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Abstract: The philosophy of the IoT world is becoming important for a projected, always-connected
world. The 5G networks will significantly improve the value of 4G networks in the day-to-day world,
making them fundamental to the next-generation IoT device networks. This article presents the
current advances in the improvement of the standards, which simulate 5G networks. This article
evaluates the experience that the authors gained when implementing Vodafone Romania 5G network
services, illustrates the experience gained in context by analyzing relevant peer-to-peer work and
used technologies, and outlines the relevant research areas and challenges that are likely to affect
the design and implementation of large 5G data networks. This paper presents a machine learning-
based real-time intrusion detection system with the corresponding intrusion prevention system. The
convolutional neural network (CNN) is used to train the model. The system was evaluated in the
context of the 5G data network. The smart intrusion detection system (IDS) takes the creation of
software-defined networks into account. It uses models based on artificial intelligence. The system is
capable to reveal not previously detected intrusions using software components based on machine
learning, using the convolutional neural network. The intrusion prevention system (IPS) blocks
the malicious traffic. This system was evaluated, and the results confirmed that it provides higher
efficiencies compared to less overhead-like approaches, allowing for real-time deployment in 5G
networks. The offered system can be used for symmetric and asymmetric communication scenarios.

Keywords: intrusion detection system; 5G security; networks; heterogeneous networks; real-time protection

1. Introduction

Nowadays, the global internet consists of billions of devices, the number of which is
constantly growing. This trend is due to the increasing use of consumer electronics, where
more and more sensors are installed every day. These devices have limited computing
resources, and in most cases, information management is transferred to external devices.
The latest devices, in turn, connect with each other and create communication channels to
transmit time and status data. Existing 4G mobile networks cannot provide the necessary
capabilities for the continued development of the networks of the Internet of Things.
Therefore, we can immediately conclude that 5G networks should become the basis of the
next generation of large-bandwidth data transmission networks.

Fifth-generation cellular networks forced the implementation of 5G and beyond net-
works, which offer capacity expansion strategies to handle great connectivity issues and can
offer very high throughput and low-latency. 5G and beyond technology uses IoT, AI/ML,
and blockchain, and its goal is to establish secure and reliable UAV networks. Therefore,
the big work must be conducted to ensure security of 5G and beyond networks [1]. It can
be very relevant to the integration of protected mechanisms, which use machine learning
(ML) and artificial intelligence (AI) techniques. Scientists apply ML algorithms in the
development of IDS systems in order to identify and classify malicious traffic [2]. It is
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also important to identify the possible threats of 5G and beyond networks in real-time.
The main problem with the research is that the security system must work very quickly,
the processing delay should be very small, and in other cases, it is not efficient to use the
system for real-time threats, identification, and classification.

The intrusion detection system, which is presented in this paper, addresses the strin-
gent design, implementation, and deployment aspects of high-bandwidth 5G network
cores. Thus, traditionally, the data traffic is filtered mostly using semiautomatic approaches.
These usually generate low levels of data pattern detection accuracy, and they are not able
to adapt and detect unknown data patterns. It is important to mention that the integrated
intrusion detection system, which is presented in this paper, is one of the very few relevant
systems that are proven to detect known and unknown threat patterns in a large 5G net-
work core with high accuracy and without interfering with the low-latency levels of the
implied data network, as they are perceived by the end users.

