many threats such as password guessing, insider, impersonation, session key
and established key that cannot be analyzed in other analysis tools such as ProVerif and
Akiss. Scyther uses specific language to describe protocols, roles, parameters, send/receive
requests, and claims. Scyther language is a security protocol description language (SPDL)
that is similar to the syntax of Java. Furthermore, it provides a graphical interface to check
results and test threats easily and simply [36]. The security protocol is designed based
on the roles of network entities and implemented a set of claim events on the security
parameters in requests to send () and recv (). Among these claims are:

• Secret: Keeping secret terms
• Alive: Proof that key exchange protocol steps are implemented in the network entity.
• Weakagree: Ensuring that an impersonation threat will not be carried out by an

adversary
• Nisynch: Verifying that send and receive requests are between two connected entities
• Niagree: Ensuring that transmission and receiving requests are transmitted in the

correct order and integrated data between network entities
• Match: Testing the equality of two variables or assigning a value to a variable

Scyther provides pattern discipline, shortened representations and analyzed traces.
This checker helps in the analysis of classes of threats and expected protocol behaviors [37],
or to prove correctness for an unbounded number of established sessions for protocol. The
checker has been swimmingly used in both teaching and scientific research.

Proposed ECDH-QUARK Protocol with Scyther:

Our protocol was analyzed by the Scyther checker after writing the protocol code
in SPDL. As noted earlier, the design of a security protocol in SYTHER depends on the
roles of that protocol. Therefore, our proposed protocol is based on three roles (UD, BS
and S). Furthermore, our protocol contains four “send” events and four “recv” events to
safely complete the session key distribution. It sends and receives four requests (SKU R,
SKB2R, SKB2R and SKSR) between the designed protocol roles. All security procedures
and parameters in Figure 8 have been applied to analyze the security of our proposed
ECDH-QUARK protocol. In our protocol, the Secret, Nisynch, Niagree and Match claims
are implemented and the confidentiality and concealing of information (such as SID and
UID) and security parameters (such as SKub1 and SKub2) are implemented.

Results:

After implementing our protocol in the Scyther tool, the results indicate that our
ECDH-QUARK protocol is safe against attacks and threats (shown in Figure 9). Where
all session keys (SKub, SKbu, SKsb and SKbs) are between roles, and public (PuKu, PuKb
and PuKs), random parameters (RNu, RNb and RNs) and hardware information (Loc, SID
and UID) are secure and confidential. In Figure 9, we notice that the “Comments” section
indicates “no attacks” which means that our protocol is secure against known threats.

Symmetry 2023, 15, 152 21 of 25

Figure 9. Proposed ECDH-QUARK results by SYTHER checker.

5.2. Performance Analysis of the Proposed Protocol

In this section, we will analyze the performance of the proposed key exchange protocol.
We will demonstrate how our protocol provides lightweight mechanisms of performance
while providing trustworthy security.

• Computational cost
All key exchange protocols require a computational cost evaluation of the embedded
security measures to demonstrate their applicability. Therefore, we tested the execu-
tion of security processes to obtain the execution time for all these processes, Table 2
shows the execution time for key exchanges such as Tqh, TKE and TSM. To illustrate
the computational costs, we compare our protocol with existing key exchange proto-
cols ([3,23,26,28,30,31,38]), where costs are evaluated across all network components
(UD, BS and S) and then the total cost and time cost are calculated (see Table 3). For
comparing costs of computation, there are some acronyms that should be defined and
some of which may not be used in our protocol.

