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Abstract: We investigate the quantum irreversibility and quantum diffusion in a non-Hermitian
kicked rotor model for which the kicking strength is complex. Our results show that the exponential
decay of Loschmidt echo gradually disappears with increasing the strength of the imaginary part of
non-Hermitian driven potential, demonstrating the suppress of the exponential instability by non-
Hermiticity. The quantum diffusion exhibits the dynamical localization in momentum space, namely,
the mean square of momentum increases to saturation with time evolution, which decreases with the
increase of the strength of the imaginary part of the kicking. This clearly reveals the enhancement
of dynamical localization by non-Hermiticity. We find, both analytically and numerically, that the
quantum state are mainly populated on a very few quasieigenstates with significantly large value of
the imaginary part of quasienergies. Interestingly, the average value of the inverse participation ratio
of quasieigenstates decreases with the increase of the strength of the imaginary part of the kicking
potential, which implies that the feature of quasieigenstates determines the stability of wavepacket’s
dynamics and the dynamical localization of energy diffusion.

Keywords: non-Hermitian system; quantum chaos; quantum diffusion

1. Introduction

Quantum irreversibility and energy diffusion are two aspects of the fundamental
problem of quantum chaos [1]. Quantum mapping models provide ideal platforms for
investigating quantum chaoticity from different prospectives, such as the eigenenergy
level spacing and the wavepacket dynamics. A paradigm model of quantum mapping
systems is the quantum kicked rotor (QKR), which has been widely employed in the
study of the fundamental problems, for instance quantum-classical transition [2], quantum
irreversibility [3], ergodicity [4], and prethermalization [5]. The landmark study by Peres
shown that for classically chaotic systems, the small perturbation on the Hamiltonian leads
to the exponential divergence of the fidelity, i.e., Loschmidt echo, between two nearby
quantum states [6], which is a solid evidence of exponential instability of quantum chaos.
For the quantum diffusion, a seminal phenomenon in the QKR model is the dynamical
localization (DL) in momentum space [7], which was later theoretically proven to be
an analogy of Anderson localization in disordered lattices [8]. The finding of DL spurs
extensive investigations, both theoretically and experimentally, on the exotic diffusion
phenomena in variants of QKR model [9], on the exponential instability in the presence of
perturbation [10], and on the dynamical phase transition in momentum space lattice [11].

In recent years, much interest has been focused on non-Hermitian systems, where
novel phenomena [12–18], such as anomalous topology [19], quantum entanglement [20],
and phase transitions [21] have been found. This triggered extensive attentions in diverse
fields of physics, for instance electric circuits [22,23], atomic-optical setting with gain and
loss [24], quantum metrology [25,26], as well as open quantum systems [27,28]. It is found
that in a PT -symmetric extension of the QKR model the spontaneous PT symmetry
breaking emerges with a scaling law depending on both the strength of the imaginary part
of the kicking potential and the dimension of the system [29]. In the regime of the breaking
phase of PT symmetry, the PT -symmetric kicked rotor exhibits the quantized acceleration
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in momentum space [30], and the quantized response of out-of-time-ordered correlators
with respect to the variation of the kicking strength [31], which enriches our understanding
on the fundamental problems of quantum transport and information scrambling in non-
Hermitian chaotic systems. More interestingly, the mean-field treatment of many-body
interaction even leads to the superexponential diffusion of energy in the QKR with non-
Hermitian driven potential [32].

In this context, we investigate the quantum irreversibility and quantum diffusion
in a non-Hermitian kicked rotor (NQKR) model. It is known that in Hermitian case
the Loschmidt echo decays exponentially with time with a rate proportional to the Lya-
punov exponent of classical chaos. We find that the non-Hermitian kicking suppresses
the exponential decay of Loschmidt echo, which even remains at unity for sufficiently
strong non-Hermitian kicking strength, signalling the disappearance of irreversibility in
the NQKR model. The quantum diffusion in momentum space displays the phenomenon
of DL, representing by the emergence of the exponentially-localized wavepacket and the
saturation of mean energy, which is dramatically reduced by increasing the strength of
non-Hermitian driven potential. According to the Floquet theory, we predict that a quan-
tum state will finally evolve to a quasieigenstate with large most value of the imaginary
part of quasienergy, which is verified by our numerical results of the fidelity between the
time-evolved quantum state and quasieigenstates. The feature of exponential localization
of quasieigenstates determines the quantum stability of the NQKR model. We numerically
make statistical measurement on the exponential localization of the quasieigenstates, and
find that the inverse participation ratio (IPR) increases with increasing the real part of the
kicking strength and decreases with the increase of its imaginary part, which demonstrates
the enhancement of DL by non-Hermiticity.

