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Abstract: The multiconfigurational dynamical symmetry (MUSY) connects the shell, collective, and
cluster models of atomic nuclei for the case of multi-shell excitations. Therefore, it can give a unified
description of various phenomena. The shape isomers are obtained from the investigation of the
stability and consistency of the symmetry, and selection rules connect them to the possible cluster
configurations and the related reaction channels. A simple, dynamically symmetric Hamiltonian
turns out to be able to provide a unified description of the gross features of spectra of different
regions of excitation energy and deformation. Some predictions of MUSY have been justified by
experimental observations.

Keywords: multiconfigurational dynamical symmetry; structure models; shape isomers; clusteriza-
tion; reaction channels; rotational spectra

1. Introduction

The effort of physicists in trying to understand the nuclear structure shows a close
similarity to the story of the blind men who discover the elephant by touch, in the ancient
Indian parable. Depending on which part their hand landed, they describe it as a thick
snake, like a kind of fan, or pillar, like a tree trunk, etc.

Several features of the atomic nuclei can be described if we suppose that it is a
microscopic liquid drop, which has an electric charge and undergoes collective rotation
and vibration. Other characteristics make it similar to a miniature atom, with single
particles orbiting in an average potential, i.e., suggest a shell model. Decay properties
and nuclear reactions can be interpreted most naturally in cluster models, based on the
molecular picture.

Obviously, the question, of how the fundamental structure models are related to each
other is essential. (We would like to know, what the whole elephant looks like.) A real
breakthrough came in 1958. It turned out that the SU(3) symmetry connects the spherical
shell model, the quadrupole collective model [1,2] and the cluster model to each other [3,4].
Applying the present-day terminology, we can say that the common intersection of the
three basic models is provided by the

U(3) ⊃ SU(3) ⊃ SO(3) (1)

dynamical symmetry. This beautiful relationship was established for a single shell problem.
To find the connection for the general problem, including major shell excitations, much

effort was concentrated on various theoretical frameworks in the following decades, and
several aspects have been clarified.

Here, we present a symmetry-based relation between the three fundamental models
for the multi-major-shell problem. It is a simple generalization of the historical dynamical
symmetry (1):

Ue(3)⊗Us(3) ⊃ U(3) ⊃ SU(3) ⊃ SO(3). (2)
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(The exact meaning of the first two groups is discussed below.) This dynamical
symmetry, called multiconfigurational dynamical symmetry (MUSY), provides us with the
common intersection of the shell, collective, and cluster models for the multi-shell problem.
It looks quite natural, almost straightforward. Nevertheless, it took a long time until the
fully algebraic shell, collective, and cluster models were developed for the many major shell
problem, and their connection was revealed. Here the fully algebraic indicative refers to a
description, in which not only the basis states but also the physical operators carry some
group symmetries, like in the Elliott model [1,2]. In fact, MUSY is a composite symmetry
in the sense that in addition to the dynamical symmetry (2) of each configuration, there
is a further symmetry that connects the different configurations to each other. This latter
one acts in the pseudo space of the particle indices. Further discussion is presented in the
next section.

Since MUSY is bridging the shell and collective models, it allows us to determine the
stable quadrupole shapes of nuclei from the symmetry of the shell model. So it offers a
possibility, which is an alternative to the usual energy-surface calculations. In particular,
the shape isomers are obtained from the investigation of the Stability and Consistency of
the connecting U(3) Symmetry (called the SCS method). Since the U(3) symmetry uniquely
defines the quadrupole deformation, we can also say that the stability and consistency of
the deformation are investigated.

MUSY connects the shell model not only to the collective but also to the cluster model;
therefore, one can apply a U(3) selection rule for the determination of the allowed cluster
configurations. The cluster configurations have a direct connection to the reaction channels;
thus, one can determine easily in which channels the shape isomers can be populated,
or decay.

One of the nice features of the dynamical symmetries is that they offer an analytical
solution for the eigenvalue problem, and so does the MUSY as well. Therefore, it is easy to
apply for the description of a large amount of experimental data. It turns out, that it can
give a unified description of spectra of different configurations in different energy regions
and in a wide range of deformation.

The nuclear deformation is a result of spontaneous symmetry breaking. In partic-
ular, the rotational SO(3) symmetry is broken in the eigenvalue problem of the intrinsic
Hamiltonian. The simplest manifestation of this phenomenon shows how the quadrupole
deformation appears in the spherical shell model (Elliott model and its extensions) [5]. In
the cluster model, the same scenario results in more exotic molecular configurations. Since
MUSY connects the shell and cluster models (of different configurations) to each other, it
sheds some new light on the long-standing problem of cluster-shell competition or duality
as well.

The structure of this paper is as follows. In Section 2, first, we recall the basic features
of the 1958 connection, and afterward, we introduce the MUSY and review its main
characteristics very briefly. In Section 3, we present some applications of MUSY. They give
unified descriptions of different phenomena, which are usually treated in different manners.
Finally, in Section 4, a brief summary is given, and some conclusions are drawn.

