
Citation: Alnefaie, K.; Xin, Q.;

Almutlg, A.; Abo-Tabl, E.-S.A.;

Mateen, M.H. A Novel Framework of

q-Rung Orthopair Fuzzy Sets in Field.

Symmetry 2023, 15, 114. https://

doi.org/10.3390/sym15010114

Academic Editor: Dmitry V. Dolgy

Received: 4 December 2022

Revised: 18 December 2022

Accepted: 26 December 2022

Published: 31 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A Novel Framework of q-Rung Orthopair Fuzzy Sets in Field
Kholood Alnefaie 1 , Qin Xin 2 , Ahmad Almutlg 3 , El-Sayed A. Abo-Tabl 3,4 and M. Haris Mateen 5,*

1 Department of Mathematics, College of Science, Taibah University, Madinah 42353, Saudi Arabia
2 Faculty of Science and Technology, University of the Faroe Islands, FO 100 Torshavn, Faroe Islands, Denmark
3 Department of Mathematics, College of Science and Arts, Methnab, Qassim University,

Buraidah 51931, Saudi Arabia
4 Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt
5 School of Mathematics, Minhaj University, Lahore 54000, Pakistan
* Correspondence: harism.math@gmail.com

Abstract: In this manuscript, we proposed a novel framework of the q-rung orthopair fuzzy subfield
(q-ROFSF) and illustrate that every Pythagorean fuzzy subfield is a q-rung orthopair fuzzy subfield
of a certain field. We extend this theory and discuss its diverse basic algebraic characteristics in
detail. Furthermore, we prove some fundamental results and establish helpful examples related to
them. Moreover, we present the homomorphic images and pre-images of the q-rung orthopair fuzzy
subfield (q-ROFSF) under field homomorphism. We provide a novel ideology of a non-standard
fuzzy subfield in the extension of the q-rung orthopair fuzzy subfield (q-ROFSF).

Keywords: q-rung orthopair fuzzy set; q-rung orthopair fuzzy subfield; q-rung orthopair fuzzy
homomorphism subfield

1. Introduction

The fuzzy subring was introduced by Bhakat [1], and many other mathematicians
have devoted a lot of time to studying fuzzy subsystems of various algebraic structures.
Group theory, ring theory, field theory, modules, vector spaces, lattices, and algebras over
a field are example applications of algebraic structures. In abstract algebra, a field is a
very beneficial part that takes different algebraic structures on them. It is a branch of
modern algebra that has come to the forefront many years ago. A very useful area of
mathematics, called field theory, has been employed extensively in cryptography, coding
theory, combinatorial mathematics, cyber security, and the study of electronics circuits.
McEliece [2] introduced finite fields in computer and engineering studies. He discussed
algebraic coding theory mathematically based on the theory of finite fields. He also treated
coding theory courses in “Volkswagen” using finite fields in detail.

The fuzzy set theory is based on the principle of related rank-based affiliation, which
is based on subjective experience and thinking. In 1965, Zadeh [3] established fuzzy set
and its fundamental algebraic results. The use of fuzzy set theory provides a powerful
framework for addressing ambiguity and uncertainty in practical issues. As a result,
crisp sets frequently lack the appropriate response and feedback for real-world situations
with growing problems. A fuzzy subset E of a classical set W is define as {w, ρE(w) :
w ∈ W}; thus, ρE : W :→ [0, 1] is known as a supporting degree. By widening the
function’s range from {0, 1} to [0, 1], it is undeniable that fuzzy sets are modifications of
the characteristics value of traditional sets. Many scholars in various fields of agricultural
science, mathematics, environmental science, and space science find fuzzy theory to be an
attractive and engaging topic because a variety of fields, including coding theory, journey
time histories, protein structure analysis, and medical diagnostic methods, adopt this
special theory. Rosenfeld [4] 1971 gave the novel concept of a fuzzy subgroup with a
basic fundamental algebraic structure. Liu [5] connected ring theory and fuzzy sets and
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established the notion of a fuzzy subring. Atanassov [6] invented the theory of intuitionistic
fuzzy sets and also provided the basic algebraic characteristics of this phenomenon. This
concept has improved in effectiveness in the scientific community because it focuses
on the degree of participation and non-participation within a unit interval; therefore,
ρE : W :→ [0, 1] represent the belonging degree and ρE : W :→ [0, 1] represent the not
belonging degree. This tenet is obviously a fundamental aspect of traditional fuzzy sets
since it gives people more chances to present inaccurate information in order to address
problems more effectively. The intuitionistic fuzzy theory’s most remarkable feature is
that it has included the haziness and uncertainty of physical challenges and scientific
problems better than the traditional fuzzy set accomplishes, for example in the areas of
psychological analysis, decision-making, and strategies for a number of bio-informatics
and computational biological-based problems. Decision-making involves studying and
ranking a certain number of possibilities to determine how effective decision-makers
are when all needs are continuously considered [7,8]. The notion of intuitionistic fuzzy
subgroups was first suggested by Biswas [9]. In order to examine non-associative rings and
other mathematical properties, numerous mathematicians have developed intuitionistic
fuzzy sets and hybrid power frameworks of fuzzy sets [10,11]. Malik and Mordeson [12]
introduced some fundamental characteristics of fuzzy subfield and provided an example of
how to described a field expansions in terms of fuzzy subfield. Let F be a field; then, a fuzzy
set E = {j, ρE(j), ρE(j)} of (F,+, .) is a fuzzy subfield if ρE(ĵ1 − ĵ2) ≥ {ρE(ĵ1) ∧ ρE(ĵ2)}
and ρE(ĵ1 ĵ2

−1
) ≥ {ρE(ĵ1) ∧ ρE(ĵ2)} {F− 0} for all j ∈ F, where 0 is an additive identity

for all j, j1, j2 ∈ F. Mordeson [13] proposed the idea of fuzzy algebraic field extensions
and established the circumstances under which a field extension has a singular maximum
fuzzy field. All fuzzy intermediate fields with the sup property are used by Volf [14] to
characterize extensions; chained intermediate fields are described and show that any fuzzy
intermediate field of such an extension has the sup property. Tang et al. [15] introduced
the idea of an intuitionistic fuzzy entropy derived symmetric implicational algorithm,
and symmetric implicational principles and applications. Yang et al. [16] used the N-
base encoding method for the representation of particles and designed a particle update
mechanism based on the Hamming distance and a fuzzy learning strategy, which can be
performed in the discrete space.

In 2013, Yager [17,18] created the notion of a Pythagorean fuzzy subset (P̈F̈S̈S̈), where
the squares of belonging and not belonging degrees add up to a range [0,1]. Therefore,
ρ(w) : W → [0, 1], ρ(w) : W → [0, 1], w ∈ W, (ρW(w))2 + (ρW(w))2 ≤ 1. Our under-
standing of problem solving in decision making has significantly benefited from P̈F̈S̈S̈.
Peng and Yang [19] suggested the importance of two operations, division and subtraction,
and discussed each of their features in order to clarify P̈F̈S̈s. After that, the boundness,
idempotency, and homogeneity properties of P̈F̈ analytic functions were examined. Li
and Lu [20] defined the P̈F̈ normalised Hamming distance, and P̈F̈ normalised Haus-
dorff distance by extending the Hamming distance and the Hausdorff distance with P̈F̈S̈s.
Ejegwa [21] adopted P̈F̈S̈s because they have many different applications and are extended
intuitionistic fuzzy sets. It is crucial to consider how inventive such sets are in address-
ing the problem of career placements. He also talked about choosing a good profession
based on academic ability and demonstrated how to do this using the suggested method.
Ejegwa [22] developed the technique of the max–min–max composite relation for P̈F̈S̈s.
The application of the enhanced composite relation for P̈F̈S̈s in medical diagnostics was
examined using a hypothetical medical database. Yager [23] presented the novel notion of
a q-rung orthopair fuzzy set (q− R̈ÖF̈F̈) in 2017. Both the intuitionistic fuzzy set and the
P̈F̈S̈ are generalized versions of these. The entire sum of the qth powers of supporting and
non-supporting is to range [0,1] in the q− R̈ÖF̈S̈. As q increases, a wider variety of valid
orthopairs become available, allowing for a conceptually much more expansive discussion
of the membership score.

By utilising various significant tools, Ali [24] restructured the q− R̈ÖF̈F̈. He also de-
scribed the fundamental algebraic operations under action of widely used in classification
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problems of q− R̈ÖF̈S̈s and presented the orbit-based q− R̈ÖF̈S̈ with the aid of illustrations
and examples. If supporting score ρ(w) and non-supporting score ρ(w) is to bounded by
1, ρ(u): W→ [0, 1], ρ(w) : T→ [0, 1], w ∈W (ρW(w))q + (ρW(w))q ≤ 1. For q− R̈ÖF̈S̈s,
Peng [25] investigated the connection between the measurements of inclusion, likeness, dis-
tance, and entropy. He also demonstrated the validity of the similarity measure, which was
then used for pattern recognition, density estimation, and clinical issues. Wang et al. [26]
developed the ten similarity measures by examining at the roles of belonging degree, not
belonging degree, and indeterminacy belonging degree among the q− R̈ÖF̈S̈s based on
cotangent and the traditional cosine similarity measurements. Additionally, q− R̈ÖF̈S̈s
were employed to handle multi-objective decision. The q− R̈ÖF̈ subgroup was a novel idea
introduced by Asima and Razaq [27], who also developed several significant findings. We
expand on our examination of q− R̈ÖF̈S̈s by creating a new notion for q− R̈ÖF̈ subfield
and by establishing some fresh findings under its influence. The q− R̈ÖF̈S̈ is capable of
solving a wide range of field theory issues. For their next research projects, mathematicians
will find this theory helpful.