– Execution time for symmetric encryption (TS)
– Execution time for fuzzy extractor (Tf e)
– Execution time for hash function (Th)
– Standard hash function (SH) and lightweight hash function (LH)

We tested the computation costs in the user device and sensor session key distribution
phase (Figure 8) with existing key exchange protocols, because the registration and
update phases are not applied continuously. Furthermore, the costs of the RN and
XOR operations are small and negotiable so we do not include them in the computation
costs comparison. We can see from Table 3 that the computational costs in our protocol
are UD = 1Tqh + 1TKE + 1TSM, BS = 1Tqh + 1TKE + 1TSM and S = 1Tqh + 1TKE +

Symmetry 2023, 15, 152 22 of 25

1TSM, as well as the total cost, is 3Tqh + 3TKE + 3TSM that is the best of all recent key
exchange protocols. Furthermore, our protocol implements a lightweight hash (LH)
algorithm that is QUARK to generate light session keys compared to existing protocols
that implement standard hash (SH). Moreover, the cost of execution time for existing
protocols such as [3] = 0.1453 s, [26] = 8.9730 ms, [28] = 94.903 ms, [31] = 110.50 s
and [38] = 421.25 ms consumes a big execution time (which will negatively affect
resource-constrained sensors) compared to our protocol which needs ≈0.012816 ms.
In Baghbanijam and Sanaei [3], the key exchange phase requires encryption and
therefore the execution time cost will be very large compared to our proposed protocol.
Phimphinith et al. [23] and Wu et al. [30] did not specify execution time costs and
thus it is difficult to make a comparison with our protocol. Rangwani et al. [26]
and Gope and Sikdar [28] used many parameters such as using more than six hashes,
which makes key exchange complicated to calculate. In Wu et al. [31], the authors
used the AKE protocol which performs complex operations due to the execution of 11
TSM which greatly affects the performance. Similarly, another paper Qi and Chen [38]
relied on AKE with ECC to apply key exchange with two factors authentication.
However, AKE is not compatible with WSN-based health networks. The authors
of this paper indicated that the sensor computation cost is 136.35 ms, while in our
protocol the sensor computation cost is 0.004272 ms. After evaluating the computation
costs, we note that the proposed key exchange protocol offers the best performance
out of the existing protocols.

Table 2. Cryptography key exchange operations.

Notation Description Time Cost

Tqh c-QUARK hash function 0.002892 ms
TKE Key exchange (ECDH) 0.000847 ms
TSM Scalar multiplication 0.000533 ms
TS Symmetric encryption -
Tf e Fuzzy extractor -
Th One-way hash function -

Table 3. Comparison of computational costs between key exchange protocols.

Protocol UD BS S Total Exchange
Type Hash Time Cost

Baghbanijam
and Sanaei

[3]
3Th + 4TKE

+ 2TS

4Th + 3TKE
+ 2TS

3Th + 2TKE 10Th + 7TKE
+ 4TS

ECDH SH 0.1453 s

Phimphinith
et al. [23]

4Th + 2TKE
+ 2TSM

4Th + 1TKE
+ 1TSM

- 8Th + 3TKE
+ 3TSM

ECDH - -

Rangwani
et al. [26]

4Th + 2TKE
+ 2TSM

7Th + 1TKE
+ 1TSM

4Th + 1TKE
+ 1TSM

15Th + 4TKE
+ 4TSM

ECDH SH 8.9730 ms

Gope and
Sikdar [28] 6Th + 2TS 5Th + 2TS - 11Th + 4TS AES-CBC SH 94.903 ms

Wu et al.
[30]

1Tf e + 11Th +
1TS

14Th + 1TS 6Th + 1TS
1Tf e + 31Th +

3TS
- - -

Wu et al.
[31]

1Tf e + 8Th +
1TKE + 2TSM

13Th + 2TKE
+ 4TSM

5Th + 1TKE
+ 3TSM

1Tf e + 26Th +
4TKE + 9TSM

ECDH SH 110.50 s

Qi and
Chen [38]

