# Black String Bounce to Traversable Wormhole

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Simpson-Visser Regularization for a Black String

#### 2.1. Tensors and Curvature Invariants

#### 2.2. Black String Momentum–Energy Tensor and Energy Conditions

## 3. Applications of the Regular Solution of a Black String

#### 3.1. Regular Black String Thermodynamics

#### 3.2. Circular Orbits in the Regular Black String

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Visser, M. Lorentzian Wormholes: From Einstein to Hawking; AIP Press: New York, NY, USA, 1995. [Google Scholar]
- Lemos, J.P.S. Cylindrical black hole in general relativity. Phys. Lett. B
**1995**, 353, 46–51. [Google Scholar] [CrossRef][Green Version] - Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.K.; Ball, D. et al. [Event Horizon Telescope] First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett.
**2022**, 930, L12. [Google Scholar] - Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azuly, R. [Event Horizon Telescope]. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett.
**2019**, 875, L1. [Google Scholar] - Abbott, B.P. et al. [LIGO Scientific and Virgo] Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett.
**2016**, 116, 061102. [Google Scholar] [CrossRef][Green Version] - Abbott, B.P. et al. [LIGO Scientific and Virgo] GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett.
**2017**, 119, 161101. [Google Scholar] [CrossRef] [PubMed][Green Version] - Vilenkin, A. Cosmic Strings and Domain Walls. Phys. Rept.
**1985**, 121, 263–315. [Google Scholar] [CrossRef] - Carballo-Rubio, R.; Filippo, F.D.; Liberati, S.; Pacilio, C.; Visser, M. On the viability of regular black holes. J. High Energy Phys.
**2018**, 07, 023. [Google Scholar] [CrossRef][Green Version] - Jayawiguna, B.N. Thermodynamics of regular Kerr-Sen black hole. J. Phys. Conf. Ser.
**2022**, 2165, 012016. [Google Scholar] [CrossRef] - Hayward, S.A. Formation and Evaporation of Nonsingular Black Holes. Phys. Rev. Lett.
**2006**, 96, 031103. [Google Scholar] [CrossRef][Green Version] - Simpson, A.; Visser, M. Black-bounce to traversable wormhole. J. Cosmol. Astropart. Phys.
**2019**, 2, 42. [Google Scholar] [CrossRef][Green Version] - Morris, M.S.; Thorne, K.S. Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys.
**1988**, 56, 395–412. [Google Scholar] [CrossRef][Green Version] - Junior Lima, H.C.D.; Crispino, L.C.B.; Cunha, P.V.P.; Herdeiro, C.A.R. Can different black holes cast the same shadow? Phys. Rev. D
**2021**, 103, 084040. [Google Scholar] [CrossRef] - Simpson, A. From black-bounce to traversable wormhole, and beyond. arXiv
**2021**, arXiv:2110.05657. [Google Scholar] - Bambhaniya, P.; Jusufi, S.K.K.; Joshi, P.S. Thin accretion disk in the Simpson-Visser black-bounce and wormhole spacetimes. Phys. Rev. D
**2022**, 105, 023021. [Google Scholar] [CrossRef] - Terno, D.R. Inaccessibility of traversable wormholes. Phys. Rev. D
**2022**, 106, 044035. [Google Scholar] [CrossRef] - Junior, E.L.B.; Rodrigues, M.E. Black-Bounce in f(T) Gravity. arXiv
**2022**, arXiv:2203.03629. [Google Scholar] - Islam, S.U.; Kumar, J.; Ghosh, S.G. Strong gravitational lensing by rotating Simpson-Visser black holes. J. Cosmol. Astropart. Phys.