In this article, we present the q − R̈ÖF̈ subfield. In Section 2, we illustrate some
fundamental mathematical properties of the q− R̈ÖF̈ subfield. In Section 3, we initiate
the novel concepts of the q− R̈ÖF̈ subfield and discuss its criteria and basics properties.
Also, we show that every Pythagorean fuzzy subfield is a q − R̈ÖF̈ subfield of certain
field. Moreover, we establish some important basic theorems of q − R̈ÖF̈ subfield and
an example is provided to demonstrate the suitability and effectiveness of the initiated
model. In Section 4, we establish the images and pre-images of q− R̈ÖF̈ subfield under
field homomorphism. In Section 5, we bring our proposed ideolody to a strong conclusion.

2. Preliminaries

In this section, the q− R̈ÖF̈ field is defined and some of its basic algebraic features
are discussed.

Definition 1 ([3]). Suppose that T is a classical set; therefore, δ(u) : T→ [0, 1] is known as fuzzy
subset of T and δ represents a supporting degree of u ∈ T such that 0 ≤ δ(u) ≤ 1.

Definition 2 ([12]). Assume that (F,+, .) is a field; then, fuzzy set E = {(d, t, ΦE(d), ΦE(d)); d ∈ F}
of (F,+, .) is known as a fuzzy subfield of F if the given axioms hold:

1. ΦE(d− t) ≥ {ΦE(d) ∧ΦE(t)};
2. ΦE(dt) ≥ {ΦE(d) ∧ΦE(t)}; therefore, 0 is an additive identity;
3. ΦE(d−1) ≥ ΦE(d), for all d ∈ F/{0}.

Definition 3 ([6]). Let V be an intuitionistic fuzzy set on a crisp set T defined as
V = {(i, ΦV(i), ΦV(i)) ; i ∈ T}, where Φ(i) and Φ(i) represent membership and non-membership
values, respectively, for all i ∈ T and satisfy the following condition: 0 ≤ Φ(i) + Φ(i) ≤ 1.

Definition 4 ([13]). Assume that (F,+, .) is a field; then, an intuitionistic fuzzy set E =
{(d, t, ΦE(d), ΦE(d)) ; d ∈ F} of (F,+, .) is known as an intuitionistic fuzzy subfield of F
if the given axioms hold:

1. ΦE(d− t) ≥ {ΦE(d) ∧ΦE(t)};
2. ΦE(dt) ≤ {ΦE(d) ∨ΦE(t)}, for all d ∈ F, where 0 is an additive identity;
3. ΦE(dt) ≥ {ΦE(d) ∧ΦE(t)};
4. ΦE(dt) ≤ {ΦE(d) ∨ΦE(t)};
5. ΦE(d−1) ≥ ΦE(d);
6. ΦE(d−1) ≤ ΦE(d), for all d ∈ F/{0}.

Definition 5 ([17]). A P̈F̈S̈ on crisp set T is define as E = {(i, ΦE(i), ΦE(i)) ; i ∈ T} of (F,+, .),
where ΦE(i) −→ [0, 1] and ΦE(i) −→ [0, 1], represent membership and non-membership values,
respectively, for all i ∈ T and satisfy the following condition: 0 ≤ (Φ(i))2 + (Φ(i))2 ≤ 1 ∀ i ∈ T.
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Example 1. Let K be a q-Rung Orthopair fuzzy set. Assume that φT(y) = 0.75, φT(y) = 0.8 for
Y = {y}. Clearly, 0.8 + 0.75 � 1, but (0.8)3 + (0.4)3 ≤ 1. Hence, A is not an intuitionistic
fuzzy set, but it is 3-rung Orthopair fuzzy subset.

Definition 6 ([27]). Assume that (F,+, .) is a field; then, a P̈F̈S̈ E = {(i, ΦE(i), ΦE(i)) ; i ∈ F}
of (F,+, .) is known as a P̈F̈ subfield of F if the given axioms hold:

1. (ΦE(i1 − i2))2 ≥ {(ΦE(i1))2 ∧ (ΦE(i2))2};
2. (ΦE(i1 − i2))2 ≤ {(ΦE(i1))2 ∨ (ΦE(i2))2}, for all i ∈ F, where 0 is an additive identity;
3. (ΦE(i1i2))2 ≥ {(ΦE(i1))2 ∧ (ΦE(i2))2};
4. (ΦE(i1i2))2 ≤ {(ΦE(i1))2 ∨ (ΦE(i2))2};
5. (ΦE(i−1))2 ≥ (ΦE(i))2;
6. (ΦE(i−1))2 ≤ (ΦE(i))2, for all i ∈ F/{0}.

3. The q-Rung Orthopair Fuzzy Subfield

In this section, we define the q − R̈ÖF̈ subfield, and some fundamental algebraic
attributes of the q− R̈ÖF̈ subfield are examined.

Definition 7. Assume that (F,+, .) is a field; then, a q− R̈ÖF̈S̈ E = {(t, ΦE(t), ΦE(t)) ; t ∈ F}
of (F,+, .) is known as a q− R̈ÖF̈ subfield of F if the given axioms hold:

1. (ΦE(t1 − t2))
q ≥ {(ΦE(t1))

q ∧ (ΦE(t2))
q};

2. (ΦE(t1 − t2))
q ≤ {(ΦE(t1))

q ∨ (ΦE(t2))
q}, for all t ∈ F, where 0 is an additive identity;

3. (ΦE(t1t2))
q ≥ {(ΦE(t1))

q ∧ (ΦE(t2))
q};

4. (ΦE(t1t2))
q ≤ {(ΦE(t1))

q ∨ (ΦE(t2))
q};

5. (ΦE(t−1))q ≥ (ΦE(t))q;
6. (ΦE(t−1))q ≤ (ΦE(t))q, for all t ∈ F/{0}.

Definition 8. Suppose that V is a fuzzy subfield of field (F,+, .) for any i and c 6= 0 in F, iVc is
defined by (i +V)(c) = V(−i + c) for all u in F, and (iV)(c) = (V)(i−1c) ∀c in F is called a
fuzzy (i, c) co-set of F.

Definition 9. Let V be a fuzzy subfield of field (F,+, .) andH = {V(i) = V(0) = V(1); i ∈ F};
then,O(V), order of V, is defined as O(V) = O(H), where 0 is an additive and 1 is a multiplicative
identity element of F.

Theorem 1. Let E = {(h̄, ΦE(ϑ), ΦE(ϑ)), (ΦE(ϑ))
q + (ΦE(ϑ))

q ≤ 1 : ϑ ∈ F} be a q− R̈ÖF̈
subfield of F; then, the following axioms hold:

1. (ΦE(0))q ≥ (ΦE(ϑ))
q and (ΦE(0))q ≤ (ΦE(ϑ))

q for all ϑ ∈ F;
2. (ΦE(ϑ

−1))q ≥ (ΦE(ϑ))
q and (ΦE(ϑ

−1))q ≤ (ΦE(ϑ))
q, for all ϑ ∈ F/{0};

3. (ΦE(1))q ≥ (ΦE(ϑ))
q and (ΦE(1))q ≤ (ΦE(ϑ))

q for all ϑ ∈ F;
4. (ΦE(−ϑ))q = (ΦE(ϑ))

q and (ΦE(ϑ))
q = (ΦE(ϑ))

q for all ϑ ∈ F.
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Proof.

1. Suppose that ϑ ∈ F, then

(ΦE(0))q = (ΦE(ϑ− ϑ))q

≥ {(ΦE(ϑ))
q ∧ (ΦE(−ϑ))q}

= (ΦE(ϑ))
q

(ΦE(0))q ≥ (ΦE(ϑ))
q for all ϑ ∈ F.

By Definition(7), ⇒ (ΦE(ϑ
−1))q ≥ (ΦE(ϑ))

q,

⇒ (ΦE(1))q ≥ (ΦE(ϑ))
q for all ϑ ∈ F/{0},

In similar fashion , (ΦE(0))q = (ΦE(ϑ− ϑ))q

≤ {(ΦE(ϑ))
q ∨ (ΦE(−ϑ))q}

= (ΦE(ϑ))
q

(ΦE(0))q ≤ (ΦE(ϑ))
q for all ϑ ∈ F.

By Definition(7) ⇒ (ΦE(ϑ
−1))q ≤ (ΦE(ϑ))

q,

⇒ (ΦE(1))q ≤ (ΦE(ϑ))
q.

(ΦE(−ϑ))q ≥ ((ΦE(ϑ))
q and (ΦE(−ϑ))q ≤ (ΦE(ϑ))

q for all ϑ ∈ F. Therefore,
(ΦE(−(−ϑ)))q ≥ ((ΦE(−ϑ))q and (ΦE(−(−ϑ)))q ≤ (ΦE(−ϑ))q, which implies
that (ΦE(ϑ))

q ≥ ((ΦE(−ϑ̃))q and (ΦE(ϑ))
q ≤ ((ΦE(−ϑ))q. Thus, (ΦE(−ϑ))q =

((ΦE(ϑ))
q and (ΦE(−ϑ))q = ((ΦE(ϑ))

q for all ϑ ∈ F.

Theorem 2. Let E = {(ϑ, ΦE(ϑ), ΦK(ϑ)), (ΦE(ϑ))
q + (ΦE(ϑ))

q ≤ 1 : ϑ ∈ F} be a q− R̈ÖF̈
subfield of F; then, the following axioms hold:

1. (ΦE(ϑ − c̃))q = (ΦE(0))q gives (ΦE(ϑ))
q = (ΦE(c̃))q and (ΦE(ϑ − c̃))q = (ΦE(0))q

gives (ΦE(ϑ))
q = (ΦE(c̃))q for all ϑ and c ∈ F,

2. (ΦE(ϑc̃−1))q = (ΦE(1))q gives (ΦE(ϑ))
q = (ΦE(c̃))q and (ΦE(ϑc̃−1))q = (ΦE(1))q

gives (ΦE(ϑ))
q = (ΦE(c̃))q for all ϑ and c 6= 0 in F, where 0 and 1 are additive and

multiplicative identity elements, respectively, in F.