7Th + 1TKE
+ 3TSM

6Th + 1TKE
+ 1TSM

3Th + 2TKE
+ 2TSM

16Th + 4TKE
+ 6TSM

ECC + AKE SH 421.25 ms

Proposed 1Tqh + 1TKE
+ 1TSM

1Tqh + 1TKE
+ 1TSM

1Tqh + 1TKE
+ 1TSM

3Tqh + 3TKE
+ 3TSM

ECDH LH 0.012816 ms

• Communication cost Another important aspect of evaluating key exchange protocols
is the calculation of communication costs. In our user and sensor session key distribu-
tion phase (Figure 8), each entity has a communication cost, for example, UD needs
PuKU = 384 bits, RNUi = 64 bits and UID = 32 bits, where the cost of P1 = 384 bits,
P2 = 64 and P3 = 384 bits. Thus, the communication cost of UD becomes 832 bits,

Symmetry 2023, 15, 152 23 of 25

which is similar to the costs of BS = 832 bits and S = 832 bits. As a result, the total
cost of communication in our protocol is 2496 bits. By comparing our protocol with
the communication costs in Table 4, we notice that our protocol outperforms the
protocols in [30,31] in terms of data size. Although the protocol in [38] performs three
handshakes and a data size of 2368 bits, compared to our protocol that performs four
handshakes and a data size of 2496 bits; this does not reflect the overall performance
of the protocol [38], as our protocol (which uses 1Tqh) outperforms the protocol in
Qi and Chen [38] (which uses 6Th) in computation cost. In addition, their protocol
contains a clear security breach when it reduces the number of handshakes from 4 to 3,
as there are no parameters checked (third handshake) in BS between S and UD. Thus,
our protocol balances security and performance to outperform existing protocols in
terms of communication cost.

Table 4. Comparison of communication costs between key exchange protocols.

Protocol Handshake Bit per Data

Wu et al. [30] 4 2944
Wu et al. [31] 4 4448

Qi and Chen [38] 3 2368
Proposed 4 2496

6. Limitations of Proposed Protocol

The design of a key exchange protocol, no matter how precise the design, may contain
some limitations and open issues. Therefore, we present some of the limitations that may
be encountered in implementing our protocol. For example, if the network is large (a huge
number of users and sensors) there can be use of identical parts of the same session key
for different users. Moreover, it is possible (in some cases) that the proposal establishes a
session key for a specific user without establishing a session key for the sensors and vice
versa if there is a hardware failure of the network components or because the proposal has
not been tested against various attacks and threats. Furthermore, any failure that affects
the BS device can be the cause of the network downtime, especially since the key exchange
phase is highly dependent on the verification procedures in BS.

7. Conclusions and Future Work

Providing a trusted key exchange protocol gives users (patients and providers) confi-
dence that their information and data are secure. However, providing a security method-
ology for exchanging keys without caring about protocol performance would leave a big
loophole in the security protocol. This protocol will not be acceptable to health institutions
and individuals due to its inapplicability in those health institutions. Therefore, we pro-
posed a key exchange (ECDH-QUARK) protocol that balances security and performance.
We tested our protocol against a range of malicious attacks targeting key exchange. The
results of the analyses indicate that our protocol is able to efficiently fend off these threats.
Furthermore, our protocol provided a balanced performance in terms of computation and
communication costs when compared with the existing search results. Among the expected
future works of this study are:

1. Test the proposed protocol on actual health applications such as surgeries that require
high speed and security to exchange keys in joining and leaving the network. Espe-
cially when the surgeon is not present in the surgical procedure, but rather supervises
it online.

2. This proposal deals with the exchange of keys and the distribution of session keys
securely between network entities, we intend to develop this proposal in the use of
these keys to accomplish the processes of encryption and signing of patient data and
information.

3. Test our proposal on wearable and implantable health sensors in the human body to
assess energy consumption and calculate the computational cost and complexity.