It is relevant to note that 5G networks create broad-bandwidth channels. However,
the increased efficiency that these new networks create is largely due to the number of
intelligent devices supported and the related applications. Broad-bandwidth data links:
intelligent application deployments require data links capable of a minimum of 25 Mbps
and are designed to sustain meaningful augmented reality (AR) and virtual reality (VR)
and data containers [3]. Large scale and structurally flexible networks: This is defined by
the network function virtualization (NFV) mechanism to create the networks needed. 5G
IoT low-latency data networks are designed to sustain intelligent applications that need
to transmit and receive data in real-time and use communication channels with delays
of no more than five milliseconds [4]. Safety and fault tolerance: due to the presence
of significantly fewer base stations in the 5G network, handoffs must be done when
maintaining optimal coverage of the network. Data privacy and protection: applications
that work with sensitive data, such as patient personal information, need mechanisms
to prevent any unauthorized access attempts. Battery life: mobility is central to 5G data
networks; hence, energy efficiency must be taken into account. Connectivity: 5G data
networks must offer simultaneous, stable access to a huge number of devices, which
means making the right design and implementation decisions. Mobility: This requirement
supplements the need to create the right environment for the development of many devices
that require reliable mobile data links. It must be noted that although smart devices that
need to work on 5G networks must handle huge amounts of data, they do not, in most
cases, have sufficient hardware resources to process the given data. Therefore, in most
cases, information processing is transferred to systems in the cloud that extract useful
information from unprocessed data by considering data analysis techniques [5,6].

The scientists discussed the security problems of 5G networks [7,8]. The following
problems are identified: 1. As the 5G data network’s architecture mainly uses software
configurations, it has a much bigger exposure to attacks on the software. The attacks can be
designed using existing security flaws or bugs. These attacks can influence the operation
of 5G data networks. 2. The architecture of 5G data networks includes novel models and
functions, because of this, they can be the target of hackers’ attacks. The functions of key
management for the networks and the base station can become the target of attacks. 3. The
majority of 5G operators of mobile networks depend on suppliers; this fact can lead to
additional attacks on 5G data networks. The impact of such attacks will also be greatly
increased. 4. 5G data networks will include a huge amount of different smart devices.
Therefore, attacks such as DOS and DDOS will become much more relevant and often.
5. The key feature of 5G network slicing can also be considered a security problem. The
attackers can force the service to use the slice that was not intended for it.

It must be mentioned that the vulnerabilities of injecting malicious code into the
system of 5G networks were also identified [9–11]. The contribution that is presented in
this paper relates to the following perspectives.

• This article presents the current advances in the improvement of standards that simu-
late 5G networks through virtualized infrastructures. This determines a significant
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improvement in the telecommunications operators’ administrative and infrastructure
maintenance costs.

• This paper presents the experience that the authors gained when deploying the de-
scribed system on the core infrastructure of a major telecommunications operator.

• This paper outlines the relevant research areas and challenges that are likely to affect
the efficient design and implementation of large 5G data networks, which use secure
and economically efficient virtualized infrastructures.

• The performance evaluation of the system, which considered a comprehensive sample
of real networking data, demonstrates that the system is capable of detecting unknown
and existing malicious data traffic patterns in a timely manner with a high level
of accuracy.

• To the best of our knowledge, this is one of the very few machine-learning-based
intrusion detection systems that is compatible with the proper and timely detection of
malicious data traffic patterns in large broadband 5G data networks.

The rest of this paper is organized according to the following structure.: First, the
essential materials and methods are described. Following, the architecture of the intrusion
detection system is described, and the fundamental algorithmic and implementational
features are presented. Following this, the real-world performance of the implemented
system is thoroughly assessed through a comprehensive case study. The last section
presents the planned development directions. It also concludes the paper.

2. Materials and Methods
2.1. Basic Technologies

The subject of ongoing research is to determine the best architectural model for de-
signing 5G data transmission networks. However, any architectural design must take into
account two points of view [12,13]. Data perspective deals with real-time data analysis that
uses software-based frontend data paths, while the management perspective deals with
the suitable administration of the network components and the associated services that
they define. It must be mentioned that the structure of a 5G data transmission network
must take into account considerable technical requirements, such as scalability and the
ability to virtualize network functions, when implementing network resources and provid-
ing necessary capabilities to virtualize network functions [14]. Therefore, comprehensive
functional requirements must be accessible to support effective network management.
This should include the effective setting of guidelines under which mobile devices will
behave optimally, defining a policy to control access to network resources, and the ability
to virtualize given physical network resources.