2. Connecting Symmetry
2.1. Single-Shell Problem

In 1958, Elliott showed that the quadrupole deformation and the collective rotation
could be obtained from a spherical shell model by selecting well-defined SU(3) symme-
tries [1,2]. The average potential of the Elliott model is that of the harmonic oscillator,
and the residual nucleon–nucleon interaction is quadrupole type: Qa ·Qa. Here Qa is the
algebraic quadrupole operator, which acts only within a major shell, and is obtained as a
summation of the nucleon quadrupole operators:

Qa
2q =

√
4π

5

A

∑
n=1

(
x2

n
b2 Y2q(x̂n)) + b2 p2

nY2q( p̂n),
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where b stands for the oscillator parameter b =
√

h̄/2ω. This operator has non-vanishing
matrix elements only between states of the same major shell. (The physical quadrupole operator

Qc
2q =

√
16π

5

A

∑
n=1

x2
n

b2 Y2q(x̂n)

on the other hand, connects also states with ±2 oscillator quanta difference. Its matrix
elements within a major shell coincide with those of Qa.) The scalar product Qa · Qa

can be expressed as the linear combination of the (quadratic) invariant operators of the
SU(3) (C(2)

SU3) and SO(3) (C(2)
SO3 = L2) algebras: Qa ·Qa = 6C(2)

SU3 − 3L2. Since the harmonic
oscillator Hamiltonian HHO is the linear invariant of the U(3) algebra, the Hamiltonian of
the Elliott model can be written as a linear combination of the invariant operators of the
algebra chain (1):

H = HHO −
1
2

χQa ·Qa = C(1)
U3 − 3χC(2)

SU3 +
3
2

χC(2)
SO3. (3)

This latter algebraic form guarantees that the representation labels of the algebras in the
chain (1) provide a complete classification scheme on the basis (U(3) : [n1, n2, n3], SU(3) :
(λ, µ), K, SO(3) : L, where K distinguishes between different SO(3) representation within
an SU(3) one). Furthermore, the energy eigenvalue problem has an analytical solution:

E = h̄ωn− 3χ(λ2 + µ2 + λµ + 3λ + 3µ) +
3
2

χL(L + 1).

Elliott showed that the quadrupole shape of the nucleus is determined by the (λ, µ)
SU(3) quantum numbers. For example, (0, 0) is spherical (λ, 0) is prolate with cylindrical
symmetry, (0, µ) is oblate, and in general (λ, µ) has a triaxial shape. The quantitative
relation by which the SU(3) symmetry determines the quadrupole deformation is [6,7]:

β2 =
16π

5N2
0
(λ2 + µ2 + λµ), γ = arctan(

√
3µ

2λ + µ
). (4)

Here, N0 is the number of oscillator quanta, including the zero point contribution: N0 =
n + (A− 1) 3

2 , n is the sum of the U(3) quantum numbers: n = n1 + n2 + n3, and A is the
mass number of the nucleus.

Let us pay attention to the breaking of symmetries in Equation (3). Not only because it
is important in the Elliott model, but also due to the fact that this model is the prototype
of the algebraic structure models; therefore, the same scenario is present in many other
approaches, too. As it is well known, the three-dimensional harmonic oscillator has an
exact U(3) symmetry. Therefore, the Hamiltonian HHO provides a spectrum of equidistant
energies and complete degeneracy within a major shell. The rest of H, however, breaks the
U(3) symmetry; thus, the degeneracy is lifted. Nevertheless, this kind of special breaking
(when the interactions are written in terms of the invariant operators of a single algebra
chain) does not mix the representations, and their labels remain good quantum numbers;
furthermore, the analytical solution is still available. It is called dynamical symmetry
breaking. It is well known for a long time, and many other structure models share this
feature. Usually, the complete algebra chain is said to define a dynamical symmetry [8].

There is, however, another symmetry breaking in the Elliott model as well, which is not
very well known. In particular, the rotational SO(3) symmetry breaks spontaneously, and
this spontaneous breaking results in a deformed shape. The fact that nuclear deformation
is a result of spontaneous symmetry breaking has been accepted for a long time, but it was
discussed either in the mean-field model, or in the interacting boson model, but not in the
Elliott model [8–11]. This is somewhat surprising, considering that the first explanation
of the deformation and collective rotation from the spherical shell model viewpoint was
given by the Elliott model. In fact, it offers a very simple and transparent illustration of the
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spontaneous breaking [5]. It is obvious from Equation (3), that the Hamiltonian can be split
up into an intrinsic and a collective part:

H = Hint + Hcoll , Hint = C(1)
U3 − 3χC(2)

SU3, Hcoll =
3
2

χC(2)
SO3.