**2021**, 10, 013. [Google Scholar] [CrossRef] - Nascimento, J.R.; Petrov, A.Y.; Porfirio, P.J.; Soares, A.R. Gravitational lensing in black-bounce spacetimes. Phys. Rev. D
**2020**, 102, 044021. [Google Scholar] [CrossRef] - Tsukamoto, N. Gravitational lensing in the Simpson-Visser black-bounce spacetime in a strong deflection limit. Phys. Rev. D
**2021**, 103, 024033. [Google Scholar] [CrossRef] - Övgün, A. Weak Deflection Angle of Black-bounce Traversable Wormholes Using Gauss-Bonnet Theorem in the Dark Matter Medium. Turk. J. Phys.
**2020**, 44, 465–471. [Google Scholar] [CrossRef] - Chataignier, L.; Kamenshchik, A.Y.; Tronconi, A.; Venturi, G. Regular black holes, universes without singularities, and phantom-scalar field transitions. arXiv
**2022**, arXiv:2208.02280. [Google Scholar] - Bronnikov, K.A. Black bounces, wormholes, and partly phantom scalar fields. Phys. Rev. D
**2022**, 106, 064029. [Google Scholar] [CrossRef] - Stuchlík, Z.; Vrba, J. Epicyclic Oscillations around Simpson–Visser Regular Black Holes and Wormholes. Universe
**2021**, 7, 279. [Google Scholar] [CrossRef] - Churilova, M.S.; Stuchlik, Z. Ringing of the regular black-hole/wormhole transition. Class. Quant. Grav.
**2020**, 37, 075014. [Google Scholar] [CrossRef][Green Version] - Yang, Y.; Liu, D.; Xu, Z.; Long, Z.W. Echoes from black bounces surrounded by the string cloud. arXiv
**2022**, arXiv:2210.12641. [Google Scholar] - Vagnozzi, S.; Roy, R.; Tsai, Y.D.; Visinelli, L.; Afrin, M.; Allahyari, A.; Bambhaniya, P.; Dey, D.; Ghosh, S.G.; Joshi, P.S.; et al. Horizon-scale tests of gravity theories and fundamental physics from the Event Horizon Telescope image of Sagittarius A
^{*}. arXiv**2022**, arXiv:2205.07787. [Google Scholar] - Lobo, F.S.N.; Rodrigues, M.E.; Silva, M.V.d.S.; Simpson, A.; Visser, M. Novel black-bounce spacetimes: Wormholes, regularity, energy conditions, and causal structure. Phys. Rev. D
**2021**, 103, 084052. [Google Scholar] [CrossRef] - Wald, R.M. General Relativity; The University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Alencar, G.; Muniz, C.R. Thermodynamic Properties of Static and Rotating Unparticle Black Holes. J. Cosmol. Astropart. Phys.
**2018**, 3, 040. [Google Scholar] [CrossRef][Green Version] - Carvalho, I.D.D.; Furtado, J.; Landim, R.R.; Alencar, G. Horizon Fractalization in Black Strings Ungravity. arXiv
**2022**, arXiv:2209.14793. [Google Scholar] - Rayimbaev, J.; Demyanova, A.; Camci, U.; Abdujabbarov, A.; Ahmedov, B. Dynamics of charged and magnetized particles around cylindrical black holes immersed in external magnetic field. Int. J. Mod. Phys. D
**2021**, 30, 2150019. [Google Scholar] [CrossRef] - Nilton, M.; Alencar, G. Black Strings in Asymptotically Safe Gravity. arXiv
**2022**, arXiv:2211.02581. [Google Scholar] - Furtado, J.; Alencar, G. BTZ Black-bounce to Traversable Wormhole. Universe
**2022**, 8, 625. [Google Scholar] [CrossRef] - Jefremov, P.I.; Tsupko, O.Y.; Bisnovatyi-Kogan, G.S. Innermost stable circular orbits of spinning test particles in Schwarzschild and Kerr space-times. Phys. Rev. D
**2015**, 91, 124030. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lima, A.M.; de Alencar Filho, G.M.; Furtado Neto, J.S.
Black String Bounce to Traversable Wormhole. *Symmetry* **2023**, *15*, 150.
https://doi.org/10.3390/sym15010150

**AMA Style**

Lima AM, de Alencar Filho GM, Furtado Neto JS.
Black String Bounce to Traversable Wormhole. *Symmetry*. 2023; 15(1):150.
https://doi.org/10.3390/sym15010150

**Chicago/Turabian Style**

Lima, Arthur Menezes, Geová Maciel de Alencar Filho, and Job Saraiva Furtado Neto.
2023. "Black String Bounce to Traversable Wormhole" *Symmetry* 15, no. 1: 150.
https://doi.org/10.3390/sym15010150