The paper is organized as follows. In Section 2, we discrible the NQKR model and
show the dynamical stability. In Section 3, we present the enhancement of DL by non-
Hermitian driven potential. In Section 4, we reveal the mechanism of dynamical stability
and DL in the NQKR model. Conclusion and discussion are presented in Section 5.

2. Dynamical Stability Induced by Non-Hermitian Driven Potential

The Hamiltonian of a NQKR model in dimensionless units reads

H =
p2

2
+ VK(θ)

+∞

∑
n=−∞

δ(t− tn) , (1)

where the complex kicking potential is in the form VK(θ) = (K + iλ) cos(θ) with K and λ
indicating the strength of the real and imaginary parts, respectively. Here, p = −ih̄eff∂/∂θ is
angular momentum operator, θ denotes the angular coordinate, satisfying the commutation
relation [θ, p] = ih̄eff with h̄eff the effective Planck constant. In the basis of the angular
momentum operator, an arbitrary state can be expanded as |ψ〉 = ∑n ψn|ϕn〉, where |ϕn〉 is
the eigenstate of p, p|ϕn〉 = pn|ϕn〉, with eigenvalue pn = nh̄eff. One period time evolution
of a quantum state is governed by |ψ(tn+1)〉 = U|ψ(tn)〉, where the Floquet operator is in
the form

U = exp
(
− i

h̄eff

p2

2

)
exp

[
− i

h̄eff
VK(θ)

]
. (2)

In numerical simulations, we choose the ground state as the initial state, i.e., 〈θ|ψ(t0)〉 =
1/
√

2π.
A common measure of the instability of quantum dynamics is the Loschmidt echo

L(t) = |〈ψ(t0)| exp(iHt/h̄) exp(−iHεt/h̄)|ψ(t0)〉|2 , (3)

where Hε = H + εV represents a perturbed Hamiltonian on the original one H [6,33–35].
It is known that for chaotic systems, the Loschmidt echo exponentially decays with time,
for which the decay rate is proportional to the Lyapunov exponent of the classical limits.
Accordingly, the dynamics of L reflects a kind of quantum-classical correspondence of
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chaotic systems. For the Hermitian QKR, the classical dynamics is governed by the kicking
strength K, which is fully chaotic for K > 1 with the Lyapunov exponent γ ≈ ln(K/2) [36].

We numerically investigate the time evolution of L of the NQKR model for K > 1
with focus on the chaotic dynamics of Hermitian case. In numerical simulations we choose
the Gaussian wavepackets as the initial state, i.e.,

ψ(θc, t0) =
( σ

π

)1/4
exp

[
−σ

2
(θ − θc)

2
]

, (4)

here σ = 10. In addition, we numerically calculate the average of L for different ψ(θc, t0),
i.e., L̄(t) = ∑N

j=1 Lj(t)/N with

Lj(t) =
∣∣∣〈ψ(θ j

c, t0)| exp(iHt/h̄) exp(−iHεt/h̄)|ψ(θ j
c, t0)〉

∣∣∣2 , (5)

and θ
j
c = 2π j/N, so as to reduce the dependence of L on the initial states. Figure 1 shows

that for Hermitian case, i.e., λ = 0, the L̄ exponentially decays, i.e., L̄ ∼ e−γt from unity to
saturation, with γ being the Lyapunov exponent. Interestingly, for small λ (e.g., λ = |104|),
the L̄ follows that of Hermitian case for very short time duration, after which it saturates
with the saturation value being apparently larger than that of Hermitian case. For medium
λ, e.g., λ = |2× 104|, the time interval for the exponential decay of L̄ is very small, and
the saturation value of L̄ with λ = −2× 104 is clearly larger than that of λ = 2× 104

demonstrating a kind of asymmetry in the NQKR system. Interestingly, for large λ (e.g.,
λ = |102|), the L̄ almost remains at unity with time evolution, which clearly demonstrates
the disappearance of irreversibility of the quantum dynamics induced by non-Hermiticity.

