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Abstract: Almost-Riemann solitons are introduced and studied on an almost contact complex Rie-
mannian manifold, i.e., an almost-contact B-metric manifold, which is obtained from a cosymplectic
manifold of the considered type by means of a contact conformal transformation of the Reeb vector
field, its dual contact 1-form, the B-metric, and its associated B-metric. The potential of the studied
soliton is assumed to be in the vertical distribution, i. e., it is collinear to the Reeb vector field. In
this way, manifolds from the four main classes of the studied manifolds are obtained. The curvature
properties of the resulting manifolds are derived. An explicit example of dimension five is constructed.
The Bochner curvature tensor is used (for a dimension of at least seven) as a conformal invariant to
obtain these properties and to construct an explicit example in relation to the obtained results.
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1. Introduction

The concept of Riemann flow was introduced by C. Udrişte in [1,2]. It refers to the
flow associated with the evolution equation

∂

∂t
(g ? g)(t) = −4R(g(t)),

where R is the Riemann curvature tensor of type (0, 4) corresponding to the metric g at
time t and ? stands for the Kulkarni–Nomizu product of two symmetric tensors of type
(0, 2); e.g., this product has the following form for order-2 covariant tensors g and h:

(g ? h)(x, y, z, w) = g(y, z)h(x, w)− g(x, z)h(y, w)

+ h(y, z)g(x, w)− h(x, z)g(y, w).
(1)

Here and further x, y, z, and w stand for arbitrary vector fields on a smooth mani-
fold M.

Riemann solitons were introduced by I. E. Hirică and C. Udrişte in [3]. They are critical
metrics for Riemann flow as they are self-similar solutions of its evolution equation, i.e., it
evolves over time from a given Riemannian metric on M by means of diffeomorphisms
and dilatations.
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A Riemannian metric g on a smooth manifold M is said to be a Riemann soliton if there
exists a differentiable vector field ϑ and a real constant σ such that [3]

2R + σg ? g + g ?Lϑg = 0,

where Lϑ is the Lie derivative along ϑ. Such a vector field ϑ is known as the potential of
the soliton. In the case in which σ is a differentiable function on M, then g is called an
almost-Riemann soliton. If ϑ is Killing, i. e., Lϑg = 0, then M is a manifold of constant
sectional curvature. In this sense, the Riemann soliton is a generalization of a space of
constant curvature.

In early studies [3], the notion of the Riemann soliton was studied in the context of
Sasakian geometry and it was known as the Sasaki–Riemann soliton.

In recent years, some interesting results have been obtained for Riemann solitons and
almost-Riemann solitons on almost-contact metric manifolds. In [4,5], Venkatesha, Devaraja
and Kumara studied the cases of almost-Kenmotsu manifolds and K-contact manifolds.
Biswas, Chen and U. C. De characterized almost-co-Kähler manifolds whose metrics are
Riemann solitons in [6]. K. De and U. C. De proved in [7] some geometric properties of
almost-Riemann solitons on non-cosymplectic normal almost-contact metric manifolds
and in particular on quasi-Sasakian 3-dimensional manifolds. In [8], Chidananda and
Venkatesha studied Riemann solitons on non-Sasakian (κ, µ)-contact manifolds in relation
with the η-Einstein property, where the potential is an infinitesimal contact transformation
or collinear to the Reeb vector field.

A.-M. Blaga contributed to the study of Riemann and almost-Riemann solitons in [9] for
Riemannian manifolds, together with Laţcu, and in [10] for (α, β)-contact metric manifolds.
In the latter case, compact Riemann solitons with constant-length potential were shown
to be trivial. This result was extended by Tokura, Barboza, Batista, and Menezes in [11]
without additional conditions on the potential.

D-homothetic deformations were introduced by S. Tanno [12] in almost-contact metric
geometry, where D denotes the contact distribution. These transformations preserve the
K-contact or Sasakian properties of a structure. In [13], Blaga studied almost-Riemann
solitons on a D-homothetically deformed Kenmotsu manifold with different conditions on
the potential and explicitly obtain Ricci and scalar curvatures for some cases.