2.2. Virtualized Wireless Network Function

VWNF, the virtualized wireless network function, is the main function in the design
and implementation of 5G data networks. It is effectively used to design 5G network’s
core (5GC). The process is able to logically define a self-sufficient 5G data network using
NFV, network function virtualization. The basic technology of 5G is visualized on Figure 1.
It is worth noting that the mentioned process is important from both a theoretical and a
research point of view. In addition, it allows the deployment of dedicated 5G networks
in certain infrastructures, such as telecommunications or cloud providers, which provide
network services. We effectively worked with this system to realize particular network
services in the 5G data network of the relative telecommunications service provider. Thus,
during implementation, we noticed that the virtualized network environment has the
necessary logical plasticity and scalability, which allowed us to effectively develop an
intrusion detection system in real-time [15,16]. Network virtualization model is visualized
in Figure 2. In fact, we have determined that virtualization engine provides the ability to
properly handle data streams passing through the 5G network to detect potential or known
threat patterns. Figure 1 describes the application of the virtualized networking mechanism.
By means of design, realization, and deployment of a real-time intrusion detection system
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(IDS), we demonstrated that this system is appropriate for the correct formation of the
needed dedicated virtual data network, which by itself confirms the conclusions outlined
in paper [17].
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In Figure 2, let us particularly note the mobile fronthaul and the mobile backhaul
components. In its simplest form, the backhaul connects the mobile network to the wired
network by backhauling traffic from geographically dispersed cell sites to mobile switching
telephone offices (MTSOs). These links, which interconnect macro cell sites (e.g., sites
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housing those large towers that you can easily see at great distances) to MTSOs, are quickly
migrating from slower TDM-based T1/E1 connections towards packet-based Ethernet-
over-fiber links, typically via 1Gbps+ physical interfaces to the macro cell site. Within a
typical macro cell site resides a baseband unit (BBU) connected to a radio unit (RU). The
former processer uses and controls data, while the latter generates radio signals transmitted
over the airwaves via tower-mounted antennas.

Furthermore, the fronthaul is associated with a new and different type of radio access
network (RAN) architecture consisting of centralized baseband controllers and standalone
radio heads installed at remote cell sites located kilometers to tens of kilometers away. These
BBU and RU functional blocks, as well as the equipment that performs these functions, are
located further away from each other than in the mobile backhaul model.

In the fronthaul model, the RU equipment is now referred to as a remote radio head
(RRH) but is still located at the cell site. The BBU is now located in a centralized, protected
location where it serves multiple RRHs. The optical links that interconnect the newly
centralized BBU and the multiple RRHs are referred to as fronthaul. In Figure 3, the logical
features of this architecture are presented.
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We also found that the 5G networks’ logical characteristics optimize the distribution
and use of radio resources, as we identified logical subnets that separately analyze data
traffic through separate intrusion detection instances in real-time.

So, obtained results broadened and improved the work presented in [18]. Our test
work shows that correctly defined 5G virtual networks can support applications that
operate with huge amounts of data such as real-time IDSs.

3. Related Works

The succeeding paragraphs discuss some of the scientific works that are related to the
heterogeneous networks that we have explored in our ongoing research process [19,20]. Thus,
in articles [21,22], the problems of machine-to-machine communication (M2M) are ana-
lyzed. ETSI, the European Telecommunications Standards Institute, defines the protocols
to be considered when using IoT devices that lack computing power [23,24]. Papers [25,26]
provide guidelines for deploying machine-to-machine applications. The daily lives of
people can potentially be influenced by machine-type communications, which allows us
to consider heterogeneous networks as a reliable, technical option for the 5G IoT network
implementation [27]. Machine-type communication is associated with an ever-increasing
volume of transmitted data, and these problems are discussed in [28]. In addition, pa-
per [29] described the corresponding quality of service (QoS) policies. The paper [30]
suggests that a considerable number of 5G IoT devices can be deployed, which will pro-
vide certain services through their interactions and also ensure a proper balancing of data
traffic. The contribution that is reported in [31] describes a system that actively handles
data traffic generated by registered NB-IoT devices using the same ML-based intrusion
detection engine. It is important to develop and deploy large 5G network topologies,
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such as narrowband IoT (NB-IoT) and millimeter wave (mm wave) [32,33]. Scientists are
working on the design of intrusion detection and prevention systems for 5G and beyond
networks [34,35]. The authors of [36] offer to design the federated IDS architecture by
means of federated learning for 5G networks. The authors of [37] offer a novel IDS for 5G
networks to efficiently identify the attacks. The main problem with the offered works is
that their designed IDS cannot work efficiently in real-time.