0 25 50
10-4

10-2

100

L

t

|l|= 2×10-4|l|= 10-4

|l|= 10-2

l= 0

Figure 1. The L̄ versus time with ε = 10−3 for λ = 0 (squares), ±10−4 (circles), ±2× 10−4 (triangles),
and ±10−2 (diamonds). Solid (empty) symbols represent positive (negative) λ. Note that the L̄ for
λ = ±10−2 almost completely overlaps with each other. Red line indicates the exponential decay
L̄ ∝ e−γt with the Lyapunov exponent γ = ln(K/2). The parameters are K = 5 and h̄eff = 3× 10−5.

3. Enhancement of Dynamical Localization by Non-Hermitian Driven Potential

It is known that the DL which is an analogy of Anderson localization [37] emerges in
Hermitian QKR due to quantum coherence [38]. In order to investigate the features of DL
in NQKR, we take numerical experiments on simulating the time evolution of the mean
square of momentum for different λ,

〈p2〉 = 1
N ∑

n
p2

n|ψn|2 , (6)

where N = ∑n |ψn|2 is the norm of a quantum state. This kind of definition of 〈p2〉
eliminates the contribution of the norm to expectation value, which will exponentially
increase for large λ. We consider the quantum non-resonance condition h̄eff 6= 4πm/n
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with m and n being coprime numbers, for which the evolution operator of kinetic energy,
i.e., U f = exp(−ip2/2h̄eff) generates pseudo-random numbers in momentum space. This
mimics effectively the disorder in momentum space lattice, hence leads to the emergence
of DL [37].

Figure 2a shows that for λ = 0 there is a short time interval for energy diffusion, after
which the quantum mean energy gradually approaches to saturation, signalling the onset of
DL. For nonzero λ (e.g., λ = 0.002), the 〈p2〉 follows that of λ = 0 for finite time t∗, beyond
which it saturates. Interestingly, both the critical time t∗ and the saturation value of 〈p2〉
decrease with the increase of |λ|. Therefore, the increase of the strength of non-Hermiticity
dramatically enhances the DL of energy diffusion. Detailed observation shows that both
the t∗ and the saturation value of mean energy for −λ are smaller than that of λ, which
demonstrates the asymmetry of DL in this system. Interestingly, we numerically find that
the there are residual correlations characterized by the out-of-time ordered correlators in the
non-Hermitian QKR model. Therefore, the quantum correlation results in the appearance
of DL [39]. We further investigate the momentum distributions for different λ. It is known
that for λ = 0, the DL is accompanied by the appearance of the exponentially localized
wavepacket in momentum space |ψ(p)|2 ∼ e−|p|/ξ with the localization length ξ being
almost unchanged with time [see Figure 2b]. For nonzero λ (e.g., λ = −0.003), the quantum
state exhibits the exponentially-localized shape, for which the ξ is smaller than that of
λ = 0. This presents a clear evidence of the enhancement of DL by non-Hermiticity from
the probability density distribution point of view.

0 5 10
0

4

8

12

-5 0 5
10-16

10-11

10-6

10-1
= -0.003
= -0.002
= 0
= 0.002
= 0.003

t*

<
p2
>
/1
02

t/102

(a)

=0
=-0.003

(b)

|
|2

p/102

Figure 2. (a ) The 〈p2〉 versus time with λ = −0.003 (empty triangles), −0.002 (empty circles),
0 (squares), 0.002 (solid circles), and 0.003 (solid triangles). Arrow marks the threshold time t∗.
(b) Momentum distributions at the time tn = 1000 for λ = 0 (squares) and −0.003 (circles). Solid
lines indicates the exponential function |ψ(p)|2 ∝ e−|p|/ξ with ξ ≈ 23 and 15 for λ = 0 and −0.003,
respectively. Other parameters are K = 5 and h̄eff = 0.25.