The first term determines the band heads, while the second splits up the bands. The
first one contains the fast, and the second the slow degrees of freedom. Both of them are
rotationally invariant; however, in the eigenvalue problem of the intrinsic Hamiltonian, one
obtains a deformed ground state for most of the nuclei. This phenomenon, namely the non-
symmetric ground state of a symmetric Hamiltonian, is known as spontaneous breaking.

So, the Elliott model shows a dual breaking of symmetries: the U(3) and SU(3) symme-
tries are dynamically broken by the interactions of the model, while the rotational symmetry
is spontaneously broken in the eigenvalue problem of the intrinsic Hamiltonian. This kind
of duality of symmetry breaking is also very common in nuclear structure models [12].

Still, in 1958 Wildermuth and Kanellopoulos established the connection between the
shell model and cluster model wave functions [3], by rewriting the model Hamiltonians
into each other in the harmonic oscillator approximation

Hcl
HO = Hsm

HO.

This relation of the Hamiltonians establishes, of course, a close connection also between
the eigenstates. In particular, any cluster state can be expanded in terms of shell states of
the same energy. This essential relation between the operators and states is valid not only
for the HO interactions but also for more general ones [13]. It plays a fundamental role in
relating the basis states of different models or different configurations to each other. More
discussion along this line comes later.

Bayman and Bohr could reinterpret the cluster–shell connection in terms of SU(3)
symmetry [4]. Therefore, the interrelation of the basic models was found in 1958 in terms
of the SU(3) symmetry. In particular, the quadrupole collective states, as well as the
cluster bands, could be picked up from the see of the shell model states by their specific
SU(3) symmetry.

2.2. Multi-Shell Problem
2.2.1. Structure Models

The SU(3) shell model, as invented by Elliott [1,2], is a single-shell model: one consid-
ers an inert core, and the valence nucleons occupy a single major shell. The model turned
out to be very successful in the description of the p, and sd shell nuclei. Nevertheless, it
can describe the electromagnetic transitions only with an effective charge, which is a phe-
nomenological parameter. To reproduce the experimental data with real nucleon charges,
one has to take into account major shell excitations. Several other physical phenomena
require this extension along the vertical energy scale, too. A successful algebraic shell
model of the many major shell problem was invented by Rosensteel and Rowe [14], known
as the symplectic shell model. In this model, the U(3) symmetry of the Elliott model is
embedded in the Sp(6,R) real symplectic group:

Sp(6, R) ⊃ U(3) ⊃ SU(3) ⊃ SO(3).

(Note, that some authors denote the same group by Sp(3,R).) The symplectic group has
several interesting features.

(i) It preserves the equilibrium shape of the nucleus under transformations, such as
rotations, orientations in space and vibrations [15,16].

(ii) It contains the linear canonical transformations of nucleon coordinates and momenta,
that preserve Heisenberg’s commutation relations.
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(iii) Its generators include the total kinetic energy, the monopole and quadrupole moment,
the angular momentum, and the many-particle HO Hamiltonian.

The quadrupole operator is not the algebraic one, as in the Elliott model, but rather
the physical one. Therefore, it connects the major shells with ±2 oscillator quanta, i.e., the
neighboring shells with the same parity. An irreducible representation (irrep) of it spans
the full positive (or negative) parity spectrum of the HO.

Sp(6,R) contains several subgroups, but the actual calculations are carried out within
the symplectic shell model by applying the U(3) subgroup chain, mentioned here. Then a
symplectic representation is built on a U(3) representation [ns

1, ns
2, ns

3], and the raising or
lowering operators also have U(3) tensorial character ([ne

1, ne
2, ne

3]); therefore, the represen-
tation of the U(3) dynamical symmetry (1) are embedded in the product representation of
[ne

1, ne
2, ne

3]⊗ [ns
1, ns

2, ns
3]. Please, note that this is exactly the structure of the set of the basis

of the MUSY (2).
The Sp(6,R) symplectic model is a multi-shell extension of the SU(3) shell model, and

at the same time, it is a microscopic version of the collective model. In its original version,
it is a traditional shell model in the sense that some of the nucleons form a closed core.
Recently it was generalized to a no-core model [17], in which all the nucleon degrees of
freedom are taken into account. Therefore, it represents a real ab initio method, when
realistic nucleon-nucleon forces are applied.

The algebraic no-core approach can use not only the symplectic basis but also the
SU(3) basis when it is called the symmetry-adapted no-core shell model (SA-NCSM) [18,19].
This is also a many major shell (no-core) extension of the Elliott model, of course. When
truncating its model space to the spin–isospin zero (i.e. Wigner-scalar) sector, one arrives
at the semimicroscopic algebraic quartet model (SAQM) [20]. It is usually equipped with
simple, dynamically symmetric interactions, and it is one of the building blocks of MUSY,
as we discuss in further detail below.