The heterogeneous networks (HNet) concept implies an additional paradigm that
supports the design and realization of 5G logical networks in which services are hosted.
We used this system to design a runtime that allows the IDS to correctly handle all data
flaws in a 5G data network. It must be mentioned that this additional mechanism provides
an opportunity to configure the virtualized network settings properly. Some data types are
given priority during processing over others by defining appropriate QoS policies. This
approach is unique and differs from the approaches offered in the related works.

The main advantage of our system is that it works in real-time, which is very im-
portant for the security of 5G and beyond networks. The integrated intrusion detection
system, which is presented in this paper, relates favorably to similar existing contributions.
Thus, the authors of papers [38,39] describe intrusion detection systems that ensure a
fast processing of the data traffic that flows through the 5G network core; however, the
detection accuracy is not satisfactory. Moreover, papers [40,41] present intrusion detection
systems that generate a satisfactory level of detection accuracy, but they are not able to scale
well for large real-world 5G data infrastructures. Furthermore, papers [42–44] propose
relatively comprehensive surveys concerning significant intrusion detection approaches.
Nevertheless, none of the presented models fulfill all technical performance criteria, at
least when considering large, real-world deployments. It is relevant to note that the pa-
per [45] proposes a data processing model that is based on ensemble learning, while the
paper [46,47] discusses the security of optical data transmission mediums relative to 5G
infrastructures. Essentially, the fundamental requirement that was envisaged is related to
the mandatory automatic real-time processing of large amounts of data traffic that flow
through the telecommunications operator’s 5G network core. It is relevant to note that the
proposed algorithmic and architectural structures fully comply with these constraints.

The performance assessment process, which is described, and the reviewed similar
contributions suggest that the integrated intrusion detection system, which is presented
in this paper, is one of the very few relevant systems that are proven to detect known
and unknown threat patterns in a large 5G network core, with high accuracy and without
interfering with the low-latency levels of the implied data network, as they are perceived
by the end users.

4. The Intrusion Detection and Intrusion Prevention Systems

In this section, we describe the main design core of our system. In the system, we
use entropy calculation in order to preprocess the data and apply the CNN model to it
afterwards. All other modules give the system the opportunity to detect and classify the
newly arrived data/malicious data and to take the decisions in milliseconds, which reflects
the computational efficiency and the novelty of the offered approach. The IDS system’s
architecture consists of the following three layers: the data management and control layer,
the machine learning-based data analysis layer, and the data traffic forwarding layer. The
machine learning-based data analysis is trained using the dataset, which is a combination
of different datasets. It includes DOS/DDOS datasets, KDD research datasets, and a dataset
that was provided by a large telecommunications service provider. All the information is
divided into 85% for training and 15% for testing and validation. Such splitting gave us the
best accuracy. The received accuracy score is 0.9414. The presented model considers the
convolutional neural network (CNN) model.

The design of our security system consists of four main functional stages:
The data forwarding layer is concerned with monitoring and collecting data traffic,

which represents the first stage of the system. The data forwarding layer is capable of
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collecting and transferring streams of suspicious information to the control plane, and the
intrusion prevention system (IPS) blocks the suspicious traffic of data by following the
commands of the controller. This determines the second logical and functional stage of
the system.