Symmetry 2023, 15, 152 24 of 25

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

A, BS, Si, UDi Adversary, base station, sensor, user device
PuKU , PuKS, PuKB Public keys of users ,sensors, and BS
PrKU , PrKS, PrKB Private keys of users ,sensors, and BS
SKSB, SKUB Session keys between sensors and BS, users and BS
SKtmp Temporary session key
UID, SID Identifiers of users and sensors
Loc Sensors locations
PW, BM Users’ passwords and biometrics
UN User name
RNUi , RNSi , RNBi Random numbers for sensors, users and BS
qh(.) or h(.) One-way QUARK hash function
‖, ⊕ Concatenation and exclusive or operations

References
1. Frimpong, E.; Michalas, A. IoT-cryptodiet: Implementing a lightweight cryptographic library based on ECDH and ECDSA

for the development of secure and privacy-preserving protocols in contiki-NG. In Proceedings of the IoTBDS 2020, Prague,
Czech Republic, 7–9 May 2020; pp. 101–111.

2. Awaad, M.H.; Jebbar, W.A. Prolong the lifetime of WSN by determining a correlation nodes in the same zone and searching for
the best not the closest CH. Int. J. Mod. Educ. Comput. Sci. 2014, 6, 31. [CrossRef]

3. Baghbanijam, S.; Sanaei, H. An improved authentication & key exchange protocol based on ECDH for WSNs. arXiv 2021,
arXiv:2109.11450.

4. Al-Zubaidie, M.; Zhang, Z.; Zhang, J. REISCH: Incorporating lightweight and reliable algorithms into healthcare applications of
WSNs. Appl. Sci. 2020, 10, 2007. [CrossRef]

5. Awaad, M.H. The use of dynamic sliding window with IPSec. J. Educ. Pure Sci. 2014, 4, 278–289.
6. Awaad, M.H. Improve the effectiveness of sensor networks and extend the network lifetime using 2BSs and determination of

area of CHs choice. J. Comput. Sci. Control. Syst. 2014, 7, 15.
7. Abdulhameed, H.A.; Abdalmaaen, H.F.; Mohammed, A.T.; Mosleh, M.F.; Abdulhameed, A.A. A lightweight hybrid cryptographic

algorithm for WSNs tested by the diehard tests and the raspberry Pi. In Proceedings of the 2022 International Conference on
Computer Science and Software Engineering (CSASE), Duhok, Iraq, 15–17 March 2022; pp. 271–276.

8. Al-Zubaidie, M.; Zhang, Z.; Zhang, J. RAMHU: A new robust lightweight scheme for mutual users authentication in healthcare
applications. Secur. Commun. Netw. 2019, 2019, 3263902. [CrossRef]

9. Heigl, M.; Schramm, M.; Fiala, D. A lightweight quantum-safe security concept for wireless sensor network communication.
In Proceedings of the 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom
Workshops), Kyoto, Japan, 11–15 March 2019; pp. 906–911.

10. Ametepe, A.F.-X.; Ahouandjinou, A.S.; Ezin, E.C. Robust encryption method based on AES-CBC using elliptic curves Diffie–
Hellman to secure data in wireless sensor networks. Wirel. Netw. 2022, 28, 991–1001. [CrossRef]

11. Marhoon, A.F.; Awaad, M.H.; Jebbar, W.A. A new algorithm to improve LEACH protocol through best choice for cluster-head.
Int. J. Adv. Eng. Sci. 2014, 4, 1–12.

12. Al-Zubaidie, M.; Zhang, Z.; Zhang, J. PAX: Using pseudonymization and anonymization to protect patients’ identities and data
in the healthcare system. Int. J. Environ. Res. Public Health 2019, 16, 1490. [CrossRef]

13. Aikins-Bekoe, S.; Hayfron-Acquah, J.B. Elliptic curve diffie-hellman (ECDH) analogy for secured wireless sensor networks. Int. J.
Comput. Appl. 2020, 176, 1–8. [CrossRef]

14. Al-Zubaidie, M.; Zhang, Z.; Zhang, J. Efficient and secure ECDSA algorithm and its applications: A survey. Int. J. Commun. Netw.
Inf. Secur. (IJCNIS) 2019, 11, 7–35. [CrossRef]

15. Al-Zubaidie, M.; Zhang, Z.; Zhang, J. User authentication into electronic health record based on reliable lightweight algorithms.
In Handbook of Research on Cyber Crime and Information Privacy; IGI Global: Hershey, PA, USA, 2021; pp. 700–738.