The symplectic model has a simplified version, called the contracted symplectic
model [21,22]. From the mathematical viewpoint, the simplification takes place due to the
group deformation mechanism: in the large n(= ns

1 + ns
2 + ns

3) limit, the Sp(6,R) group
approximates the Ue(6) ⊗ Us(3) direct product group. This is a compact group, which has
finite representations, and its basis states are orthogonal (while Sp(6,R) is noncompact, and
the orthogonality is not valid either). The group deformation takes place by substituting the
operators creating or annihilating the 2 (or 0) oscillator quanta of the major shell excitations,
by a simple boson operator. Therefore, Ue(6) has exactly the same realization, as that of
the interacting boson model (IBM); nevertheless, their physical contents are different: in
the contracted symplectic model, the bosons correspond to inter shell excitations, while in
IBM intra shell excitations. The bosonization also involves that the antisymmetrization of
the wave function is only approximate in the contracted model (while it is complete in the
symplectic model). The contracted symplectic model contains the dynamical symmetry
group (2) as a subgroup chain:

Ue(6)⊗Us(3) ⊃ Ue(3)⊗Us(3) ⊃ U(3) ⊃ SU(3) ⊃ SO(3).

As for the clusterization is concerned, the relevant approach for revealing the connec-
tion to other structure models needs to be fully algebraic, and at least (semi)microscopic,
i.e., the model space has to be constructed microscopically. The semimicroscopic algebraic
cluster model [23,24] has these essential features. In this model, the internal structure of
the clusters is described by Elliott’s SU(3) shell model, while the relative motion is treated
in terms of the vibron model [25,26]. Its model space is constructed to be free from the
Pauli-forbidden states [23,24]. For a binary clusterization, its algebraic structure and basis
are characterized by the group chain:

UC1(3)⊗UC2(3)⊗UR(4) ⊃ UC(3)⊗UR(3) ⊃ U(3) ⊃ SU(3) ⊃ SO(3).
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where C1 and C2 stand for individual clusters, C is for their coupled structure, and R
indicates relative motion. Please note the presence of group chain (2).

In the symplectic, contracted symplectic, and cluster models, we were dealing only
with the space degrees of freedom and did not discuss the spin–isospin sector. It can be
described in each case by Wigner’s supermultiplet theory of UST(4) ⊃ US(2)⊗UT(2), just
like in the Elliott model. The antisymmetric requirement of the total wave function puts a
constraint on the relation between the irreducible representation of UST(4) and U(3), which
are taken into account in each major shell separately, and then they are combined [27].

2.2.2. Transformations and Symmetries

The group chain (2) and its representation labels provide us with the possibility of
classifying the basis states of different configurations according to the same symmetries.
This is a major step towards the unified description of different spectra. However, the story
of the multiconfigurational dynamical symmetry is not complete with this recognition.
We also need the transformations, which connect the different configurations, and their
dynamical symmetries to each other.

With respect to the connecting symmetries, one can follow different logical paths.
First, MUSY was realized as a symmetry connecting different (binary) cluster configura-
tions [28], for example, 24Mg+4He and 16O+12C in 28Si. Then the reasoning was based on
the connection of the wave functions and energy eigenvalues: when the wave functions of
the (seemingly) different clusterization are identical due to the antisymmetrization, one
can require that their energies should be the same. For the simple case of the two binary
cluster configurations, the underlying transformations and symmetries were found later in
terms of the Talmi–Moshinsky transformation [29]. The finding that the shell model (or
the quartet model) fits the same scheme of MUSY came later [20,30,31]. Finally in [27] the
general mathematical formalism was given that includes any number of shell and cluster
configurations and guides us in finding the interactions which are invariant with respect to
the transformations between them.

The symmetry that connects the different configurations to each other is based on a
classification scheme, which is different from that of the group chain (2). In particular, so
far we have been following a structure, which is guided by the shell scheme: the symme-
tries (permutational, spin–isospin, and spatial symmetries) of the nucleons were treated
in each major shell separately, and then combined together. The connecting symmetry
follows a different path, called a particle scheme. It is based on the study of Kramer
and Moshinsky [32] of the n-particle system in a harmonic oscillator potential. This sys-
tem has a U(3n) symmetry group, and its subgroups: U(3) in the real space and U(n) in
the particle index space U(3n) ⊃ U(3) ⊗ U(n). The generators of these groups are the
number-conserving bilinear products of the oscillator quantum creation and annihilation
operators. In particular, there are 3n × 3n of them for U(3n), 3 × 3 for U(3), and nxn for
U(n). The generators of the subgroups are obtained from those of U(3n) by contraction, i.e.,
summing up according to the particle indices for U(3), and according to the space indices
for U(n) [27,32]. The transformations from one configuration to the other correspond to
rearrangements in the particle index pseudo space, i.e., elements of the U(n) group. (In the
spin–isospin space, the symmetry group is U(4n), which is contracted in a similar way.)
When we apply interactions (or operators in general), which are expressed in terms of the
contracted generators of U(3), they are invariant with respect to all the transformations
between the different configurations.