Proof. Suppose that ϑ, c̃ ∈ F, and 0, 1 are the additive and multiplicative identity elements,
respectively, in F.

1. Suppose that ϑ, c̃ ∈ F; then,

(ΦE(ϑ))
q = (ΦE(ϑ− c̃ + c̃))q ≥ {(ΦE(ϑ− c̃))q ∧ (ΦE(c̃))q}

= {(ΦE(0))q ∧ (ΦE(c̃))q}
= (ΦE(c̃))q

= (ΦE(ϑ− (ϑ− c̃)))q

≥ {(ΦE(ϑ− c̃))q ∧ (ΦE(ϑ))
q}

= {(ΦE(0))q ∧ (ΦE(ϑ))
q}

= (ΦE(ϑ))
q.
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Therefore, (ΦE(ϑ))
q = (ΦE(c̃))q for all c̃ ∈ F. In the same fashion,

(ΦE(ϑ))
q = (ΦE(ϑ− c̃ + c̃))q ≤ {(ΦE(ϑ− c̃))q ∨ (ΦE(c̃))q}

= {(ΦE(0))q ∨ (ΦE(c̃))q}
= (ΦE(c̃))q

= (ΦE(ϑ− (ϑ− c̃)))q

≤ {(ΦE(ϑ− c̃))q ∨ (ΦE(ϑ))
q}

= {(ΦE(0))q ∨ (ΦE(ϑ))
q}

= (ΦE(ϑ))
q

Therefore, (ΦE(ϑ))
q = (ΦE(c̃))q for all ϑ, c̃ ∈ F.

2. Moreover,

(ΦE(ϑ))
q = (ΦE(ϑc̃−1 c̃))q

≥ {(ΦE(ϑc̃−1))q ∧ (ΦE(c̃))q}
≥ {(ΦE(1))q ∧ (ΦE(c̃))q}
= (ΦE(c̃))q

= (ΦE((ϑc̃−1)−1ϑ))q

≥ {(ΦE(ϑc̃−1))q ∧ (ΦE(ϑ))
q}

≥ {(ΦE(1))q ∧ (ΦE(ϑ))
q}

= (ΦE(ϑ))
q

Therefore, (ΦE(ϑ))
q = (ΦE(c̃))q for all ϑ, c̃ 6= 0 ∈ F. Furthermore,

(ΦE(ϑ))
q = (ΦE(ϑc̃−1 c̃))q

≤ {(ΦE(ϑc̃−1))q ∨ (ΦE(c̃))q}
≤ {(ΦE(1))q ∨ (ΦE(c̃))q}
= (ΦE(c̃))q

(ΦE(c̃))q = (ΦE((ϑc̃−1)−1ϑ))q

≤ {(ΦE(ϑc̃−1))q ∨ (ΦE(ϑ))
q}

≤ {(ΦE(1))q ∨ (ΦE(ϑ))
q}

= (ΦE(ϑ))
q.

Therefore, (ΦE(ϑ))
q = (ΦE(c̃))q for all ϑ, c̃ 6= 0 ∈ F. Hence, this illustrates the proof.

Example 2. Let F = Z be a field, where Z3 = {0, 1, 2, } and L = {< u, Φ(i), Φ(i) > u ∈ Z3}
is not a Pythagoran fuzzy subfield over Z3, defined as

ΦL(b) =

{
0.75 if u ∈ {1, 2}
0.8 if u ∈ {0}

and

Φ̄L(b) =

{
0.8 if u ∈ {1, 2}
0.75 if u ∈ {0}

Clearly, L is a q-rung orthopair fuzzy subfield of Z3 for q ≥ 3 but it is not a pythagorean fuzzy
subfield of Z3 as (0.75)2 + (0.8)2 > 1.

Theorem 3. If E = {(ϑ, ΦE(ϑ), ΦE(ϑ)) : ϑ ∈ F} is a q− R̈ÖF̈ subfield of field (F,+, .) if and
only if



Symmetry 2023, 15, 114 7 of 19

1. (ΦE(ϑ1 − ϑ2))
q ≥ {(ΦE(ϑ1))

q ∧ (ΦE(ϑ2))
q} and (ΦE(ϑ1 − ϑ2))

q ≤ {(ΦE(ϑ1))
q ∨

(ΦE(ϑ2))
q} for all i ∈ F,

2. (ΦE(ϑ1ϑ−1
2 ))q ≥ {(ΦE(ϑ1))

q ∧ (ΦE(ϑ2))
q} and (ΦE(ϑ1ϑ−1

2 ))q ≤ {(ΦE(ϑ1))
q∨

(ΦE(ϑ2))
q} for all ϑ ∈ F/{0}.

Proof. Let E be a q− R̈ÖF̈ subfield of field (F,+, .) and all ϑ ∈ F.

Then, (ΦE(ϑ1 − ϑ2))
q ≥ {(ΦE(ϑ1))

q ∧ (ΦE(−ϑ2))
q}

= {(ΦE(ϑ1))
q ∧ (ΦE(ϑ2))

q}
Therefore, (ΦE(ϑ1 − ϑ2))

q ≥ {(ΦE(ϑ1))
q ∧ (ΦE(ϑ2))

q} ∀ ϑ ∈ F.

Similarly, (ΦE(ϑ1 − ϑ2))
q ≤ {(ΦE(ϑ1))

q ∨ (ΦE(−ϑ2))
q}

= {(ΦE(ϑ1))
q ∨ (ΦE(ϑ2))

q}
So, (ΦE(ϑ1 − ϑ2))

q ≤ {(ΦE(ϑ1))
q ∨ (ΦE(ϑ2))

q} ∀ ϑ ∈ F.

And, (ΦE(ϑ1ϑ−1
2 ))q ≥ {(ΦE(ϑ1))

q ∧ (ΦE(ϑ
−1
2 ))q}

= {(ΦE(ϑ1))
q ∧ (ΦE(ϑ2))

q}
Thus, (ΦE(ϑ1ϑ−1

2 ))q ≥ {(ΦE(ϑ1))
q ∧ (ΦE(ϑ2))

q} ∀ ϑ ∈ F/{0}.
In the same way, (ΦE(ϑ1ϑ−1

2 ))q ≤ {(ΦE(ϑ1))
q ∨ (ΦE(ϑ

−1
2 ))q}

= {(ΦE(ϑ1))
q ∨ (ΦE(ϑ2))

q}
We obtain, (ΦE(ϑ1ϑ−1

2 ))q ≤ {(ΦE(ϑ1))
q ∨ (ΦE(ϑ2))

q} ∀ ϑ ∈ F/{0}.

Conversely, if (ΦE(ϑ1 − ϑ2))
q ≥ {(ΦE(ϑ1))

q ∧ (ΦE(ϑ2))
q}, (ΦE(ϑ1 − ϑ2))

q ≤ {(ΦE(ϑ1))
q ∨

(ΦE(ϑ2))
q} ∀ ϑ ∈ F, (ΦE(ϑ1ϑ−1

2 ))q ≥ {(ΦE(ϑ1))
q ∧ (ΦE(ϑ2))

q} and (ΦE(ϑ1ϑ−1
2 ))q ≤

{(ΦE(ϑ1))
q ∨ (ΦE(ϑ2))

q} ∀ ϑ ∈ F/{0}. Replace ϑ1 by ϑ2; then, we obtain (ΦE(ϑ1))
q ≤

(ΦE(0))q and (ΦE(ϑ1))
q ≤ (ΦE(1))q for all ϑ ∈ F. Then,

(ΦE(−ϑ1))
q = (ΦE(0− ϑ1))

q

(ΦE(−ϑ1))
q ≥ {(ΦE(0))q ∧ (ΦE(ϑ1))

q}
= (ΦE(ϑ1))

q

Therefore, (ΦE(−ϑ1))
q ≥ (ΦE(ϑ1))

q for all ϑ ∈ F.

Also, (ΦE(−ϑ1))
q = (ΦE(0− ϑ1))

q

(ΦE(ϑ1))
q ≤ {(ΦE(0))q ∨ (ΦE(ϑ1))

q}
= (ΦE(ϑ1))

q

Therefore, (ΦE(ϑ1))
q ≤ (ΦE(ϑ1))

q for all ϑ ∈ F.

Furthermore, (ΦE(ϑ
−1
1 ))q = (ΦE(ϑ

−1
1 1))q

(ΦE(ϑ
−1
1 ))q ≥ {(ΦE(ϑ1))

q ∧ (ΦE(1))q}
= (ΦE(ϑ1))

q.

Consequently, (ΦE(ϑ
−1
1 ))q ≥ (ΦE(ϑ1))

q for all for all ϑ ∈ F/{0}.
Also, (ΦE(ϑ

−1
1 ))q = (ΦE(ϑ

−1
1 1))q

(ΦEi−1
1 ))q ≤ {(ΦE(ϑ1))

q ∨ (ΦE(1))q}
= (ΦE(ϑ1))

q.

So, (ΦE(ϑ
−1
1 ))q ≤ (ΦE(ϑ1))

q ϑ ∈ F/{0}.
Now, (ΦE(ϑ1 + ϑ2))

q = {(ΦE(ϑ1 − (−ϑ2))
q

≥ {(ΦE(ϑ1))
q ∧ (ΦE(−ϑ2))

q}
= {(ΦE(ϑ1))

q ∧ (ΦE(ϑ2))
q}.
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Therefore, (ΦE(ϑ1 + ϑ2))
q ≤ {(ΦE(ϑ1))

q ∨ (ΦE(ϑ2))
q} for all ϑ ∈ F.