The saturation value of mean energy can be well quantified by the time-averaged value

〈 p̄2〉 = 1
N

N

∑
n=1
〈p2(tn)〉 , (7)

where N � 1. We numerically investigate the 〈 p̄2〉 for a wide regime of K and λ. In
numerical simulations, we find that a thousand of kicks N = 1000 is large enough to assure
the well approximation of the saturation level of 〈p2〉 by 〈 p̄2〉, so long as K is not too large
and h̄eff is not too small. The phase diagram of 〈 p̄2〉 in Figure 3a displays clearly different
regime of diffusion behavior in the parameter space. For the a specific K, [e.g., K = 7 in
Figure 3b], the value of 〈 p̄2〉 decreases with the increase of |λ|, and is asymmetric with
respective to the change λ→ −λ, which coincides the enhancement of DL by λ in Figure 2.
For a fixed λ [e.g., λ = 0.004 in Figure 3c], the value of 〈 p̄2〉 increases with the increase
of K, demonstrating the assistance of quantum diffusion by kicking strength. Our results
may be helpful for guiding the experimental investigations in the field of atom-optics with
non-Hermiticity [24].
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Figure 3. (a) The time-averaged value of mean energy 〈 p̄2〉 in the parameter space (K, λ) with
h̄eff = 0.25. (b) The 〈 p̄2〉 versus λ with K = 7. (c) The 〈 p̄2〉 versus K with λ = 0.004.

4. Mechanism of the Enhancement of Dynamical Localization by Non-Hermiticity

Floquet theory predicts the eigenequation as follows,

U|ϕε〉 = e−iε|ϕε〉 , (8)

where |ϕε〉 is the quasieigenstate and ε indicates the corresponding quasienergy [40,41]. In
the basis of |ϕε〉, an initial state can be expanded as |ψ(t0)〉 = ∑ε Cε|ϕε〉. According to the
Floquet theory, one can straightforwardly get the expression

|ψ(tn)〉 = ∑
ε

Cεe−iεtn |ϕε〉 . (9)

Note that in our system, the quasienergy is complex ε = εr + iεi when λ is sufficiently large,
so we have the expansion [42]

|ψ(tn)〉 = ∑
ε

Cεe−iεrtn eεitn |ϕε〉 . (10)

It is clearly that the components with positive εi exponentially grow and that with negative
εi exponentially decay. This implies that the time-evolved state gradually approaches to
the |ϕε〉 with large most εi, and dynamics of the quantum state ψ(tn) is governed by these
quasieigenstates.

To confirm this conjecture, we numerically investigate the fidelity between the time-
evolved quantum state and the quasieigenstates, i.e, F (tn) = |〈ψ(tn)|ϕε〉|2 for the time
in the regime of DL. Figure 4a shows that for λ = 0.003, the F at the time tn = 1000
is nonzero for εi > 0 and has a maximum value at εi = 0.00283. As a further step, we
compare the probability density distribution between quantum state |ψ(tn = 1000)〉 and
quasieigenstate |ϕε〉 with εi = 0.00283 in Figure 4b. One can find that the two states
almost completely overlap with each other, both of which are exponentially localized in
momentum space, i.e., |ψ(p)|2 ∝ e−|p|/ξ with ξ ≈ 19. It is reasonable to believed that the
exponential localization of quasieigenstates leads to the DL of the dynamics of quantum
diffusion. For λ = −0.003, the maximum F (tn = 1000) corresponds to εi = 0.00527 [see
Figure 4c]. Both the quantum state |ψ(tn = 1000)〉 and the quasieigenstate ϕε(εi = 0.00527)
display the same exponentially-localized shape in momentum space with the localization
length ξ ≈ 15 [see Figure 4d]. It is apparent that the exponentially-localized feature of
quasieigenstates determines the DL of the spreading of quantum states in momentum space.
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Figure 4. Left panels: Dependence ofF at the time tn = 1000 on the imaginary part of the quasienergy
εi with λ = 0.003 (a) and−0.003 (c). Right panels: Comparison of the probability density distributions
between the state |ψ(tn = 1000)〉 (circles) and the quasieigenstate |ϕε〉 (squares) of the maximum
value of F (red diamonds) with λ = 0.003 (b) and−0.003 (d). (d) Red lines indicate the exponentially-
localized shape |ψ(p)|2 ∝ e−|p|/ξ with ξ ≈ 19 (b) and 15 (d). Other parameters are the same as in
Figure 2a.

A commonly used quantity to measure the localization of a quantum state is the
inverse participation ratio (IPR) [43].