3. Application
3.1. Shape Isomers

In the low-energy region of light nuclei, U(3) turns out to be a good approximate
symmetry, as found by Elliott [1,2]. Due to the symmetry-breaking interactions, like spin-
orbit, and pairing, however, it breaks down with increasing energy, and the whole spectrum
can not be characterized by U(3). Surprisingly enough, however, a generalized version of it,
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called quasi-dynamical U(3) symmetry, is a good approximation even in the presence of
large symmetry-breaking interactions, like spin-orbit and pairing [33].

The quasi-dynamical symmetry (QDS) is probably the most general symmetry concept
of quantum mechanics. It is a symmetry of the eigenvalue equation when neither the opera-
tor nor its eigenvectors are symmetric, i.e., the operator is not a scalar, and the eigenvectors
do not transform according to an irreducible representation. Yet symmetry is present and
has important consequences. The mathematical reason for this unexpected symmetry is the
embedded representation. It can be obtained as follows: take the operators, which generate
the U(3) group, and calculate their matrix elements between energy eigenstates. When the
eigenstates are U(3) basis states, we end up with the matrix representation of the group. If
the eigenstates are linear combinations of U(3) basis sates belonging to inequivalent U(3)
representations, then the matrices are different and do not give, in general, a representation.
It may happen, however, that for some special linear combinations, the matrices coincide
with those of a representation either exactly, or approximately. Then one speaks about
(exact or approximate) embedded representation, which indicates (exact or approximate)
quasi-dynamical (or effective) symmetry [34,35]. (An embedded representation involves
only a part of the total Hilbert space.) The appearance of the QDS seems like a spontaneous
building up of symmetry.

The quasi-dynamical generalization allows us to investigate the stability and self-
consistency of the SU(3) symmetry, called the SCS method. Due to Eqs. (4) it means the
investigation of the stability and self-consistency of the quadrupole shape [36]. The effective
SU(3) quantum numbers can be determined from the occupation of the asymptotic Nilsson
orbitals [37], therefore, the following scenario is applied.

(i) Determine the Nilsson-orbitals as a function of the quadrupole deformation parameters.
(ii) Obtain the many-particle state by filling in the Nilsson orbitals according to the energy

minimum and Pauli-exclusion principle.
(iii) Expand the single-particle orbitals in terms of the asymptotic Nilsson-states [38].
(iv) Determine the effective SU(3) quantum numbers from the linear combinations of (iii)

and from the relations of the large deformation.
(v) The effective quantum numbers can be translated to the parameters of the quadrupole

deformation.

The result is a stair-like function, as shown schematically in the lower case of Figure 1.
The horizontal platos correspond to the shape isomers, indicating the stability and the
self-consistency of the SU(3) symmetry (or deformation parameter). For comparison, the
upper case illustrates the (schematic) result of the usual energy-surface calculation.

The shape isomers of the 28Si and 36Ar nuclei obtained from the SCS method are
shown in Figures 2 and 3, respectively, and they are compared with the results of other
models in Table 1. As is seen in the figures, the effective U(3) quantum numbers have some
small uncertainty for the shape isomers. Here we indicated the most typical ones.
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Table 1. Shape isomers of the 28Si and 36Ar nuclei from different model calculations. The results of
the Nilsson energy-surface calculations are from the work [39], the alpha-cluster model calculations
(for one, two, and three-dimensional configurations) are presented in [40–42], while the column “SCS-
method” refers to the shape self-consistency model. The abbreviations are as follows: GS: ground
state, α-ch: alpha chain, Tri: triaxial, Pro: prolate, Obl: oblate. The notations of the alpha-cluster
configurations are: 2D means 2-dimensional configuration; in these cases the parentheses contain
the ratio of (ωy : ωx), h̄ω indicates the number of excitation quanta, (ε,γ) are the parameters of the
quadrupole deformation (γ is given in degrees), and a:b:c stands for the ratio of the major axes of
the ellipsoid.

Nucl. h̄ω
Energy Surface Alpha-Cluster SCS-Method

ωx:ωy:ωz (ε,γ) U(3) Shape U(3) U(3)e f f (ε,γ) a:b:c

28Si

0

[14,13,9] (0.19,49) 1.2:1.2:1

3:3:2 (0.45,0) [20,8,8] Pro (GS) [20,8,8] [19,9,8] (0.44,5) 1.5:1.0:1

2:1:1 (0.49,60) [16,16,4] Obl [16,16,4] [16,15,5] (0.44,55) 1.6:1.5:1

4 Tri [28,8,4] [27,7,5] (0.84,5) 2.2:1.1:1

8

2D (3:2) [24,20,0] [24,20,0] (0.84,51) 2.7:2.4:1

2D (3:2) [28,16,0] [26,11,7] [0.7,12) 1.9:1.2:1

(1.35.60) [32,8,4]