And, (ΦE(ϑ1 + ϑ2))
q = {(ΦE(ϑ1 − (−ϑ2))

q

≤ {(ΦE(ϑ1))
q ∨ (ΦE(−ϑ2))

q}
= {(ΦE(ϑ1))

q ∨ (ΦE(ϑ2))
q}

Then, consequently, (ΦE(ϑ1 + ϑ2))
q ≤ {(vΦE(ϑ1))

q ∨ (ΦE(ϑ2))
q} for all ϑ ∈ F.

Additionally, (ΦE(ϑ1ϑ2))
q = (ΦE(ϑ1(ϑ

−1
2 ))−1)q

≥ {(ΦE(ϑ1))
q ∧ (ΦE(ϑ

−1
2 ))q}

= {(ΦE(ϑ1))
q ∧ (ΦE(ϑ2))

q}.
Thus, (ΦE(ϑ1ϑ2))

q ≥ {(ΦE(ϑ1))
q ∧ (ΦE(ϑ2))

q} for all ϑ ∈ F/{0}.
In the same way, (ΦE(ϑ1ϑ2))

q = (ΦE(ϑ1(ϑ
−1
2 ))−1)q

(ΦE(ϑ1ϑ2))
q ≤ {(ΦE(ϑ1))

q ∨ (ΦE(ϑ
−1
2 ))q}

= {(ΦE(ϑ1))
q ∨ (ΦE(ϑ2))

q}.
We obtain (ΦE(ϑ1ϑ−1

2 ))q ≤ {(ΦE(ϑ1))
q ∨ (ΦE(ϑ2))

q} for all ϑ ∈ F/{0}.

Hence, E is a fuzzy subfield of field F.

Theorem 4. Suppose that F is a field andM = {(ϑ, ΦM(ϑ), ΦM(ϑ)), (ΦM(ϑ))2 + (ΦM(ϑ))2 ≤
1 : ϑ ∈ F} is a P̈F̈ subfield of F; then,M is a q− R̈ÖF̈ subfield of F.

Proof. Assume that ϑ1, ϑ2 ∈ F; then,

(ΦM(ϑ1 − ϑ2))
2 ≥ {(ΦM(ϑ1))

2 ∧ (ΦM(ϑ2))
2}

(ΦM(ϑ1 − ϑ2))
2 ≤ {(ΦM(ϑ1))

2 ∨ (ΦM(ϑ2))
2}

(ΦM(ϑ1ϑ2))
2 ≥ {(ΦM(ϑ1))

2 ∧ (ΦM(ϑ2))
2}

(ΦM(ϑ1ϑ2))
2 ≤ {(ΦM(ϑ1))

2 ∨ (ΦM(ϑ2))
2}

(ΦM(ϑ−1))2 ≥ (ΦM(ϑ))2

and (ΦM(ϑ−1))2 ≤ (ΦM(ϑ))2 f or all ϑ ∈ F.

Furthermore,

(ΦM(ϑ1 − ϑ2))
q ≥ {(ΦM(ϑ1))

q ∧ (ΦM(ϑ2))
q}

(ΦM(ϑ1 − ϑ2))
q ≤ {(ΦM(ϑ1))

q ∨ (ΦM(ϑ2))
q} ∀ ϑ ∈ F

(ΦM(ϑ1ϑ2))
q ≥ {(ΦM(ϑ1))

q ∧ (ΦM(ϑ2))
q}

(ΦM(ϑ1ϑ2))
q ≤ {(ΦM(ϑ1))

q ∨ (ΦM(ϑ2))
q}

(ΦM(ϑ−1))q ≥ (ΦM(ϑ))q

and (ΦM(ϑ−1))q ≤ (ΦM(ϑ))q for all ϑ ∈ F/{0}.

Thus, (ΦM(ϑ1))
2, (ΦM(ϑ2))

2, (ΦM(ϑ))2, (ΦM(ϑ−1))2, (ΦM(ϑ1))
2, (ΦM(ϑ2))

2, (ΦM(ϑ))2

and (ΦM(ϑ−1))2 ∈ [0, 1]. Therefore, for all q > 1, using (ΦM(ϑ1))
q ≤ (ΦM(ϑ1))

2,
(ΦM(ϑ2))

q ≤ (ΦM(ϑ2))
2, (ΦM(ϑ))q ≤ (ΦM(ϑ))2, (ΦM(ϑ1))

q ≥ (ΦM(ϑ1))
2, (ΦM(ϑ2))

q ≥
(ΦM(ϑ2))

2, (ΦM(ϑ−1))q ≤ (ΦM(ϑ))q, (ΦE(ϑ
−1))q ≤ (ΦM(ϑ))q and (ΦM(ϑ))q ≥ (ΦM(ϑ))2.

So,

{(ΦM(ϑ1))
q + (ΦM(ϑ1))

q ≤ 1} (1)

{(ΦM(ϑ2))
q + (ΦM(ϑ2))

q ≤ 1} (2)

{(ΦM(ϑ))q + (ΦM(ϑ))q ≤ 1} (3)

{(ΦM(ϑ−1))q + (ΦM(ϑ−1))q ≤ 1}. (4)



Symmetry 2023, 15, 114 9 of 19

These above expressions show that M is a q− R̈ÖF̈ subfield of F.

Theorem 5. q− R̈ÖF̈S̈S̈ T = {($, ΦT($), ΦT($)) : c ∈ F} of F is a q− R̈ÖF̈ subfield of F if and
only if (ΦT(c− $))q ≥ {(ΦT(c))

q ∧ (ΦT($))
q} and (ΦT(c− $))q ≤ {(ΦT(c))

q ∨ (ΦT($))
q}

for all c, $ ∈ F.

Proof. Let T = {($, ΦT($), ΦT($)) : $ ∈ F, (ΦT($))
q + (ΦT($))

q ≤ 1} be a q− R̈ÖF̈ sub-
field of F. Then for all c, $ ∈ F, (ΦT(c − $))q ≥ {(ΦT(c))

q ∧ (ΦT(−$))q}
= {(ΦT(c))

q ∧ (ΦT($))
q} and (ΦT(c − $))q ≤ {(ΦT(c))

q ∨ (ΦT(−$))q} = {(ΦT(c))
q ∨

(ΦT($))
q}. Conversely, assume that (ΦT(c− $))q ≥ {(ΦT(c))

q ∧ (ΦT($))
q} and (ΦT(c−

$))q ≤ {(ΦT(c))
q ∨ (ΦT($))

q} for all c, $ ∈ F. Then, (ΦT(c− $))q = (ΦT(c− (−(−$))))q ≥
{(ΦT(c))

q ∧ (ΦT(−$))q} = {(ΦT(c))
q ∧ (ΦT($))

q}. Therefore, (ΦT(c − $))q ≥
{(ΦT(c))

q ∧ (ΦT($))
q}. Similarly, (ΦT(c− $))q = (ΦT(c− (−(−$))))q ≤ {(ΦT(c))

q ∨
(ΦT(−$))q} = {(ΦT(c))

q ∨ (ΦT($))
q}. Therefore, (ΦT(c− $))q ≤ {(ΦT(c))

q ∨ (ΦT($))
q}.

Next, (ΦT(−$))q = (ΦT(0− $))q ≥ {(ΦT(0))q ∧ (ΦT($))
q} = (ΦT($))

q, which means
that ΦT(−$))q ≥ (ΦT($))

q. In similar fashion, we have (ΦT(−$))q = (ΦT(0− $))q ≤
{(ΦT(0))q ∨ (ΦT($))

q} = (ΦT($))
q. Then, obviously, (ΦT(i−1))q ≥ (ΦT($))

q and
(ΦT(i−1))q ≤ (ΦT($))

q also hold. This implies that (ΦT(−$))q ≤ (ΦT($))
q. Therefore, the

expressions above demonstrate that E is a q− R̈ÖF̈ subfield of F.

Theorem 6. Let Ḃ1 = {(o, ΦḂ1(o), ΦḂ1(o)) : o ∈ F} and Ḃ2 = {(o, ΦḂ2(o), ΦḂ2(o)) : o ∈ F}
be two q− R̈ÖF̈ subfields of F. Then, Ḃ1 ∩ Ḃ2 is a q− R̈ÖF̈ subfield of F.

Proof. Let Ḃ1 and Ḃ2 be two q− R̈ÖF̈ subfields of F. Then for all o ∈ F, we have

(Φ(Ḃ1∩Ḃ2)(o1 − o2))
q = {(ΦḂ1(o1 − o2))

q ∧ (ΦḂ2(o1 − o2))
q}

≥ {(ΦḂ1(o1))
q ∧ (ΦḂ1(o2))

q} ∧ {(ΦḂ2(o1))
q ∧ (ΦḂ2(o2))

q}
= ((ΦḂ1(o1))

q ∧ (ΦḂ2(o1))
q) ∧ ((ΦḂ1(o2))

q ∧ (ΦḂ2(o2))
q)

= {(Φ(Ḃ1∩Ḃ2)(o1))
q ∧ (Φ(Ḃ1∩Ḃ2)(o2))

q}
(Φ(Ḃ1∩Ḃ2)(o1 − o2))

q ≥ (Φ(Ḃ1∩Ḃ2)(o1))
q ∧ (Φ(Ḃ1∩Ḃ2)(o2))

q.