An almost-contact complex Riemannian (or accR for short) manifold is an odd-dimension-
al pseudo-Riemannian manifold M equipped with a B-metric g and an almost-contact
structure (ϕ, ξ, η) and therefore M has a codimension-one distributionH = ker η equipped
with a complex Riemannian structure. These manifolds are also known as almost-contact
B-metric manifolds [14].

What mainly distinguishes an accR structure from the better-known almost-contact
metric structure is the presence of another metric of the same type associated with the
given metric. Both B-metrics have a neutral signature onH and the restriction of ϕ onH
(actually, an almost-complex structure) acts as an anti-isometry on the metric. Manifolds of
this type have been studied and investigated, for example, in [14–27].

The aim of this paper was to investigate the interaction between almost-Riemann soli-
tons and the accR structure. One way to realize this goal is to use conformal transformations
of the accR structure. Contact conformal transformations of B-metric were introduced and
initially studied in [23,24] by K. Gribachev and the author. The metric deformation depends
on both the two B-metrics and their restriction on the vertical distribution determined
by ξ. A generalization of these transformations and the D-homothetic deformations of
the accR structure (introduced in [28]) that use a triplet of functions on the manifold are
the following transformations. Contact conformal transformations of a general type that
transform not only the B-metrics but also ξ and η were studied in [18]. According to this
work, the class of accR manifolds, which is closed under the action of these transformations,
is the direct sum of the four main classes among the eleven basic classes of these manifolds,
known from the classification of Ganchev–Mihova–Gribachev presented in [14]. The main
classes are designated as those for which the manifolds are characterized by the fact that
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the covariant derivative of the structure tensors with respect to the Levi–Civita connection
of any of the B-metrics is expressed only by a pair of B-metrics and the corresponding
traces.

The present paper is organized as follows. Section 2 recalls the basic concepts of
accR manifolds and contact conformal transformations of the structure tensors on them.
Section 3 introduces the notion of an almost-Riemann soliton with vertical potential on a
transformed accR manifold and demonstrates the conditions that imply the flatness of the
manifold. Section 4 presents the curvature properties of contact conformal accR manifolds
that are transformed from such manifolds of cosymplectic type and admit the studied
soliton. Section 5 is devoted to the particular case of the situation discussed in the previous
section when the transformed manifold is also of cosymplectic type. The last two sections
provide explicit examples for the studied manifolds in relation with the obtained results.

2. Almost-Contact Complex Riemannian Manifolds and Their Contact
Conformal Transformations

Here we study almost-contact complex Riemannian manifolds or accR manifolds for short,
also known as almost-contact B-metric manifolds. Such a manifold, denoted by (M, ϕ, ξ, η,
g), is a (2n + 1)-dimensional differentiable manifold, which is equipped with an almost-
contact structure (ϕ, ξ, η) and the B-metric g. This means that ϕ is an endomorphism of the
tangent bundle TM, ξ is a Reeb vector field, and η is its dual contact 1-form. Moreover, g
is a pseudo-Riemannian metric of signature (n + 1, n) satisfying the following algebraic
relations: [14]

ϕξ = 0, ϕ2 = −ι + η ⊗ ξ, η ◦ ϕ = 0, η(ξ) = 1,
g(ϕx, ϕy) = −g(x, y) + η(x)η(y),

(2)

where ι is the identity transformation on the set Γ(TM) of vector fields on M.
As consequences of (2), the following equations are known:

g(ϕx, y) = g(x, ϕy), g(x, ξ) = η(x), g(ξ, ξ) = 1, η(∇xξ) = 0,

where ∇ is the Levi-Civita connection of g.
The investigated manifold (M, ϕ, ξ, η, g) has another B-metric in addition to g. This is

the associated metric g̃ of g on M, defined by

g̃(x, y) = g(x, ϕy) + η(x)η(y).

Obviously, g̃ as well as g satisfies the last condition in (2) as well and has the
same signature.

A classification of accR manifolds containing eleven basic classes F1, F2, . . . , F11 is
given in [14]. This classification is made with respect to the tensor F of type (0, 3) defined by

F(x, y, z) = g
(
(∇x ϕ)y, z

)
.

The following identities are valid:

F(x, y, z) = F(x, z, y) = F(x, ϕy, ϕz) + η(y)F(x, ξ, z) + η(z)F(x, y, ξ),

F(x, ϕy, ξ) = (∇xη)y = g(∇xξ, y).