12
2D (3:1) [36,12,0] [35,8,5] (1.0,5) 2.6:1.6:1

(1.0,0) [40,4,4] Pro (4:1) [40,4,4] [40,4,4] (1.3,0) 3:1:1

16 6:3:1 (1.32,35) [44,8,0]

28 [59,3,1] (1.7,2) 4.9:1.1:1

48 α-ch [84,0,0] [84,0,0] (2.1,0) 7:1:1

36Ar

0 3:2:2 (0.29,60) [20,20,12] GS [20,20,12] [20,19,13] (0.2,52) 1.2:1.2:1
[20,18,15] (0.1,37) 1.2:1.1:1

4 [26,22,8] (0.5,48) 1.7:1.5:1

Tri [32,16,8] [30,15,11] (0.5,12) 1.7:1.1:1

8 [30,25,5] (0.6,49) 2.1:1.9:1

(0.74,7) [40,12,8] [39,12,9] (0.8,5) 2.1:1.1:1

12 Tri [48,8,8] [47,9,8] (1.0,1) 2.5:1.0:1

16 2D (4:1) [40,28,0]

(1.45,55) [48,12,8]

20

[40,32,0] (0.9,49) 3.2:2.8:1

2D (2:1) [52,20,0]

(1.33,47) [56,12,4]

24 [63,7,5] (1.4,2) 3.5:1.1:1

28 2D (3:1) [64,16,0]

92 α-ch [144,0,0] [144,0,0] (2.3,0) 9:1:1
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Figure 1. Schematic illustration of the appearance of the SD and HD shapes in the energy-minimum
and in the deformation stability and self-consistency calculation.

Figure 2. Shape isomers of the 28Si nucleus from the SCS method using effective U(3) quantum
numbers. In the upper part, the horizontal axis shows the βin input parameter; the vertical axis
indicates the value of βout. The γ parameter is given in degrees, and steps in 10. The lower part
shows the same result in three dimensions.
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Figure 3. The same as Figure 2, for 36Ar.

3.2. Clusterization and Reaction Channels

Since the shape isomers are characterized by their spatial U(3) and spin–isospin UST(4)
symmetries, their possible binary clusterization can be easily determined by selection rules.
Furthermore, the cluster configurations are related to reaction channels (in fact, they are
defined by the reaction channels); thus, we obtain information on the possible binary
reaction channels, which can populate the shape isomers, or in which they can decay.

For a binary cluster configuration, the U(3) selection rule reads

[n1, n2, n3] = [n(1)
1 , n(1)

2 , n(1)
3 ]⊗ [n(2)

1 , n(2)
2 , n(2)

3 ]⊗ [n(R), 0, 0]

where [n1, n2, n3] is the set of U(3) quantum numbers of the parent nucleus, the superscript
(i) stands for the i’th cluster, and (R) indicates relative motion. Characterizing the nuclei
(clusters) by their U(3) symmetry means that they are supposed to be in their ground
intrinsic states, but collective excitations (belonging to the same irreducible representation)
are incorporated. The clusters have deformation (prolate, oblate, triaxial) like real nuclei,
and their relative orientation is not restricted in any way. The U(3) selection rule, which
deals with the spatial symmetry of the states, is always accompanied by a similar UST(4)
selection rule

[ f1, f2, f3, f4] = [ f (1)1 , f (1)2 , f (1)3 , f (1)4 ]⊗ [ f (2)1 , f (2)2 , f (2)3 , f (2)4 ]

for the spin–isospin degrees of freedom.
When a given cluster configuration is forbidden, we can characterize its forbiddenness

quantitatively in the following way. The distance between the U(3) representations of the
parent nucleus and a cluster configuration is defined as

min(
√
(∆n1)2 + (∆n2)2 + (∆n3)2),

where ∆ni = |ni− nc
i,k|. Here ni refers to the U(3) representation of the parent nucleus, while

nc
i,k stands for the U(3) representation of channel c, obtained from the multiplication, with

the k index distinguishing the different product representations. Based on this quantity we
determine, for reasons of convenience, the reciprocal forbiddenness, S in such a way, that
0 ≤ S ≤ 1:

S =
1

1 + min(
√
(∆n1)2 + (∆n2)2 + (∆n3)2)

.
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Then S ≈ 0, and S ≈ 1 correspond to completely forbidden and completely allowed cluster
configurations, respectively.

The reciproc forbiddenness of different clusterization of the shape isomers of the
28Si and 36Ar nuclei are shown in Figures 4 and 5, respectively. In these figures, we
characterize the shape isomers by the U(3) symmetries, which correspond to the simplest
shell configuration, and coincide also with those of the alpha-cluster calculations (when
they are found).

Figure 4. Reciprocal forbiddenness as a function of the mass number of the lighter cluster for the
shape isomers in 28Si. The lines are just to guide the eye.
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Figure 5. The same as Figure 4, for 36Ar. The indices indicate in which model appears the nuclear
shape corresponding to a given representation. S: SCS-method, E: Energy surface, α: α cluster.