Moreover,

(Φ(Ḃ1∩Ḃ2)(o1 − o2))
q = {(ΦḂ1(o1 − o2))

q ∨ (ΦḂ2(o1 − o2))
q}

≤ {{(ΦḂ1(o1))
q ∨ (ΦḂ1(o2))

q} ∨ {(ΦḂ2(o1))
q ∨ (ΦḂ2(o2))

q}}
= {((ΦḂ1(o1))

q ∨ (ΦḂ2(o1))
q) ∨ ((ΦḂ1(o2))

q ∨ (ΦḂ2(o2))
q)}

= {(Φ(Ḃ1∩Ḃ2)(o1))
q ∨ (Φ(Ḃ1∩Ḃ2)(o2))

q}

(Φ(Ḃ1∩Ḃ2)(o1 − o2))
q ≤ {(Φ(Ḃ1∩Ḃ2)(o1))

q ∨ (Φ(Ḃ1∩Ḃ2)(o2))
q} f or all o ∈ F.

Then,

(Φ(Ḃ1∩Ḃ2)(o1o2))
q = {(ΦḂ1(o1o2))

q ∧ (ΦḂ2(o1o2))
q}

≥ {(ΦḂ1(o1))
q ∧ (ΦḂ1(o2))

q} ∧ {(ΦḂ2(o1))
q ∧ (ΦḂ2(o2))

q}
= ((ΦḂ1(o1))

q ∧ (ΦḂ2(o1))
q) ∧ ((ΦḂ1(o2))

q ∧ (ΦḂ2(o2))
q)

= {(Φ(Ḃ1∩Ḃ2)(o1))
q ∧ (Φ(Ḃ1∩Ḃ2)(o2))

q}
(Φ(Ḃ1∩Ḃ2)(o1o2))

q ≥ (Φ(Ḃ1∩Ḃ2)(o1))
q ∧ (Φ(Ḃ1∩Ḃ2)(o2))

q f or all o ∈ F/{0}.
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Similarly, we have

(Φ(Ḃ1∩Ḃ2)(o1o2))
q = {(ΦḂ1(o1o2))

q ∨ (ΦḂ2(o1o2))
q}

≤ {{(ΦḂ1(o1))
q ∨ (ΦḂ1(o2))

q} ∨ {(ΦḂ2(o1))
q ∨ (ΦḂ2(o2))

q}}
= {((ΦḂ1(o1))

q ∨ (ΦḂ2(o1))
q) ∨ ((ΦḂ1(o2))

q ∨ (ΦḂ2(o2))
q)}

= {(Φ(Ḃ1∩Ḃ2)(o1))
q ∨ (Φ(Ḃ1∩Ḃ2)(o2))

q}

(Φ(Ḃ1∩Ḃ2)(o1 − o2))
q ≤ {(Φ(Ḃ1∩Ḃ2)(o1))

q ∨ (Φ(Ḃ1∩Ḃ2)(o2))
q}, f or all o ∈ F.

Now, we conclude that

(Φ(Ḃ1∩Ḃ2)(o
−1))q = (Φ(Ḃ1∩Ḃ2)(o

−11))q = {(ΦḂ1(o
−11))q ∧ (ΦḂ2(o

−11))q}

≥ {(ΦḂ1(o
−1))q ∧ (ΦḂ1(1))

q} ∧ {(ΦḂ2(o
−1))q ∧ (ΦḂ2(1))

q}
≥ {(ΦḂ1(o))

q ∧ (ΦḂ1(1))
q} ∧ {(ΦḂ2(o))

q ∧ (ΦḂ2(1))
q}

= {(ΦḂ1(o))
q ∧ (ΦḂ2(o))

q} ∧ {(ΦḂ1(1))
q ∧ (ΦḂ2(1))

q}
= {(Φ(Ḃ1∩Ḃ2)(o

−1))q ∧ (Φ(Ḃ1∩Ḃ2)(1))
q}, f or all o ∈ F/{0}.

(Φ(Ḃ1∩Ḃ2)(o
−1))q ≥ {(Φ(Ḃ1∩Ḃ2)(o))

q ∧ (Φ(Ḃ1∩Ḃ2)(1))
q} = (Φ(Ḃ1∩Ḃ2)(o))

q.

and (Φ(Ḃ1∩Ḃ2)(o
−1))q = (Φ(Ḃ1∩Ḃ2)(o

−11))q = {(ΦḂ1(o
−11))q ∧ (ΦḂ2(o

−11))q}

≥ {(ΦḂ1(o
−1))q ∧ (ΦḂ1(1))

q} ∧ {(ΦḂ2(o
−1))q ∧ (ΦḂ2(1))

q}
≥ {(ΦḂ1(o))

q ∧ (ΦḂ1(1))
q} ∧ {(ΦḂ2(o))

q ∧ (ΦḂ2(1))
q}

= {(ΦḂ1(o))
q ∧ (ΦḂ2(o))

q} ∧ {(ΦḂ1(1))
q ∧ (ΦḂ2(1))

q}
= {(Φ(Ḃ1∩Ḃ2)(o

−1))q ∧ (Φ(Ḃ1∩Ḃ2)(1))
q}

(Φ(Ḃ1∩Ḃ2)(o
−1))q ≥ {(Φ(Ḃ1∩Ḃ2)(o))

q ∧ (Φ(Ḃ1∩Ḃ2)(1))
q} = (Φ(Ḃ1∩Ḃ2)(o))

q,

for all o ∈ F/{0}. Hence, this conclude the proof that Ḃ1 ∩ Ḃ2 is a q− R̈ÖF̈ subfield of F.

Theorem 7. Let Ḃ = {$, ΦḂ($), ΦḂ($)} be a q − R̈ÖF̈ subfield of F. Then, (ΦE($
m))q ≥

(ΦḂ($))
q and (ΦḂ($

m))q ≤ (ΦḂ($)
q) for all $ ∈ F and m ∈ N.

Proof. We employ the mathematical induction technique to demonstrate this theorem.
Let u ∈ F; then, (ΦḂ($− ϑ)($− ϑ))q = (ΦḂ($− ϑ)($− ϑ))q ≥ {(ΦḂ($− ϑ))q ∧ (ΦḂ($−
ϑ))q} = (ΦḂ($− ϑ))q. As a result, the inequality is true for m = 2. Assume that the inequal-
ity holds for m = n− 1; we have (ΦḂ($− ϑ)n−1)q ≥ (ΦḂ($− ϑ))q. Then, (ΦḂ($− ϑ)n)q =
(ΦḂ($ − ϑ)n−1($ − ϑ))q ≥ {(ΦḂ($ − ϑ))q ∧ (ΦḂ($ − ϑ)n−1)q} = (ΦḂ($ − ϑ))q. From
mathematical induction, we have (ΦḂ($ − ϑ)m)q ≥ {(ΦḂ($ − ϑ))q} for all m ∈ N. In a
similar fashion, (ΦḂ($− ϑ)2)q = (ΦḂ($− ϑ)($− ϑ))q ≤ {(ΦḂ($− ϑ))q ∨ (ΦḂ($− ϑ))q} =
(ΦḂ($− ϑ))q. The result holds for m = 2; so, we suggest that it holds true for m = n− 1
such that (ΦḂ($

n−1))q ≤ (ΦḂ($))
q. Then, (ΦḂ($

n))q = (ΦḂ($
n−1i))q ≤ {(ΦḂ($))

q ∨
(ΦḂ($

n−1))q} = (ΦḂ($))
q. Now, we conclude this result (ΦḂ($

m))q ≤ (ΦḂ($))
q for

all m ∈ N. Moreover, (ΦḂ($
n−1))q ≥ (ΦḂ($))

q. Then, (ΦḂ($
n))q = (ΦḂ($

n−1$))q ≥
{(ΦḂ($))

q ∧ (ΦḂ($
n−1))q} = (ΦḂ($))

q. Now, we have (ΦḂ($
m))q ≥ {(ΦḂ($))

q} for all
m ∈ N. Similarly, we obtain (ΦḂ($

2))q = (ΦḂ($$))q ≤ {(ΦḂ($))
q ∨ (ΦḂ($))

q} = (ΦḂ($))
q.

In the same fashion, we obtain the following result: (ΦḂ($
n−1))q ≤ (ΦḂ($))

q. Then,
(ΦḂ($

n))q = (ΦḂ($
n−1$))q ≤ {(ΦḂ($))

q ∨ (ΦḂ($
n−1))q} = (ΦḂ($))

q. By using mathemat-
ical induction, we have (ΦḂ($

m))q ≤ (ΦḂ($))
q for all m ∈ N.

Theorem 8. Let Ḃ = {(r, ΦḂ(r), ΦḂ(r)) : r ∈ F} be a q − R̈ÖF̈ subfield of F. If ΦḂ(r1) 6=
ΦḂ(r2) and ΦḂ(r1) 6= ΦḂ(r2) for some i1, r2 ∈ F, then (ΦḂ(r1− r2))

q = (ΦḂ(r1))
q ∧ (ΦḂ(r2))

q

and (ΦḂ(r1 − r2))
q = (ΦḂ(r1))

q ∨ (ΦḂ(r2))
q.
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Proof. To obtain the desired result, we take arbitrary entities r1, r2 ∈ F as ΦḂ(r1) > ΦḂ(r2);
then, obviously, (ΦḂ(r1))

q > (ΦḂ(r2))
q. Consider

(ΦḂ(r2))
q = ΦḂ(r1 − r1 + r2)

q

≥ {(ΦḂ(−r1))
q ∧ (ΦḂ(r1 + r2))

q}
= {(ΦḂ(r1))

q ∧ (ΦḂ(r1 + r2))
q}. (5)

Since (ΦḂ(r1))
q > (ΦḂ(r2))

q, we conclude from Equation (5) that

(ΦḂ(r2))
q ≥ (ΦḂ(r1 + r2))

q (6)

also, (ΦḂ(r1 − r2))
q ≥ {(ΦḂ(r1))

q ∧ (ΦḂ(r2))
q} (7)

= (ΦḂ(r2))
q

thus, (ΦḂ(r1 + r2))
q ≥ (ΦḂ(r2))

q (8)

by Equations (6) and (8), we obtain

(ΦḂ(r1 − r2))
q = (ΦK(r2))

q = {(ΦḂ(r1))
q ∧ (ΦḂ(r2))

q}. (9)

Moreover, we obtain the results if ΦḂ(r1) > ΦḂ(r2).