The special class F0, determined by the condition F = 0, is the intersection of the basic
classes and it is known as the class of the cosymplectic accR manifolds. Sometimes, in the
context of classification and for brevity, these manifolds are called F0-manifolds.

Let {ei; ξ} (i = 1, 2, . . . , 2n) be a basis of Tp M and let
(

gij) be the inverse matrix of the
matrix

(
gij
)

of g. Then the following 1-forms are associated with F:

θ = gijF(ei, ej, ·), θ∗ = gijF(ei, ϕej, ·), ω = F(ξ, ξ, ·).
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These 1-forms are known also as the Lee forms of the considered manifold. Obviously,
the identities ω(ξ) = 0 and θ∗ ◦ ϕ = −θ ◦ ϕ2 are always valid.

In [23], the so-called contact conformal transformation of the B-metric g is introduced.
It maps g into a new B-metric ḡ using both the B-metrics. Later, in [18], this transformation
is generalized as a contact conformal transformation that gives an accR structure (ϕ, ξ̄, η̄, ḡ)
as follows:

ξ̄ = e−wξ, η̄ = ewη,

ḡ = e2u cos 2v g + e2u sin 2v g̃ +
(
e2w − e2u cos 2v− e2u sin 2v

)
η ⊗ η,

(3)

where u, v, w are differentiable functions on M. The group of these transformations is
denoted by G and for brevity we call each of the elements of G a G-transformation.

Note that the G-transformations of (ϕ, ξ, η, g) are a generalization of the D-homothetic
deformations, whereD denotes the contact distribution ker η. Namely, for a positive constant
λ, a D-homothetic deformation is defined by [28] (see also [29] (p. 125) for the metric case)

ξ̄ = λ−1ξ, η̄ = λ η, ḡ = −λ g + λ(λ + 1)η ⊗ η.

It is clear that D-homothetic deformation is a G-transformation of the accR structure (ϕ, ξ,
η, g) for constants u = 1

2 ln λ, v = π
2 , and w = ln λ.

The structure (ϕ, ξ, η, g) determines two mutually orthogonal distributions with re-
spect to g. They are the horizontal (contact) distribution H = ker η and the vertical
distribution V = span ξ. They coincide with the respective distributions for the structure
(ϕ, ξ̄, η̄, ḡ), i.e., H = H̄ = ker η̄ and V = V̄ = span ξ̄, due to the equalities in the first line
of (3).

The corresponding tensors F and F̄ for the accR structures (ϕ, ξ, η, g) and (ϕ, ξ̄, η̄, ḡ)
are related by means of a G-transformation (3) as follows (e.g., [18]; see also [25])

2F̄(x, y, z) = 2e2u cos 2v F(x, y, z) + e2u sin 2v[P(x, y, z) + P(x, z, y)]

+ (e2w − e2u cos 2v)[Q(x, y, z) + Q(x, z, y) + Q(y, z, x) + Q(z, y, x)]

− 2e2u[γ(z)g(ϕx, ϕy) + δ(z)g(x, ϕy) + γ(y)g(ϕx, ϕz) + δ(y)g(x, ϕz)]

+ 2e2wη(x)[η(y)dw(ϕz) + η(z)dw(ϕy)],

(4)

where for brevity we use the following notation:

P(x, y, z) = F(ϕy, z, x)− F(y, ϕz, x) + F(x, ϕy, ξ)η(z),

Q(x, y, z) = [F(x, y, ξ) + F(ϕy, ϕx, ξ)]η(z),

γ(z) = cos 2v α(z) + sin 2v β(z), δ(z) = cos 2v β(z)− sin 2v α(z),

α = du ◦ ϕ + dv, β = du− dv ◦ ϕ. (5)

In the general case, the relations between the Lee forms of the corresponding manifolds
(M, ϕ, ξ, η, g) and (M, ϕ, ξ̄, η̄, ḡ) are as follows (see [18]):

θ̄ = θ + 2n α, θ̄∗ = θ∗ + 2n β, ω̄ = ω + dw ◦ ϕ. (6)