3.3. Spectra

We apply a simple Hamiltonian, expressed in terms of the invariant operators of the
U(3)⊃SU(3)⊃SO(3) algebra chain.

Ĥ = (h̄ω)n̂ + aĈ(2)
SU3 + bĈ(3)

SU3 + d
1
2θ

L̂2, (5)

The first term is the harmonic oscillator Hamiltonian (linear invariant of the U(3)),
with a strength obtained from the systematics [43] h̄ω = 45A−

1
3 − 25A−

2
3 MeV. Its value

is 12.1080 MeV for 28Si and 11.3354 MeV for 36Ar. The last one is the rotational term with
a parameter to fit, (θ is the moment of inertia calculated classically for the rigid shape
determined by the U(3) quantum numbers (for a rotor with axial symmetry) [20].) The
remaining parts were written in terms of the second (Ĉ(2)

SU3) and third order (Ĉ(3)
SU3) invariant

of the SU(3). The former one accounts for the quadrupole–quadrupole interaction, and the
latter one distinguishes between the prolate and oblate shapes. This Hamiltonian turned
out to be successful in describing the low-energy quartet spectra of light nuclei [20,31], and
predicting from them the high-lying cluster spectra [31,44], as it is shown in Figures 6–9,
respectively. The parameters are given in Table 2. More detailed discussions of the results
are given in the concluding section.

The intraband B(E2) value is given by [20]:

B(E2, Ii → I f ) =
2I f + 1
2Ii + 1

α2|〈(λ, µ)KIi, (11)2||(λ, µ)KI f 〉|2C(2)(λ, µ), (6)
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where 〈(λ, µ)KIi, (11)2||(λ, µ)KI f 〉 is the SU(3) ⊃ SO(3) Wigner coefficient [45], and α is
a parameter fitted to the experimental value of the 2+1 → 0+1 transition. The interband
transition rate is zero.

Figure 6. The spectrum of the MUSY in comparison with the experimental data of the 28Si nucleus.
The experimental bands are labeled by the available quantum numbers. The parameters have been
fitted to the low-energy part (lower panel), and the cluster spectrum (upper panel) is obtained as a
pure prediction, due to the unified multiplet structure and identical physical operators.

Figure 7. Comparison of the 24Mg+4He 0+ spectra from the theoretical prediction (of Figure 6) and
the experimental observation. The energy window of the [44] experiment is indicated by the dotted
lines in both panels. In the experimental part the solid lines show the observed resonances of [44],
the dotted Y-shaped lines are the states from the 24Mg+4He measurements which are not resolved
in [44]. The dashed lines correspond to known low-lying 0+ states which were not measured at 0◦

in [44] experiment.
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Figure 8. The spectra of the 0+ states in the 28Si nucleus and in its 24Mg+4He and 16O+12C cluster-
izations, as predicted by the Hamiltonian of MUSY. The states are characterized by the n(λ, µ)Kπ

quantum numbers, where n is the major shell excitation, and (λ, µ) refers to the SU(3) representation,
i.e., the quadrupole deformation.

Figure 9. The spectrum of the MUSY in comparison with the experimental data of the 36Ar nucleus.
The real strength of the gray arrows (of the SD and HD bands) are 20 times of the illustrated ones.

Table 2. The parameters of the Hamiltonian and the E2 transitions obtained from a fitting procedure,
and the h̄ω values from the systematics.

h̄ω a b d α2

28Si 12.10800 −0.13089 0.00043 1.07359 0.366
36Ar 11.33540 −0.11060 0.00047 1.29467 0.466
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3.4. Spontaneous Breaking and Cluster-Shell Duality

The nuclear deformation is a well-known example of spontaneous symmetry break-
ing: a deformed shape is obtained from the structure models of rotationally symmetric
interactions. In other words, the Hamiltonian shows an O(3) symmetry, while the ground
state (and many other states) of the system is deformed. The Elliott model illustrates this
phenomenon in a very transparent way [5], though historically, this kind of studies were
performed earlier in other theoretical frameworks [8–11].

As mentioned beforehand, the Hamiltonian of the Elliott model splits up into an intrin-
sic part (of the fast degrees of freedom) and a collective part (of the slow degrees of freedom).
Both of them are rotationally symmetric, but the ground state of the intrinsic Hamiltonian
is usually deformed, i.e., its SU(3) symmetry is (0,0), only exceptionally (corresponding to a
spherical shape); more frequently, it indicates finite quadrupole deformation.

When a basic state of a definite SU(3) symmetry is present in the shell model space
with a single multiplicity, then it is identical with the cluster configurations of the same
symmetry: only one term is present in their shell-model expansion. In other words,
the antisymmetrization can wash out the seemingly drastic difference between different
configurations. It is known for a long time for some states in the ground region [3,4], and a
similar situation is found for the shape isomers in the large-space calculations. Figures 10
and 11 show some clusterization of the 28Si and 36Ar nuclei, which show 100% overlap
with each other and with the shell configurations.