The data management and control layer recognize the malicious data patterns and
identifies the anomalies by means of the analyses of intercepted data. After taking the
appropriate security measures based on the detected patterns at the data analysis layer, it
sends the information to the data transfer layer, which is the third stage of the system. This
process is visualized on Figure 4.
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The data forwarding layer, which determines the fourth functional stage, collects suspi-
cious data patterns in real time and sends information to the data management and control
layer. The IPS instantly blocks intrusions and sends the suspicious files to other system leers
for checking. The package collection and data stream splitting layer ensures the entire 5G
network’s global view. The state control unit monitors the status of the data transmission
network and analyzes the received data packets. The data management plane operates
and analyzes data traffic. In addition, it creates appropriate bunches of data packets and
produces the data fingerprint that tracks the succeeding logical network parameters: source
port and the network protocol in question. The data fingerprint identifies the markings
of different data flow records representing specific network connections. The gathering
and inspection of the packets is done continuously. The time interval of data gathering
and inspection is optimized to avoid undesirable latency in the data assessment process
in real-time.

The pseudo-code of the basic part of the system can be seen bellow:
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Class Data_Int_Layers:

Private:

X = None # Variable for training stage

Y = None # Variable for training stage

Model = CNN # Variable for CNN model

Def __init__(file_name, model_type): # Constructor for preprocess data.

Compute_data_homogeneity_score

Noise clean_up

Preprocessing data . . .

Def create_model(model_type):

Create CNN model . . .

Return model

Def train_model(data_frame, model_type):

Training model with data . . .

Return model

Def test_model(model, model_type):

Testing and measure accuracy . . .

Return accuracy_score

Public:

Def predict(x_data):

Predicting with our model . . .

Return predictions

Def print_accuracy(model_type):

return IDS.test_model()
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Importing the necessary libraries

Waiting_procces(traffic) # process to catch the
traffic

Def management_cntrol_data():

While True:

If traffic:

forwarding_layer(traffic)

def Forwarding layers(df):

Object1 = Data_Int_Layers(df)

Object1. Predict(data)

If data in malicious:

IPS(data)

Else:

Data_management(data)

def IPS(df):

Block df

Block df.ip

def Data_management(df):

Print (“data is benign”)

Forwarding data to the users
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Packages are collected and checked permanently. Data acquisition and time intervals
have been optimized to avoid possible unwanted retention in real-time data assessment.

The detection of anomalies is based on the basic data stream statistics that recognize
potential anomalies. The specific IDS module employs entropy analysis by means of
Shannon’s theory to detect variation in the distribution of analyzed data packet selections.

Calculation of the entropy of a random variable r:

H(r) = ∑n
i=0 p(ri) log p(ri) (1)

Here, p(ri) denotes the probability that r will take the value ri given all the values are
already found. The equation takes into account four main parameters: source IP, source
port, target IP address, and target port. The real-time traffic analysis component collects
these values. Therefore, given a specific period of time, the constantly updated value
provided by the entropy function H(r) assists in the discovery of probable patterns of
malicious data packets. This continuously updated score is applied to all four considered
networking parameters. Thus, this generates an aggregated entropy score, which allows
for the traffic patterns to be classified with a high level of accuracy. Entropy is represented
by E, and D indicates the standard deflection A possible suspect pattern suggests that
H(r) is outside the range [(E − D), (E + D)]. Therefore, suspicious data is for additional
analysis to the continuous layer of data analysis. The feature selector element creates
and updates feature sets specific to detected patterns of malicious data. The section can
work with huge data amounts in real-time when deleting irrelevant data features from
the predictive data analysis layer. Therefore, the data can be categorized as appropriate,
so that the patterns of malicious data packets are therefore detached from the patterns of
harmless traffic. Table 1 shows the performance score that sets the five columns of the table.
The performance score is calculated based on the input dataset, which is specified in the
first column. The mentioned dataset contains 32 000 000 network connections that were
checked by the intrusion detection system. Moreover, each connection object consists of
thirty-nine functions which are checked by the machine learning (CNN) module of the IDS.
The performance value indicators demonstrate that the mentioned system is well matched
to the size of the checked dataset. In addition, the system is capable of identifying patterns
of malicious traffic, minimizing the number of false positives. The behavior of the system
in practice is principally important when using 5G data networks for commercial purposes.

Table 1. Values of indicators for assessing efficiency.