As proven in [20] (Theorem 4.2, p. 62), the class of accR manifolds that is preserved
by G-transformations is the direct sum of all main classes F1 ⊕F4 ⊕F5 ⊕F11, denoted
here for brevity as G(F0). The main classes are the only classes of accR manifolds in
the Ganchev–Mihova–Gribachev classification, where F is expressed only by the metric
(0, 2)-tensors g, g̃, η ⊗ η, and the Lee forms. The class G(F0) obviously contains F0.
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3. Almost Riemann Solitons with Vertical Potential on Contact Conformal
accR Manifolds

Definition 1. It can be said that the B-metric ḡ generates a Riemann soliton with potential ϑ̄
and constant σ̄, denoted (ḡ, ϑ̄, σ̄), on an accR manifold (M, ϕ, ξ̄, η̄, ḡ), if the following condition
is satisfied:

2R̄ + σ̄ ḡ ? ḡ + ḡ ?Lϑ̄ ḡ = 0, (7)

where R̄ is the Riemannian curvature tensor of (M, ϕ, ξ̄, η̄, ḡ) for ḡ. If σ̄ is a differentiable function
on M, then the generated soliton is called an almost-Riemann soliton (ḡ, ϑ̄, σ̄) on (M, ϕ, ξ̄, η̄, ḡ).

In this work, we consider the case in which the potential ϑ̄ is a vertical vector field,
i.e., ϑ̄ is collinear to ξ̄. Then we have the expression ϑ̄ = k̄ ξ̄ for a differentiable function k̄
on the manifold. Obviously, the equality k̄ = η̄(ϑ̄) holds. We require that the potential ϑ̄
does not degenerate at any point on the manifold (M, ϕ, ξ̄, η̄, ḡ). This means that k̄ does not
vanish anywhere, i.e., k̄ 6= 0.

The following expression of the Lie derivative in terms of the covariant derivative
with respect to the Levi-Civita connection ∇̄ of ḡ is well-known:(

Lξ̄ ḡ
)
(x, y) = ḡ

(
∇̄x ξ̄, y

)
+ ḡ
(
x, ∇̄y ξ̄

)
.

Similarly, the following formula can be obtained:

(Lϑ̄ ḡ)(x, y) = ḡ
(
∇̄xϑ̄, y

)
+ ḡ
(

x, ∇̄yϑ̄
)
. (8)

For a vertical potential we have ∇̄xϑ̄ = ∇̄
(
k̄ ξ̄
)
= k̄∇̄ξ̄ + dk̄(x)ξ̄. Then, the latter two

equalities imply the formula

(Lϑ̄ ḡ)(x, y) = k̄
(
Lξ̄ ḡ

)
(x, y) + h̄1(x, y), (9)

where we use the following notation

h̄1(x, y) = dk̄(x)η̄(y) + dk̄(y)η̄(x). (10)

Obviously, the (0, 2)-tensor h̄1 is symmetric and has the properties

h̄1(ϕx, ϕy) = 0, h̄1(ξ̄, ξ̄) = tr h̄1 = 2 dk̄(ξ̄).

Therefore, it vanishes onH. Furthermore, h̄1 vanishes if and only if k̄ is a constant.
The following theorem holds for an arbitrary F0-manifold M. It is not necessary to

assume that the structure of M is obtained by means of some G-transformation.

Theorem 1. Every F0-manifold admitting an almost-Riemann soliton with vertical potential is flat.

Proof. Let us consider an F0-manifold (M, ϕ, ξ, η, g) admitting an almost-Riemann soliton
(g, ϑ, σ) with vertical potential ϑ = k ξ. Then its curvature tensor for g has the following
form, similar to (7):

R =
1
2

σ g ? g− 1
2

g ?Lϑg.

Since ∇ξ vanishes on an F0-manifold, then we have ∇xϑ = ∇x(kξ) = dk(x)ξ. Due to
the equality (Lϑg)(x, y) = g(∇xϑ, y) + g

(
x,∇yϑ

)
, which is the analogue of (8) on (M, ϕ,

ξ, η, g), we can observe in this case that Lϑg = h1, where we use the following notation,
similarly to (10):

h1(x, y) = dk(x)η(y) + dk(y)η(x). (11)
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Thus, the curvature tensor of such a manifold (M, ϕ, ξ, η, g) takes the form

R = −1
2

σ g ? g− 1
2

g ? h1. (12)