Suppose, (ΦḂ(r2))
q = ΦḂ(r1 − r1 + r2)

q

≤ {(ΦḂ(−r1))
q ∨ (ΦḂ(r1 + r2))

q}
= {(ΦḂ(r1))

q ∨ (ΦḂ(r1 + r2))
q}. (10)

Since (ΦḂ(r1))
q > (ΦḂ(r2))

q, from Equation (10), we have

(ΦḂ(r2))
q ≤ (ΦḂ(r1 + r2))

q (11)

also, (ΦḂ(r1 − r2))
q ≤ {(ΦḂ(r1))

q ∨ (ΦḂ(r2))
q} = (ΦḂ(r2))

q that is

(ΦḂ(r1 + r2))
q ≤ (ΦḂ(r2))

q (12)

by Equations (11) and (12) we obtain

(ΦḂ(r1 − r2))
q = (ΦḂ(r2))

q = {(ΦḂ(r1))
q ∨ (ΦḂ(r2))

q}.

Theorem 9. Let B = {($, ΦḂ($), ΦK($)) : $ ∈ F} be a q − R̈ÖF̈ subfield of field (F,+, .).
Then,

1. (ΦḂ($− r))q = (ΦḂ(0))
q, and then, (ΦḂ($))

q = (ΦḂ(r))
q for all $, r ∈ F.

2. If (ΦḂ($r
−1))q = (ΦḂ(1))

q, then (ΦḂ($))
q = (ΦḂ(r))

q f or all $, r ∈ F/{0}.
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Proof. Let $ and r be in F.

1. Suppose that $, r ∈ F; then,

(ΦḂ($))
q = (ΦḂ($− r+ r))q ≥ {(ΦḂ($− r))q ∧ (ΦḂ(r))

q}
= {(ΦḂ(0))

q ∧ (ΦḂ(r))
q}

= (ΦḂ(r))
q

= (ΦḂ(−r))
q

= (ΦḂ($− $− r))q

≥ {(ΦḂ($− r))q ∧ (ΦḂ(−$))q}
= {(ΦḂ(0))

q ∧ (ΦḂ(−$))q}
= (ΦḂ(−$))q

= (ΦḂ($))
q

Therefore, (ΦḂ($))
q = (ΦḂ(r))

q for all $, r ∈ F.
In the same fashion,

(ΦḂ($))
q = (ΦḂ($− r+ r))q ≤ {(ΦḂ($− r))q ∨ (ΦḂ(r))

q}
= {(ΦḂ(0))

q ∨ (ΦḂ(r))
q}

= (ΦḂ(r))
q

= (ΦḂ(−r))
q

= (ΦḂ($− i− r))q

≤ {(ΦḂ($− r))q ∨ (ΦḂ(−$))q}
= {(ΦḂ(0))

q ∨ (ΦḂ(−$))q}
= (ΦḂ($))

q

Therefore, (ΦḂ($))
q = (ΦḂ(r))

q for all $, r ∈ F.
2. Moreover,

(ΦḂ($))
q = (ΦḂ($r

−1r))q

≥ {(ΦḂ($r
−1))q ∧ (ΦḂ(r))

q}
≥ {(ΦḂ(1))

q ∧ (ΦḂ(r))
q}

= (ΦḂ(r))
q

= (ΦḂ(r
−1))q

= (ΦḂ($r
−1i−1))q

≥ {(ΦḂ($r
−1))q ∧ (ΦḂ($

−1))q}
≥ {(ΦḂ(1))

q ∧ (ΦḂ($
−1))q}

= (ΦḂ($))
q

Therefore, (ΦḂ($))
q = (ΦḂ(r))

q for all $, r 6= 0 ∈ F.
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In similarly way,

(ΦḂ($))
q = (ΦḂ($r

−1r))q

≤ {(ΦḂ($v−1))q ∨ (ΦḂ(r))
q}

≤ {(ΦḂ(1))
q ∨ (ΦḂ(r))

q}
= (ΦḂ(r))

q

= (ΦḂ(r
−1))q

= (ΦḂ($r
−1i−1))q

≤ {(ΦḂ($r
−1))q ∨ (ΦḂ($

−1))q}
≤ {(ΦḂ(1))

q ∨ (ΦḂ($
−1))q}

= (ΦḂ($))
q

Therefore, (ΦḂ($))
q = (ΦḂ(r))

q for all $, r 6= 0 ∈ F. Hence, this illustrates the proof.

Theorem 10. Let 0 and e represent the identity element of F with respect to addition and multipli-
cation, respectively, and E = {i, ΦE(i), ΦE(i)} be a q− R̈ÖF̈ subfield of F. Therefore,

1. If (ΦE(i1))q = (ΦE(0))q for some i1 ∈ F, then (ΦE(i1− i2))q = (ΦE(i2))q for all i2 ∈ F;
2. If (ΦE(i1))q = (ΦE(0))q for some i1 ∈ F, then (ΦE(i1 − i2))q = (ΦE(i2))q for all i2 ∈ F;
3. If (ΦE(i1))q = (ΦE(1))q for some i1 ∈ F, then (ΦE(i1i2))q = (ΦE(1))q, for all i2 ∈ F;
4. If (ΦE(i1))q = (ΦE(1))q for some i1 ∈ F, then (ΦE(i1i2))q = (ΦE(1))q for all i2 ∈ F.

Proof. Assume thatE = {i, ΦE(i), ΦE(i)} is a q− R̈ÖF̈ subfield ofF. We have (ΦE(i1))q =
(ΦE(0))q.

(ΦE(i2))q = ΦE(i1 − i1 + i2)q

≥ {(ΦE(−i1))q ∧ (ΦE(i1 + i2))q}
= {(ΦE(−i1))q ∧ (ΦE(i1 + i2))q}

= {(ΦE(0))q ∧ (ΦE(i1 + i2))q}. (13)

As (ΦE(0))q ≥ (ΦE(i2))q from Inequality (13), we obtain

(ΦE(i2))q ≥ ΦE(i1 − i2)q. (14)

Thus, (ΦE(i1 − i2))q ≥ {(ΦE(i1))q ∧ (ΦE(i2))q} = (ΦK(i2))q. We have

(ΦE(i1 − i2))q ≥ (ΦE(i2))q. (15)

From Equations (14)and (15), we obtain (ΦE(i1 − i2))q = (ΦE(i2))q. Now, (ΦE(i1))q =
(ΦE(0))q.

(ΦE(i2))q = ΦE(i1 − i1 + i2)q

≤ {(ΦE(−i1))q ∨ (ΦE(i1 + i2))q}
= {(ΦE(−i1))q ∨ (ΦE(i1 + i2))q}

= {(ΦE(0))q ∨ (ΦE(i1 + i2))q}. (16)

Because (ΦE(0))q ≤ (ΦE(i2))q form the Inequality (16), we have

(ΦE(i2))q ≤ ΦE(i1 − i2)q. (17)

Thus, (ΦE(i1 − i2))q ≤ {(ΦE(i1))q ∨ (ΦE(i2))q} = (ΦK(i2))q; then, we have

(ΦE(i1 − i2))q ≤ (ΦE(i2))q. (18)
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From Equations (17) and (18), we have (ΦE(i1 − i2))q = (ΦE(i2))q.

(ΦE(i2))q = ΦE(i−1
1 i1i2)q

≥ {(ΦE(i−1
1 ))q ∧ (ΦE(i1i2))q}

= {(ΦE(i1))q ∧ (ΦE(i1i2))q}
= {(ΦE(1))q ∧ (ΦE(i1i2))q}. (19)

As (ΦE(1))q ≥ (ΦE(i2))q from the Inequality (19), we conclude that

(ΦE(i2))q ≥ ΦE(i1i2)q. (20)

Thus, (ΦE(i1i2))q ≥ {(ΦE(i1))q ∧ (ΦE(i2))q} = (ΦK(i2))q. We have

(ΦE(i1i2))q ≥ (ΦE(i2))q. (21)

From Equations (20) and (21), we obtain (ΦE(i1i2))q = (ΦE(i2))q.

Theorem 11. Suppose that 0 and 1 represent additive and multiplicative identity elements of
F, respectively, and E = {i, ΦE(i), ΦĖ(i)} is a q − R̈ÖF̈ subfield of F. Then, Q = {i ∈ F :
(ΦĖ(i))

q = (ΦĖ(0))
q and (ΦĖ(i))

q = (ΦĖ(0))
q} is a subfield of F.

Proof. We know that 0, 1 ∈ Q, so Q is a non-empty subset of F. Suppose i1, i2 ∈ Q. Then,

(ΦĖ(i1 − i2))
q ≥ {(ΦĖ(i1))

q ∧ (ΦĖ(i1))
q}

= {(ΦĖ(i1))
q ∧ (ΦE(i2))

q}
= {(ΦĖ(0))

q ∧ (ΦE(0))q}
= (ΦĖ(0))

q.