Data Size Pr Rb Tr A FR

10% 97.05% 97.01% 94.51% 94.14% 0.81%
20% 97.25% 96.95% 94.42% 94.10% 1.05%
40% 97.08% 96.74% 94.41% 94.05% 0.95%
60% 96.05% 96.70% 93.55% 93.80% 0.92%
80% 96.01% 95.81% 93.20% 93.40% 0.97%

100% 95.60% 95.54% 93.10% 92.90% 1.08%

It is relevant to mention that the described system proposes a unique machine learning-
based 5G data traffic processing core (5GC). Furthermore, as the following section suggests,
the maximum level of accuracy obtained is approximately 94%. The algorithmic model
of the data traffic detection core should be further improved, so that the accuracy level
should be in the range of 98–99%. This is justified by the necessity to reduce the unnecessary
overload that is placed on the machine learning-based data traffic management components
by incorrectly classifying benign data traffic patterns as malicious data traffic patterns.
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5. Results and Discussions

Our system was tested on the infrastructure of one of the largest telecommunications
service providers. As a result, we collected data from the providers’ 5G network intrusion
detection process in real time. The reviewed dataset has thirty-two network connections
that were checked. Every connection object consists of thirty-nine functions, divided into
three categories. Therefore, the system takes into account network connectivity-based
features, data traffic-based functions, and content-based features. In addition, each unit of
data transfer is flagged as a unit of suspicious or normal traffic. Suspicious traffic is collected
into four groups: remote to local, test, denial of service, and user-root. The following metrics
are considered when evaluating performance: accuracy (A), tradeoff (Tr), reliability (Rb),
precision (Pr), and false alarm rate (FR). Accuracy is calculated as the percentage of correct
predictions of malicious data traffic according to the total number of predictions made
by the IDS. Reliability is measured by the ratio of strong intrusion attempts to the total
number of intrusions. The tradeoff is a hybrid of accuracy and reliability that provides
greater accuracy in classifying data using the following equation:

Tr = 2/((1/Pr) + (1/Rb)) (2)

Accuracy is calculated by adding the number of correctly identified benign and
malicious packages to the ratio of the sum of accurately detected legitimate and malicious
packages and the number of incorrectly identified benign and malicious packages. The
number of false positives can be calculated as the ratio of incorrectly classified legitimate
packets to the total number of correctly classified benign packets and incorrectly classified
benign traffic. Table 1 shows the performance score that defines the five columns of the table.
In addition, performance metrics are calculated based on several parts of the input dataset,
specified in the first column of the table. As we mentioned above, the dataset contains
32 000 000 network connections that were checked by the offered IDS. Furthermore, each
connection object has thirty-nine functions, which are assessed by the intrusion detection
system’s machine learning core, which uses CNN.

The performance evaluation setup considers six fractions of the entire dataset, which
were analyzed and are mentioned in the first column. Furthermore, the five considered
metrics are evaluated through their defining percentages. The first four metrics indicate
that the system can accurately detect malicious data traffic patterns that flow through the
network operator’s core. The values, which were computed relative to the false alarm rate
(FR) metric, further justify the integrated system’s capability to accurately process the data
traffic patterns. Additionally, the consistent system’s behavior in the case of all six fractions
of the dataset demonstrates the scalability of the proposed solution. These features have
also been fully demonstrated during the integrated system’s deployment on the provider’s
infrastructure. In fact, the uniform behavior of the integrated system, which considers
both its intrusion detection and intrusion prevention components, represents one of the
key features. Thus, the system is simply deployed on the target infrastructure, and it is
demonstrated to work reliably regardless of the particular configuration parameters, which
pertain to the particular deployment infrastructure.