Using (11) and (12), we obtain the Ricci tensor and scalar curvatures for g and g̃,
respectively, given in the following expressions:

ρ = −{2n σ + dk(ξ)}g− 1
2
(2n− 1)h1, (13)

τ = −2n{(2n + 1)σ + 2 dk(ξ)}, τ̃ = 0. (14)

The Riemannian curvature tensor R of an F0-manifold has the Kähler property

R(x, y, ϕz, ϕw) = −R(x, y, z, w) (15)

since ϕ, ξ, and η are covariant constant on M with respect to ∇ [24]. As consequences
of (15) and (11) we have ρ(ξ, ξ) = 0 and h1(ξ, ξ) = 2 dk(ξ), respectively, which, together
with (13), imply that

dk(ξ) = −σ. (16)

On the other hand, by virtue of (12) and (1), we obtain

R(x, y, ϕz, ϕw) = −1
2

σ(g∗ ? g∗)(x, y, z, w)− 1
2
(g∗ ? h∗1)(x, y, z, w), (17)

where we use the notations g∗ = g(·, ϕ·), h∗1 = h1(·, ϕ·). Then, taking into account the
fact that g∗ and h∗1 are traceless due to the properties of ϕ, the equalities (15) and (17)
consequently yield

R = −1
2

σ g∗ ? g∗ +
1
2

g∗ ? h∗1 , ρ = σ[g− η ⊗ η], τ = 2nσ, τ̃ = 0. (18)

Comparing the values of τ in (18) and (14), we obtain dk(ξ) = −(n + 1)σ, which due to (16)
gives dk(ξ) = σ = 0. Therefore, from (18) it follows that ρ = 0, which, together with (13),
implies that h1 = 0 and then R = 0, bearing in mind (12).

4. G(F0)-Manifolds Admitting the Studied Solitons

In this section, we consider (M, ϕ, ξ, η, g) as an F0-manifold, i. e., F = 0. Let the
resulting accR manifold (M, ϕ, ξ̄, η̄, ḡ) via a G-transformation be called a G(F0)-manifold.
Then, the following expression follows from (4) and gives the form of the fundamental
tensor of (M, ϕ, ξ̄, η̄, ḡ):

2F̄(x, y, z) = −2e2u{γ(z)g(ϕx, ϕy) + δ(z)g(x, ϕy) + γ(y)g(ϕx, ϕz) + δ(y)g(x, ϕz)
}

+ 2e2wη(x){η(y)dw(ϕz) + η(z)dw(ϕy)}.

Then, using (5) and (6), the corresponding Lee forms are specialized as follows:

θ̄ = 2n{du ◦ ϕ + dv}, θ̄∗ = 2n{du− dv ◦ ϕ}, ω̄ = dw ◦ ϕ.

Theorem 2. A G(F0)-manifold (M, ϕ, ξ̄, η̄, ḡ) admitting an almost-Riemann soliton (ḡ, ϑ̄, σ̄)
with vertical potential has a curvature tensor of the following form:

R̄ = −
[

σ̄
2 + k̄ du(ξ̄)

]
ḡ ? ḡ− k̄

{
dv(ξ̄) ḡ ? ˜̄g −

[
du(ξ̄) + dv(ξ̄)

]
ḡ ? (η̄ ⊗ η̄)

}
− 1

2 ḡ ? h̄1 − 1
2 k̄ ḡ ? h̄2,

(19)
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where
h̄2(x, y) = η̄(x)dw(ϕ2y) + η̄(y)dw(ϕ2x). (20)

Proof. Bearing in mind (7), we have to determine Lϑ̄ ḡ. The expression of the Lie derivative
of ḡ along ξ̄ for a G(F0)-manifold is given in [22] in the form:(

Lξ̄ ḡ
)
(x, y) =− 2e2u−w[cos 2v du(ξ)− sin 2v dv(ξ)]g(ϕx, ϕy)

+ 2e2u−w[cos 2v dv(ξ) + sin 2v du(ξ)]g(x, ϕy)

+ ew
[
η(x)dw(ϕ2y) + η(y)dw(ϕ2x)

]
.