16. Almansoori, M.N.; Elshamy, A.A.; Mustafa, A.A.M. Secure Z-MAC protocol as a proposed solution for improving security in
WSNs. Information 2022, 13, 105. [CrossRef]

17. Nagesh, O.; Naresh, V.S. Comparative analysis of MOD-ECDH algorithm with various algorithms. Int. J. Ind. Eng. Prod. Res.
2020, 31, 301–308.

18. Wu, T.-Y.; Yang, L.; Meng, Q.; Guo, X.; Chen, C.-M. Fog-driven secure authentication and key exchange scheme for wearable
health monitoring system. Secur. Commun. Netw. 2021, 2021, 8368646. [CrossRef]

http://doi.org/10.5815/ijmecs.2014.11.04
http://dx.doi.org/10.3390/app10062007
http://dx.doi.org/10.1155/2019/3263902
http://dx.doi.org/10.1007/s11276-022-02903-3
http://dx.doi.org/10.3390/ijerph16091490
http://dx.doi.org/10.5120/ijca2020920015
http://dx.doi.org/10.17762/ijcnis.v11i1.3827
http://dx.doi.org/10.3390/info13030105
http://dx.doi.org/10.1155/2021/8368646

Symmetry 2023, 15, 152 25 of 25

19. Kim, M.; Moon, J.; Won, D.; Park, N. Revisit of password-authenticated key exchange protocol for healthcare support wireless
communication. Electronics 2020, 9, 733. [CrossRef]

20. Alzahrani, B.A. Secure and efficient cloud-based IoT authenticated key agreement scheme for e-health wireless sensor networks.
Arab. J. Sci. Eng. 2021, 46, 3017–3032. [CrossRef]

21. Butpheng, C.; Yeh, K.-H.; Xiong, H. Security and privacy in IoT-cloud-based e-health systems—A comprehensive review.
Symmetry 2020, 12, 1191. [CrossRef]

22. Kardi, A.; Zagrouba, R. Hybrid cryptography algorithm for secure data communication in WSNs: DECRSA. In Congress on
Intelligent Systems; Springerr: Berlin/Heidelberg, Germany, 2020; pp. 643–657.

23. Phimphinith, A.; Anping, X.; Zhu, Q.; Jiang, Y.; Shen, Y. An enhanced mutual authentication scheme based on ECDH for IoT
devices using ESP8266. In Proceedings of the 2019 IEEE 11th International Conference on Communication Software and Networks
(ICCSN), Chongqing, China, 12–15 June 2019; pp. 490–496.

24. Hasan, N.A.; Farhan, A.K. Security improve in ZigBee protocol based on RSA public algorithm in WSN. Eng. Technol. J. 2019, 37,
67–73. [CrossRef]

25. Lin, H.Y. Integrate the hierarchical cluster elliptic curve key agreement with multiple secure data transfer modes into wireless
sensor networks. Connect. Sci. 2022, 34, 274–300. [CrossRef]

26. Rangwani, D.; Sadhukhan, D.; Ray, S.; Khan, M.K.; Dasgupta, M. An improved privacy preserving remote user authentication
scheme for agricultural wireless sensor network. Trans. Emerg. Telecommun. Technol. 2021, 32, e4218. [CrossRef]

27. Thabit, F.; Alhomdy, S.; Al-Ahdal, A.H.; Jagtap, S. A new lightweight cryptographic algorithm for enhancing data security in
cloud computing. Glob. Transitions Proc. 2021, 2, 91–99. [CrossRef]

28. Gope, P.; Sikdar, B. A privacy-aware reconfigurable authenticated key exchange scheme for secure communication in smart grids.
IEEE Trans. Smart Grid. 2021, 12, 5335–5348.