I =

(
∑n |ψn|2

)2

∑n |ψn|4
. (11)

It is straightforward to prove that for an exponentially-localized state |ψn|2 ∼ e−n/ξ , the
value of I is proportional to the localization length I ∼ ξ. In order to quantify the statistical
feature of the localization of quasieigenstate, we numerically investigate the averaged value
of IPR

〈I〉 = 1
N

N

∑
j=1
Ij , (12)

where Ij denotes the IPR of the j-th quasieigenstate with εi > 0. Figure 5a shows that for a
specific h̄eff, the 〈I〉 increases in the quadratic function of K, i.e., 〈I〉 ∝ K2. In addition, the
smaller h̄eff is, the larger the 〈I〉 is. This demonstrates the increase of localization length
with the kicking strength or with the decrease of h̄eff, which is similar to the feature of the
localization of quasieigenstates of Hermitian QKR [44]. We also numerically investigate the
〈I〉with varying λ. Figure 5b shows that for small h̄eff (e.g., h̄eff = 0.1), the 〈I〉 decays from
a saturation level with increasing λ, in a logarithmic function 〈I〉 ∝ − ln(λ). For larger
h̄eff (e.g., h̄eff = 0.25 and 0.4), however, our numerical results support the linear decay
〈I〉 ∝ −αλ. Anyway, our investigation clearly reveals the enhancement of localization by
increasing the non-Hermiticity, which is response for the decrease of the saturation value
of 〈p2〉 with the increase of λ [see Figures 2 and 3]. Figure 5c shows the phase diagram of
the 〈I〉 for a wide regime of K and λ. One can find the increase of 〈I〉 with increasing K,
and the decrease of 〈I〉 with the increase of λ. In addition, the 〈I〉 is asymmetric with the
change λ→ −λ.
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Figure 5. Top two panels: 〈I〉 versus K (a) and λ (b) with h̄ = 0.1 (squares), 0.25 (triangles), and 0.4
(circles). In (a): Red lines indicate the function 〈I〉 ∝ ηK2 with η ≈ 11, 4.1, and 2.6 for h̄eff = 0.1, 0.25,
and 0.4, respectively. The parameter is λ = 0.003. In (b): Dash-dotted line (in cyan) indicates the
function 〈I〉 ∝ − ln(λ). Solid lines in red denote 〈I〉 ∝ −αλ with α ≈ 74 and 45 for h̄eff = 0.25 and
0.4, respectively. The parameter is K = 5. (c) The 〈I〉 in the parameter space (K, λ) with h̄eff = 0.25.

5. Conclusions and Discussion

In this work, we numerically investigate the dynamics of quantum irreversibility and
energy diffusion in a NQKR model, for which the kicking strength is complex. We find
that the exponential decay of Loschmidt echo L ∝ e−2γt occurs only for very small λ. For
sufficiently larger λ, the L remains at unity with time evolution, which demonstrates the
disappearance of quantum irreversibility. The quantum diffusion exhibits the DL with time
evolution, for which the saturation value of 〈p2〉 decreases with increasing λ, signalling
the enhancement of DL by non-Hermitian driven potential. The mechanism of quantum
stability in the NQKR model is revealed by the fidelity between time-evolved quantum
state and quasieigenstates. We find, both analytically and numerically, that a quantum
state evolves to one of a quasieigenstate with significantly large εi, which is quantified
by the emergence of maximum value of fidelity F (tn) = |〈ψ(tn)|ϕε〉|2 with a specific εi.
Our numerical investigation on the averaged value of IPR shows the quadratic increase
of 〈I〉 with increasing K and the decay of 〈I〉 with increasing λ, which demonstrates the
enhancement of exponential localization by non-Hermiticity.

Floquet-driven systems have now been accepted as ideal platforms for studying rich
physics, such as many-body dynamical localization [45–47], topological phase transition [48–50],
and quantum thermalization [51]. Understanding the quantum irreversibility and quantum
diffusion of these systems has potential applications in the Floquet engineering on the
propagation of optics in topological medium [52–54] and the quantum transport in twisted
bilayer grapheme [55]. Quantum diffusion of matter receives intense attentions in different
fields of physics [56–58]. Our finding of the destruction of exponential instability and the
enhancement of DL by non-Hermitian driven potential shed light on the quantum diffusion
in non-Hermitian chaotic systems.
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