(21)

Using the second line in (3), we derive the following formulas:

g(ϕx, ϕy) = e−2u[cos 2v ḡ(ϕx, ϕy) + sin 2v ḡ(x, ϕy)],

g(x, ϕy) = e−2u[cos 2v ḡ(x, ϕy)− sin 2v ḡ(ϕx, ϕy)],

which we apply in (21), together with the first line in (3). In this way, we obtian(
Lξ̄ ḡ

)
(x, y) =− 2

[
du(ξ̄)ḡ(ϕx, ϕy)− dv(ξ̄)ḡ(x, ϕy)

]
+ h̄2(x, y), (22)

where we introduce the notation (20). Obviously, h̄2 is a symmetric (0, 2)-tensor having the
following properties:

h̄2(ϕx, ϕy) = h̄2(ξ̄, ξ̄) = tr h̄2 = 0, h̄2(x, y) = h̄2(x, ξ̄)η̄(y) + η̄(x)h̄2(ξ̄, y).

Moreover, the formula h̄2(x, ξ̄) = dw(ϕ2x) is valid. It is easy to conclude that h̄2
vanishes if and only if the function w is constant onH, i.e., dw ◦ ϕ2 = 0.

The formula in (22) can be rewritten in the following form:

Lξ̄ ḡ = 2
{

du(ξ̄)ḡ + dv(ξ̄) ˜̄g−
[
du(ξ̄) + dv(ξ̄)

]
η̄ ⊗ η̄

}
+ h̄2.

Then we substitute the last equality in (9) and get the following

Lϑ̄ ḡ = 2k̄
{

du(ξ̄)ḡ + dv(ξ̄) ˜̄g−
[
du(ξ̄) + dv(ξ̄)

]
η̄ ⊗ η̄

}
+ h̄1 + k̄h̄2.

Using the Kulkarni–Nomizu product for ḡ and the last obtained Lie derivative,
we obtain

ḡ ?Lϑ̄ ḡ = 2k̄
{

du(ξ̄) ḡ ? ḡ + dv(ξ̄) ḡ ? ˜̄g−
[
du(ξ̄) + dv(ξ̄)

]
ḡ ? (η̄ ⊗ η̄)

}
+ ḡ ? h̄1 + k̄ ḡ ? h̄2.

(23)

Then, according to (7) and (23), we can establish the truthfulness of the statement.

Taking the trace of (19), we obtain the expression of the Ricci tensor of the almost-
Riemann soliton satisfying the conditions of Theorem 2 as follows:

ρ̄ = −
[
2n σ̄ + dk̄(ξ̄) + (4n− 1)k̄ du(ξ̄)

]
ḡ

− (2n− 1)k̄
{

dv(ξ̄) ˜̄g−
[
du(ξ̄) + dv(ξ̄)

]
η̄ ⊗ η̄

}
− 1

2 (2n− 1)
[
h̄1 + k̄ h̄2

]
.

(24)

Now, we take the trace of the Ricci tensor in (24) to obtain the scalar curvature of
(M, ϕ, ξ̄, η̄, ḡ) as follows

τ̄ = −2n
[
(2n + 1)σ̄ + 2 dk̄(ξ̄) + 4nk̄ du(ξ̄)

]
. (25)
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Then, we compute the associated quantity τ̄∗ of τ̄ defined by τ̄∗ = ḡij ϕk
j ρ̄ik and

using (24), we obtain
τ̄∗ = 2n(2n− 1)k̄ dv(ξ̄). (26)

For every F0-manifold, the relation τ̃ = −τ∗ is known from [17], where τ̃ is the scalar
curvature for g̃. However, for G(F0)-manifolds, which are outside of F0, this is not true, so
there we use the so-called ∗-scalar curvature.

Corollary 1. A G(F0)-manifold (M, ϕ, ξ̄, η̄, ḡ) with an almost-Riemann soliton (ḡ, ϑ̄, σ̄) and a
vertical potential has vanishing ∗-scalar curvature if and only if the function v is a vertical constant,
i.e., dv(ξ̄) = 0.

Proof. This statement follows from (26) and the condition that k̄ is not identically zero;
otherwise, it would lead to a degeneration of the potential ϑ̄.