The performance appraisal scores confirm that the system is well-scalable relative to
the size of the dataset being analyzed, and that the system can accurately detect malicious
traffic patterns and minimize false positives. The behavior of the mentioned system in
practice is principally important when using 5G data networks for commercial purposes
that transfer and analyze a large number of data connections that need to be checked
proactively. Moreover, it is also relevant to note that the dedicated 5G network cores, which
process the related data traffic, pose unique challenges that are determined by several
practical aspects. First, a sensibly larger number of concurrent data sessions should be
processed, as compared to other types of mobile networks. Furthermore, this induces a
greater variability in the logical structure of the respective data patterns, which should
therefore be processed using efficient algorithmic detection cores. The results of the real-
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world performance assessment process demonstrate that the system is capable of satisfying
all these essential requirements, which individualizes it in the context of similar intrusion
detection systems that are deployed in 5G data networks cores (5GC). This also implies
that the processing time, in the case of all assessed data samples, is in the millisecond
range, which fully ensures the real-time nature of the system. Furthermore, although
we did not have access to the experimental data concerning the execution times of other
similar software platforms, to the best of our knowledge, this represents one of the very few
approaches that determines real-time data processing in the range of milliseconds. This
further constitutes proof of the system’s real-world relevance.

We have also tested our system with Google Colab and have produced the following
results, which are showed on Table 2.

Table 2. Experiment results.

Data Size Accuracy Average Detection Time

10% 94.14% 200 milliseconds
20% 94.10% 180 milliseconds
40% 94.05% 240 milliseconds
60% 93.80% 350 milliseconds
80% 93.40% 294 milliseconds

100% 92.90% 320 milliseconds

Comparing the system to the related approaches such as [48,49], the processing delay
of ours is approximately four times decreased, the false alarm rate has only decreased a by
a small amount, but it must be emphasized that the accuracy score has decreased, please
see Table 3.

Table 3. Comparison.

Approaches Average Detection Time A FR

Our approach 200 milliseconds 94.14% 0.81%
Full set filter 2760 milliseconds 99.55% 1.02%

Info gain 840 milliseconds 99.64% 1.2%
Gain ratio 1310 milliseconds 99.64% 1.4%

Chi-squared 920 milliseconds 99.65% 1.6%
Relief 930 milliseconds 99% 0.98%

6. Conclusions and Future Work

The 5G networks have support for real-world applications. These applications provide
enough potential to form the foundation of an ever-connected community. However,
there are still problems with their design, launch, and implementation, which interest all
aspects of 5G network research. One of the most important of these research problems
pertains to the timely detection of unauthorized access attempts, especially in the case of
commercial networks. Thus, this article presents the current results of research carried out
on this very important topic. This article also describes a real-time intrusion detection and
prevention system based on machine learning. The system was tested by monitoring real-
time 5G data traffic on the network of one of the leading Romanian telecommunications
service providers using real data. The system was checked in terms of the concept of
symmetric and asymmetric communication scenarios. The research shows that it is possible
to develop a software system that blocks illegal traffic in real-time on a 5G data network.
The tests on the real-world 5G network show us that the system can detect and classify
newly arrived data/malicious data and make decisions in milliseconds, which reflects
the computational efficiency and novelty of the offered product. In addition, the article
describes, in an analytical form, the contribution that is related to the topic under discussion,
which analyzes the existing problems and presents possible ways to solve them. The idea
of this system can also be used for future generations of networks. The big advantage



Symmetry 2023, 15, 110 13 of 15

of this system is that it can work in real-time; however, the system also has limitations.
It must be mentioned that the received accuracy score is 0.9414, which is rather low and
must be increased. This is the big limitation of our system, and it must be improved. We
suggest the use of data augmentation techniques to increase the accuracy score. We plan
to improve the algorithm in order to increase the accuracy score. It could be interesting
for other researchers to contribute to our research in order to increase the corresponding
accuracy metric. In the future, we also suggest the addition of post-quantum encryption to
the identification stage of 5G networks, which requires asymmetric encryption. We also
suggest the addition of artificial intelligence to 5G and beyond networks in order to identify
if the attack comes from a classical or quantum computer. Finally, we want to offer the
novel model of 5G security, which will contain needed security mechanisms. The effective
real-world relevance of the presented intrusion detection system is sufficiently justified
by the requirement to automatically process 5G data traffic flows using self-developing
data traffic analysis algorithmic cores and also by its demonstrated efficiency relative to a
real-world deployment. Consequently, any further improvement of its detection accuracy
and computational efficiency is implicitly useful.
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