29. Mehra, P.S.; Doja, M.N.; Alam, B. Codeword authenticated key exchange (cake) light weight secure routing protocol for WSN. Int.
J. Commun. Syst. 2019, 32, 1–27.

30. Wu, T.-Y.; Yang, L.; Lee, Z.; Chu, S.-C.; Kumari, S.; Kumar, S. A provably secure three-factor authentication protocol for wireless
sensor networks. Wirel. Commun. Mob. Comput. 2021, 2021, 5537018. [CrossRef]

31. Wu, T.-Y.; Lee, Z.; Yang, L.; Luo, J.-N.; Tso, R. Provably secure authentication key exchange scheme using fog nodes in vehicular
ad hoc networks. J. Supercomput. 2021, 77, 6992–7020. [CrossRef]

32. Lu, X.; Li, B.; Liu, M.; Lin, D. Improved conditional differential attacks on lightweight hash family QUARK. Cybersecurity 2022, 5,
1–16. [CrossRef]

33. Abed, S.; Jaffal, R.; Mohd, B.J.; Al-Shayeji, M. An analysis and evaluation of lightweight hash functions for blockchain-based IoT
devices. Clust. Comput. 2021, 24, 3065–3084. [CrossRef]

34. Gupta, D.N.; Kumar, R. Sponge based lightweight cryptographic hash functions for IoT applications. In Proceedings of the 2021
International Conference on Intelligent Technologies (CONIT), Hubli, India, 25–27 June 2021; pp. 1–5.

35. Cremers, C. Scyther User Manual-Draft 18 February 2014. 2014. Available online: https://people.cispa.io/cas.cremers/scyther/
(accessed on 3 August 2022).

36. Mohammad, Z. Cryptanalysis and improvement of the yak protocol with formal security proof and security verification via
Scyther. Int. J. Commun. Syst. 2020, 33, e4386. [CrossRef]

37. Amin, R.; Lohani, P.; Ekka, M.; Chourasia, S.; Vollala, S. An enhanced anonymity resilience security protocol for vehicular ad hoc
network with Scyther simulation. Comput. Electr. Eng. 2020, 82, 106554. [CrossRef]

38. Qi, M.; Chen, J. Secure authenticated key exchange for WSNs in IoT applications. J. Supercomput. 2021, 77, 13897–13910.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/electronics9050733
http://dx.doi.org/10.1007/s13369-020-04905-9
http://dx.doi.org/10.3390/sym12071191
http://dx.doi.org/10.30684/etj.37.3B.1
http://dx.doi.org/10.1080/09540091.2021.1990212
http://dx.doi.org/10.1002/ett.4218
http://dx.doi.org/10.1016/j.gltp.2021.01.013
http://dx.doi.org/10.1155/2021/5537018
http://dx.doi.org/10.1007/s11227-020-03548-9
http://dx.doi.org/10.1186/s42400-021-00108-3
http://dx.doi.org/10.1007/s10586-021-03324-1
https://people.cispa.io/cas.cremers/scyther/
http://dx.doi.org/10.1002/dac.4386
http://dx.doi.org/10.1016/j.compeleceng.2020.106554
http://dx.doi.org/10.1007/s11227-021-03836-y

	Introduction
	Significance of Proposed
	Main Contributions
	Paper Structure

	Keys Exchange Studies of Related Work
	Preliminary Techniques for Key Exchange
	Elliptic Curve Diffie-Hellman (ECDH)
	QUARK Hash Function

	The Proposed ECDH Protocol
	Trust Model and Threat Model
	Network Model
	The Proposed Phases
	Pre-Deployment Phase
	Registration Phase
	Keys Update Phase
	Session Key Distribution Phase
	Session Key Protection Phase

	Proposal Results and Findings Discussion
	Analysis of the Proposed Protocol Security
	Informal Analysis of the Proposed Protocol Security
	Formal Analysis of the Proposed Protocol Security

	Performance Analysis of the Proposed Protocol

	Limitations of Proposed Protocol
	Conclusions and Future Work
	References