From Theorem 1, we have (ΦĖ(0))
q ≥ (ΦĖ(i1− i2))q. Then, obviously, we have (ΦĖ(0))

q =
(ΦĖ(i1 − i2))q. Now, we show that (ΦĖ(0))

q = (ΦĖ(i1 − i2))
q for

(ΦĖ(i1 − i2))
q ≤ {(ΦĖ(i1))

q ∨ (ΦĖ(i1))
q}

= [(ΦĖ(i1))
q ∨ (ΦE(i2))

q]

= [(ΦĖ(0))
q ∨ (ΦE(0))q]

= (ΦĖ(0))
q.

Then, it is clear that (ΦĖ(0))
q = (ΦĖ(i1 − i2))

q.
Furthermore,

(ΦĖ(i1i
−1
2 ))q ≥ {(ΦĖ(i1))

q ∧ (ΦĖ(i
−1
2 ))q}

≥ {(ΦĖ(i1))
q ∧ (ΦĖ(i2))

q}
= {(ΦĖ(1))

q ∧ (ΦE(1))q}
= (ΦĖ(1))

q.

In a similar fashion,

(ΦĖ(i1i
−1
2 ))q ≤ {(ΦĖ(i1))

q ∨ (ΦĖ(i
−1
2 ))q}

≤ {(ΦĖ(i1))
q ∨ (ΦĖ(i2))

q}
= {(ΦĖ(1))

q ∨ (ΦE(1))q}
= (ΦĖ(1))

q.
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From Theorem 1, we obviously establish (ΦĖ(i1i
−1
2 ))q = (ΦĖ(1))

q and (ΦĖ(i1i
−1
2 ))q =

(ΦĖ(1))
q} for all i1 − i2 ∈ F. Hence, this concludes the proof.

4. Homomorphism on q-Rung Orthopair Fuzzy Subfield

In this part, the impact of field homomorphism on the q− R̈ÖF̈ subfield is investigated,
which provides some fundamentally major findings under field homomorphism.

Theorem 12. Suppose that F1 and F2 are two subfields. Let δ be a surjective homomorphism
from F1 to F2 and J = {c̈1, ΦJ(c̈1), ΦJ(c̈1) : c̈1 ∈ F1} is a q − R̈ÖF̈ subfield of F1. Then,
δ(J) = {c̈2, ΦJ(c̈2), ΦJ(c̈2) : c̈2 ∈ F2} is a q− R̈ÖF̈ subfield of F2.

Proof. Let δ : F1 → F2 be an onto homomorphism; then, δ(F1) = F2. Let c̈2, i2 be entities
of F2. Suppose i2 = δ(i1) , c̈2 = F(c̈1), δ(i1c1) = δ(i1)δ(c̈1) = i2c2 and δ(i1 − c̈1) =
δ(i1)− δ(c̈1) = i2 − c̈2.

(Φδ(J)(i2 − c̈2))
q = (∨{ΦJ(z) : z ∈ F1, δ(z) = (i2 − c̈2)})q

= ∨{(ΦJ(z))q : z ∈ F1, δ(z) = (i2 − c̈2)}
= ∨{(ΦJ(i1 − c̈1))

q : z ∈ F1, δ(i1) = i2, δ(c̈1) = c̈2, and δ(i1 − c̈1)

= δ(i1)− δ(c̈1) = i2 − c̈2}. Since δ is ahomomorphism.

≥ max{{(ΦJ(i1))q ∧ (ΦJ(c̈1))
q} : i1, c̈1 ∈ F1, {δ(i1) = i2, δ(c̈1)

= c̈2}}. J is q− R̈ÖF̈ subfield of F1.

= {max((ΦJ(i1))q : i1 ∈ F1, δ(i1) = i2) ∧max((ΦJ(i2))q : i1 ∈ F1,

δ(i1) = i2)}
= {(Φδ(J)(i2))

q ∧ (Φδ(J)(c̈2))
q}

Therefore, (Φδ(J)(i2 − c̈2))
q ≥ {(Φδ(J)(i2))

q ∧ (Φδ(J)(c̈2))
q} for all i2, c̈2 ∈ F2.

(Φδ(J)(i2 c̈2))
q = (∨{ΦJ(z) : z ∈ F1, δ(z) = (i2 c̈2)})q

= ∨{(ΦJ(z))q : z ∈ F1, δ(z) = (i2 c̈2)}
= ∨{(ΦJ(i1 c̈1))

q : z ∈ F1, δ(i1) = i2, δ(c̈1) = c̈2,

and δ(i1 c̈1) = δ(i1)δ(c̈1) = i2 c̈2}. Since δ is ahomomorphism.

≥ max{{(ΦJ(i1))q ∧ (ΦJ(c̈1))
q} : i1, c̈1 ∈ F1, {δ(i1) = i2, δ(c̈1)

= c̈2}}. J is q− R̈ÖF̈ subfield of F1.

= {max((ΦJ(i1))q : i1 ∈ F1, δ(i1) = i2) ∧max((ΦJ(i2))q : i1 ∈ F1,

δ(i1) = i2)}
= {(Φδ(J)(i2))

q ∧ (Φδ(J)(c̈2))
q}

Therefore, (Φδ(J)(i2 c̈2))
q ≥ {(Φδ(J)(i2))

q ∧ (Φδ(J)(c̈2))
q} for all i2, c̈2 ∈ F2.

(Φδ(J)(i
−1
2 ))q = (ΦJ(z)| z ∈ F1,∨δ(z) = (i−1

2 )q

= (ΦJ(z−1) | z−1 ∈ F1, ∨ δ(z−1) = (i2)q

= (Φδ(J)(i2)
q

In a similar fashion,

(Φδ(J)(i2 − c̈2))
q = (∧{ΦJ(z) : z ∈ F1, δ(z) = (i2 − c̈2)})q

= ∧{(ΦJ(z))q : z ∈ F1, δ(z) = (i2 − c̈2)}
= ∧{(ΦJ(i1 − c̈1))

q : z ∈ F1, δ(i1) = i2, δ(c̈1) = c̈2,

and δ(i1 − c̈1) = δ(i1)− δ(c̈1) = i2 − c̈2}. Since δ is ahomomorphism.
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≤ max{{(ΦJ(i1))q ∨ (ΦJ(c̈1))
q} : i1, c̈1 ∈ F1, {δ(i1) = i2, δ(c̈1) = c̈2}}.

J is q− R̈ÖF̈ subfield of F1.

= {min((ΦJ(i1))q : i1 ∈ F1, δ(i1) = i2) ∨ min((ΦJ(i2))q : i1 ∈ F1,

δ(i1) = i2)}
= {(Φδ(J)(i2))

q ∨ (Φδ(J)(c̈2))
q} So,

(Φδ(J)(i2 − c̈2))
q ≤ {(Φδ(J)(i2))

q ∨ (Φδ(J)(c̈2))
q} for all i2, c̈2 ∈ F2.

(Φδ(J)(i2 c̈2))
q = (∧{ΦJ(z) : z ∈ F1, δ(z) = (i2 c̈2)})q

= ∧{(ΦJ(z))q : z ∈ F1, δ(z) = (i2 c̈2)}
= ∧{(ΦJ(i1 c̈1))

q : z ∈ F1, δ(i1) = i2, δ(c̈1) = c̈2,

and δ(i1 c̈1) = δ(i1)δ(c̈1) = i2 c̈2}. ∵ δ is a homomorphism.

≤ max{{(ΦJ(i1))q ∨ (ΦJ(c̈1))
q} : i1, c̈1 ∈ F1, {δ(i1) = i2, δ(c̈1) = c̈2}}.

J is q− R̈ÖF̈ subfield of F1. So,

= {min((ΦJ(i1))q : i1 ∈ F1, δ(i1) = i2) ∨ min((ΦJ(i2))q : i1 ∈ F1,

δ(i1) = i2)}
= {(Φδ(J)(i2))

q ∨ (Φδ(J)(c̈2))
q}

(Φδ(J)(i2 c̈2))
q ≤ {(Φδ(J)(i2))

q ∨ (Φδ(J)(c̈2))
q} for all i2, c̈2 ∈ F2.

And, (Φδ(J)(i
−1
2 ))q = (ΦJ(z)| z ∈ F1,∨δ(z) = (i−1

2 )q

= (ΦJ(z−1) | z−1 ∈ F1, ∨ δ(z−1) = (i2)q

= (Φδ(J)(i2)
q

δ(J) = {c̈2, ΦJ(c̈2), ΦJ(c̈2) : c̈2 ∈ F} is a q− R̈ÖF̈ subfield of F2.

Theorem 13. Let δ : F1 → F2 is a bijective homomorphism and T = {c̈2, ΦT(c̈2), ΦT(c̈2) :
c̈2 ∈ F2} is a q− R̈ÖF̈ subring of F2 such that δ−1(J) = {c̈1, Φδ−1T(c̈1), Φδ−1T(c̈1) : c̈1 ∈ F1}
is a q− R̈ÖF̈ subfield of F1.

Proof. Consider i1, c̈1 ∈ F1, then i2, c̈2 ∈ F2. Now,

Φδ−1(T)(i1 − c̈1))
q = (Φ(T)δ(i1 − c̈1))

q

= (Φ(T)δ(i1)− δ(c̈1))
q. ∵ δ is homomorphism.

≥ {(ΦT(i1))q ∧ (ΦT(c̈1))
q}(T is q− R̈ÖF̈ subfield of F2).

≥ {Φδ−1(T)(i1))
q ∧Φδ−1(T)(c̈1))

q}.

Similarly in case of non-membership,

Φδ−1(T)(i1 − c̈1))
q = (Φ(T)δ(i1 − c̈1))

q

= (Φ(T)δ(i1)δ(c̈1))
q. ∵ δ is homomorphism

≤ {(ΦT(i1))q ∨ (ΦT(c̈1))
q}(T is q− R̈ÖF̈ subfield of F2).