Figure 10. Shape of some states in 28Si in increasing energy order. In [] parenthesis, the U(3) labels
are indicated, while the first integer shows the major shell excitation quanta.

Figure 11. The same as Figure 10 for 36Ar. Due to the antisymmetrization, the different cluster
configurations are identical to each other as well as with the shell model state.

4. Summary and Conclusions

The multiconfigurational dynamical symmetry is the common intersection of the shell,
collective, and cluster models for the multi-major-shell problem. Its algebraic structure,
characterized by the group chain (2), shows that it is a straightforward extension of the
U(3)-connection (chain (1)) between these fundamental structure models, found in 1958 for
a single shell problem. MUSY is a composite symmetry in the sense that each configuration
has a usual symmetry of chain (2), and in addition, it incorporates another symmetry that
connects the configurations to each other. This connecting symmetry is an invariance with
respect to transformations that act in the pseudo space of particle indices.



Symmetry 2023, 15, 115 16 of 18

Due to its connecting role, MUSY can unify the description of various phenomena in
atomic nuclei, like quadrupole deformation, shell structure, clusterization, and relations to
reaction channels. Here we have shown how the shape isomers of a nucleus can be obtained
from the study of the stability and self-consistency of the connecting U(3) symmetry
(SCS method). Thus, it offers an alternative method to the well-known energy-surface
calculations. It is remarkable that the stable U(3) symmetry is obtained from Nilsson model
calculations with symmetry-breaking interactions; therefore, it is an emergent symmetry.
Based on the U(3) symmetry, a selection rule can be applied for the allowed clusterizations,
which define the possible reaction channels to populate the shape isomers (as well as for
their decay).

For the spectrum calculations, MUSY has been applied so far with a very simple,
dynamically symmetric Hamiltonian. It includes the following terms: a harmonic oscil-
lator, the quadrupole-quadrupole interaction, and a cubic term; the latter distinguishes
between prolate and oblate deformations. Nevertheless, this energy function can account
for the gross features of the energy spectrum of different configurations in a large range of
excitation energy and deformation. Due to the simplicity of the dynamically symmetric
Hamiltonian MUSY can not compete with detailed (and more complicated) model calcu-
lations (e.g., shell model calculation) in the ground-state region. It is able, however, to
describe the gross features of spectra of a great variety, which are usually treated in terms
of different models.

We have shown here the application of MUSY to the 28Si and 36Ar nuclei. In order to
illustrate its performance, we summarize here the conclusions of these applications.

For 28Si, our SCS method gave several shape isomers, up to the linear alpha-chain
configurations [46]. Special attention was focused from the experimental side on the prolate
superdeformed state [47]. By reanalyzing the available data from (α, γ) and (p, γ) reactions,
and extending them with new Gammasphere results from the 12C(20Ne,α)28Si reaction,
a candidate for the superdeformed state was obtained in complete agreement with our
prediction on the moment of inertia, and on the favored reaction channels of 24Mg+α and
12C+16O.

In the calculation of the energy spectrum, we have fitted the 3 parameters of our
Hamiltonian to the low-lying well-established bands of the nucleus, describing them by
the semimicroscopic algebraic quartet model. The high-lying core+α and 12C+16O cluster
spectra (in full detail) could be obtained as a pure prediction without any parameter. Both
of them show very good agreement with the experimental observation [44,46]. This study
also answers a long-standing open question: the spectrum of the fine resolution 12C+16O
resonances is that of the second, i.e., superdeformed valley.

In the case of the 36Ar nucleus, the SD state was experimentally known before our
study. The SCS method reproduced it with reasonable agreement [48], and it gave a
prediction for the hyperdeformed (HD) state as well. The experimental study of the
12C+24Mg and 16O+20Ne reactions [49] revealed a sequence of resonances, which seem
to correspond to the HD state with the predicted moment of inertia. It serves as a good
candidate for the HD state. Multiple gamma-coincidence investigations of these states
would be very interesting to check this conjecture.

The energy spectrum of the 36Ar nucleus could also be described with the simple
dynamically symmetric Hamiltonian in a unified manner, again for the low-lying shell-like
states, the core+α configuration and the exotic clusterization. The deformation extends
up to the HD state. In this case, the high-lying states were also taken into account in the
fitting procedure, although with a very small weight (of 0.01, as compared to the 1.0 of the
low-lying states). The reason, why extrapolation was not possible, like in the case of the
28Si might be related to the fact that the low-lying spectrum is much less known.

In the case of 28Si nucleus, MUSY described the spectra of the first and second (i.e.,
ground and superdeformed) valley in a unified way, while in the case of 36Ar, it also
included the hyperdeformed (third) minimum. It is an interesting question if it could also
account for other, even more, exotic shape isomers.
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