In [21], the notion of an Einstein-like accR manifold (M, ϕ, ξ, η, g) was introduced by
means of the following condition for its Ricci tensor:

ρ = a g + b g̃ + c η ⊗ η, (27)

where (a, b, c) is some triplet of constants. In particular, when b = 0 and b = c = 0, the
manifold is called an η-Einstein manifold and an Einstein manifold, respectively. If a, b, c are
functions on M, then the manifold satisfying condition (27) is called almost-Einstein-like,
and in particular for b = 0 and b = c = 0 it is called an almost-η-Einstein and almost-Einstein
manifold, respectively.

Theorem 3. A G(F0)-manifold (M, ϕ, ξ̄, η̄, ḡ) with an almost Riemann soliton (ḡ, ϑ̄, σ̄) and
a vertical potential is an almost Einstein-like manifold if and only if the condition k̄ = λew

(λ = const) is satisfied onH.
The almost-Einstein-like manifold (M, ϕ, ξ̄, η̄, ḡ) has the following Ricci tensor:

ρ̄ = −
[
2n σ̄ + dk̄(ξ̄) + (4n− 1)k̄ du(ξ̄)

]
ḡ− (2n− 1)k̄ dv(ξ̄) ˜̄g

− (2n− 1)
{

dk̄(ξ̄)− k̄
[
du(ξ̄) + dv(ξ̄)

]}
η̄ ⊗ η̄,

(28)

and the expressions of the scalar curvatures are the same as those in (25) and (26).

Proof. Bearing in mind (24) and the definition of an almost-Einstein-like accR manifold,
we can conclude that the considered manifold is almost Einstein-like if and only if h̄1 + k̄ h̄2
is a function multiple of η̄ ⊗ η̄. Therefore, we have the following condition due to (10)
and (20)

dk̄ + k̄ dw ◦ ϕ2 = f η̄, (29)

where f is an arbitrary function on the manifold. An immediate consequence of (29) for ξ̄
is f = dk̄(ξ̄). Then, we obtain

h̄1 + k̄ h̄2 = 2 dk̄(ξ̄)η̄ ⊗ η̄, (30)

and in particular for f = 0 the function k̄ is a vertical constant.
Applying ϕ to the argument of (29), we can observe the following consequence:

dk̄ ◦ ϕ− k̄ dw ◦ ϕ = 0.

Since k̄ is not zero, the last equation has the following solution: k̄ = λew restricted on H,
where λ is an arbitrary constant.

The formula in (28) follows from (24) and (30). It implies the same expressions of τ̄
and τ̄∗ as in (25) and (26).
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Theorem 4. Let (M, ϕ, ξ̄, η̄, ḡ) be a G(F0)-manifold with an almost-Riemann soliton (ḡ, ϑ̄, σ̄)
and a vertical potential. Then (M, ϕ, ξ̄, η̄, ḡ) is:

(i) an almost-η-Einstein manifold if and only if v is a vertical constant, i.e., dv(ξ̄) = 0;
(ii) an almost-Einstein manifold if and only if v is a vertical constant and the condition k̄ = µeu

(µ = const) is satisfied on V .

Proof. The statements in (i) and (ii) are easily derived by considering the particular cases
of (27) that are reflected in (28). The equality in (ii) is a solution of dk̄(ξ̄) = k̄ du(ξ̄).

Corollary 2. Let (M, ϕ, ξ̄, η̄, ḡ) be a G(F0)-manifold with an almost-Riemann soliton (ḡ, ϑ̄, σ̄)
and a vertical potential. Then the Ricci tensor and the scalar curvatures are the following when
(M, ϕ, ξ̄, η̄, ḡ) is:

(i) an almost-η-Einstein manifold:

ρ̄ = −
[
2n σ̄ + dk̄(ξ̄) + (4n− 1)k̄ du(ξ̄)

]
ḡ− (2n− 1)

[
dk̄(ξ̄)− k̄ du(ξ̄)

]
η̄ ⊗ η̄,

τ̄ as in (25) and τ̄∗ = 0.
(ii) an almost-Einstein manifold:

ρ̄ = −2n
[
σ̄ + 2k̄ du(ξ̄)

]
ḡ, τ̄ = −2n(2n + 1)

[
σ̄ + 2k̄ du(ξ̄)

]
, τ̄∗ = 0.