≤ {Φδ−1(T)(i1))
q ∨Φδ−1(T)(c̈1))

q}
Φδ−1(T)(i1 c̈1))

q = (Φ(T)δ(i1 c̈1))
q

= (Φ(T)δ(i1)δ(c̈1))
q. ∵ δ is homomorphism

≥ {(ΦT(i1))q ∧ (ΦT(c̈1))
q}(T is q− R̈ÖF̈ subfield of F2).

≥ {Φδ−1(T)(i1))
q ∧Φδ−1(T)(c̈1))

q}.
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In other words,
Φδ−1(T)(i1 c̈1))

q = (Φ(T)δ(i1 c̈1))
q

= (Φ(T)δ(i1)δ(c̈1))
q. δ is homomorphism.

≤ {(ΦT(i1))q ∨ (ΦT(c̈1))
q}. T is q− R̈ÖF̈ subfield of F2.

≤ {Φδ−1(T)(i1))
q ∨Φδ−1(T)(c̈1))

q}.

Let again i1 ∈ F1 then
(Φδ−1(J)(i

−1
1 ))q = (ΦJ(δ(i−1

1 ))q

= (ΦJ(δ(i1))q

= (Φδ−1(J)(i1))
q

(Φδ−1(J)(i
−1
1 ))q = (ΦJ(δ(i−1

1 ))q

= (ΦJ(δ(i1))q

(Φδ−1(J)(i
−1
1 ))q = (Φδ−1(J)(i1))

q

Theorem 14. If δ : F1 → F2 is surjective homomorphism, F1, F2 are two subfields and J be
q− R̈ÖF̈ ideal of F1 then δ(A) is q− R̈ÖF̈ ideal of F2.

Proof. Suppose A be q − R̈ÖF̈ ideal of F1, then (ΦA(i1 − c̈1))
q = (ΦA(c̈1 − i1))q and

(ΦA(i1 − c̈1))
q = (ΦK(c̈1 − i1))q for all i1, c̈1 ∈ F1. Let i2, c̈2 ∈ F2. Then there exist some

elements i1, c̈1 ∈ F1 for this c̈2 = δ(c̈1) and i2 = δ(i1). Then,
(Φδ(A)(i2 − c̈2))

q = {(ΦA(z)|z ∈ F1 ∨ δ(z) = (i2 − c̈2))
q}

= {((ΦA(z)))q|z ∈ F1 ∨ δ(z) = (i2 − c̈2)}
= {(ΦA(i2 − c̈2))

q|z ∈ F1, {δ(i1) = i2, δ(c̈1) = c̈2} ∨ {δ(z) =
(i2 − c̈2)and δ(i2 − c̈2) = δ(i1)− δ(c̈1) = i2 − c̈2}}
because δ is ahomomorphism.

≥ max{{(ΦA(i1))q ∧ (ΦA(i2))q} | i1, c̈1 ∈ F1,

{δ(i1) = i2, δ(c̈1) = c̈2}}
= {max((ΦA(i1))q : i1 ∈ F1, δ(i1) = i2) ∧max((ΦA(i2))q :

i1 ∈ F1, δ(i1) = i2)}
= {(Φδ(A)(i2))

q ∧ (Φδ(A)(c̈2))
q}. So,

(Φδ(A)(i2 − c̈2))
q ≥ {(Φδ(A)(i2))

q ∧ (Φδ(A)(c̈2))
q} for all i2, c̈2 ∈ F2.

(Φδ(A)(i1 c̈1))
q = {(ΦA(z)|z ∈ F1 ∨ δ(z) = (i1 c̈1))

q}
= {((ΦA(z)))q|z ∈ F1 ∨ δ(z) = (i1 c̈1)}
= {(ΦA(i1 c̈1))

q|z ∈ F1, {δ(i1) = i2, δ(c̈1) = c̈2} ∨ {δ(z) = (i1 c̈1)

and δ(i1 c̈1) = δ(i1)δ(c̈1) = i2 c̈2}}because δ is ahomomorphism.

≥ max{{(ΦA(i1))q ∧ (ΦA(i2))q} | i1, c̈1 ∈ F1,

{δ(i1) = i2, δ(c̈1) = c̈2}}
= {max((ΦA(i1))q : i1 ∈ F1, δ(i1) = i2) ∧max((ΦA(i2))q :

i1 ∈ F1, δ(i1) = i2)}
= {(Φδ(A)(i2))

q ∧ (Φδ(A)(c̈2))
q}.

Therefore, (Φδ(A)(i1 c̈1))
q ≥ {(Φδ(A)(i2))

q ∧ (Φδ(A)(c̈2))
q} for all i2, c̈2 ∈ F2.

(Φδ(A)(i
−1
1 ))q = (ΦA(z)|z ∈ F1 ∨ δ(z) = (i−1

1 )q

= (ΦA(δ(i1))q

(Φδ(A)(i
−1
1 ))q = (ΦA(z)|z ∈ F1 ∨ δ(z) = (i−1

1 )q

= (ΦA(δ(i1))q
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In the same way, we can show that (Φδ(A)(i2 − c̈2))
q ≤ {(Φδ(A)(i2))q ∨ (Φδ(A)(c̈2))

q}
and (Φδ(A)(i1 c̈1))

q ≤ {(Φδ(A)(i2))q ∨ (Φδ(A)(c̈2))
q} for all i2, c̈2 ∈ F2. Hence, all the axiom

of q− R̈ÖF̈ ideal are hold. So, δ(J) is q− R̈ÖF̈ ideal of F2.

Theorem 15. Let F1, F2 are two subfield. Let δ be bijective homomorphism δ : F1 → F2 and
J = {o1, ΦJ(o1), ΦJ(o1) : o1 ∈ F1} be q − R̈ÖF̈ ideal of F2. Then
δ−1(J) = {o2, ΦJ(o2), ΦJ(o2) : o2 ∈ F1} is a q− R̈ÖF̈ subfield of F1.

Proof. J be q− R̈ÖF̈ ideal of F2 then (ΦJ(r2− o2))
q = (ΦJ(o2− r2))

q and (ΦJ(r2− o2))
q =

(ΦK(o2 − r2))
q for all r2, o2 ∈ F2. Suppose that r1, o1 ∈ F1.then there exist some elements

r1, o1 ∈ F1 for this o2 = δ(o1) and r2 = δ(r1). Let o2, r2 be elements of F2. Suppose
r2 = δ(r1), o2 = F(o1), δ(r1o1) = δ(r1)δ(o1) = r2o2 and δ(r1 − o1) = δ(r1) − δ(o1) =
r2 − o2.

(Φδ−1(J)(r1 − o1))
q = (δ−1(ΦJ)((r1 − o1))

q

(Φδ−1(J)(r1 − o1))
q = (ΦJ(δ(r1 − o1)))

q

= {(ΦJ(r1 − o1))
q|(r1 − o1) ∈ F1, {δ(r1) = r2, δ(o1) = o2} ∨

{δ(z) = (r1 − o1)and δ(r1 − o1) = δ(r1)− δ(o1) = r2 − o2}}.
≥ {max((ΦJ(r1))

q : r1 ∈ F1, δ(r1) = r2) ∧max((ΦJ(r2))
q :

r1 ∈ F1, δ(r1) = r2)}
= {(Φδ(J)(r2))

q ∧ (Φδ(J)(o2))
q}.

So, (Φδ(J)(r2 − o2))
q ≥ {(Φδ(J)(r2))

q ∧ (Φδ(J)(o2))
q} for all r2, o2 ∈ F2.

Similarly, (Φδ(J)(r2 − o2))
q ≤ {(Φδ(J)(r2))

q ∨ (Φδ(J)(o2))
q} for all r2, o2 ∈ F2.

(Φδ−1(J)(r1o1))
q = (δ−1(ΦJ)((r1o1))

q

(Φδ−1(J)(r1o1))
q = (ΦJ(δ(r1o1)))

q

= {(ΦJ(r1o1))
q|(r1o1) ∈ F1, {δ(r1) = r2, δ(o1) = o2} ∨ {δ(z) =

(r1o1) and δ(r1o1) = δ(r1)δ(o1) = r2o2}}. ∵ δ is ahomomorphism.

≥ {max((ΦJ(r1))
q : r1 ∈ F1, δ(r1) = r2) ∧max((ΦJ(r2))

q : r1 ∈ F1,

δ(r1) = r2)}
= {(Φδ(J)(r2))

q ∧ (Φδ(J)(o2))
q}.

So, (Φδ(J)(r2o2))
q ≥ {(Φδ(J)(r2))

q ∧ (Φδ(J)(o2))
q} for all r2, o2 ∈ F2.

Hence, δ−1(J) is a q− R̈ÖF̈ subfield of F1.

5. Conclusions

The purpose of this article is to demonstrate the q- R̈ÖF̈ subfield and its functions.
The q− R̈ÖF̈ subfield’s algebraic characteristics have been investigated. We created the
necessary and adequate parameters for the q− R̈ÖF̈ subfield. Every Pythagorean fuzzy
subfield is a q − R̈ÖF̈ subfield of a certain field, and the intersection of two q − R̈ÖF̈
subfields is a q− R̈ÖF̈ subfield. Moreover, we discussed the consequence of homomorphism
on the q− R̈ÖF̈ subfield. For future work, we will focus on the complex q-rung orthopair
fuzzy subfield and the lower level subset of the complex q-rung orthopair fuzzy subfield.
Additionally, we intend to introduce the product of two complex q-rung orthopair fuzzy
subfields, the novel idea of q-Rung orthopair fuzzy modules, and its vital attributes.
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