Corollary 3. A G(F0)-manifold (M, ϕ, ξ̄, η̄, ḡ) with an almost-Riemann soliton (ḡ, ϑ̄, σ̄) and a
vertical potential is an Einstein-like manifold if and only if the functions σ̄, k̄, u and v satisfy the
following conditions:

σ̄ + 2k̄ du(ξ̄) = const, dk̄(ξ̄)− k̄ du(ξ̄) = const, k̄ dv(ξ̄) = const. (31)

Moreover, (ḡ, ϑ̄, σ̄) is a Riemann soliton with a vertical potential on the Einstein-like manifold if
and only if dk̄(ξ̄), k̄ du(ξ̄), and k̄ dv(ξ̄) are constants.

Proof. The considered manifold is Einstein-like if and only if the three coefficients of (0, 2)-
tensors in (28) are constants. This system of equations is equivalent to the equations in (31).
The case for the Riemann soliton follows from σ̄ = const and (31).

4.1. Example of an F5-Manifold of Dimension 5

A trivial example of an F0-manifold
(
R2n+1, ϕ, ξ, η, g

)
of an arbitrary dimension is

given in [14]. An accR structure is defined in the space R2n+1 =
{(

x1, . . . , xn; y1, . . . , yn; t
)}

in the following way:

ϕ
∂

∂xi =
∂

∂yi , ϕ
∂

∂yi = −
∂

∂xi , ϕ
∂

∂t
= 0, ξ =

∂

∂t
, η = dt,

g(z, z) = −δijλ
iλj + δijµ

iµj + ν2,

where z = λi ∂

∂xi + µi ∂

∂yi + ν
∂

∂t
and δij is the Kronecker delta.

In [19] (see also [20] (Example 5, p. 105)), we give an example of a pair of functions
(u, v) on R2n+1 for dimension 5, i.e., n = 2; it can be written as follows

u = ln

√
|t|

(x1 + y2)
2
+ (x2 − y1)

2 , v = arctan
x1 + y2

x2 − y1 , (32)

where x1 + y2 6= 0, x2 − y1 6= 0 and t 6= 0.
It is shown that (u, v) satisfy the condition dv = −du ◦ ϕ; therefore, the G-trans-

formation determined by (u, v, w = 0) deforms the given F0-manifold into an F5-manifold(
R2n+1, ϕ, ξ, η, ḡ

)
defined by F̄(x, y, z) = − 1

4 θ̄∗(ξ){ḡ(x, ϕy)η(z) + ḡ(x, ϕz)η(y)}, where
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θ̄∗(ξ) = 4 du(ξ) = 2
t . Its curvature tensor, the scalar curvature, and the ∗-scalar curvature

are given in the form

R̄ =
τ̄

32
{ḡ ? ḡ− ḡ ? (η ⊗ η)}, τ̄ = − 8

t2 , τ̄∗ = 0. (33)

Now, let us introduce an almost-Riemann soliton (ḡ, ϑ̄, σ̄) with vertical potential
ϑ̄ = k̄η on

(
R2n+1, ϕ, ξ, η, ḡ

)
, assuming that we have the following functions:

σ̄ =
1

3t2 , k̄ = − 1
6t

, (34)

which determine the soliton.
Bearing in mind Theorem 2, we can check the expression of R̄ in (19). Using (32)

and (34), we compute successively h̄2 = 0 due to w = 0, h̄1 = − 1
3t2 η ⊗ η, du(ξ) = 1

2t ,
dv(ξ) = 0, and obtain for the coefficients in (19) the following:

−
[

σ̄
2 + k̄ du(ξ̄)

]
= − 1

4t2 , −k̄ dv(ξ̄) = 0, k̄
[
du(ξ̄) + dv(ξ̄)

]
= 1

12t2 .

Then (19) takes the form

R̄ = − 1
4t2 {ḡ ? ḡ− ḡ ? (η ⊗ η)}, (35)

which is in agreement with (33). Thus, we verify Theorem 2 and Corollary 1.
Using (35), we can observe the following consequences:

ρ̄ = − 1
4t2 {7ḡ− 3η ⊗ η}, τ̄ = − 8

t2 , τ̄∗ = 0.

We can thus conclude that the constructed manifold has negative scalar curvature and
zero ∗-scalar curvature, and that it is almost η-Einstein-like (a particular case of almost
Einstein-like manifolds), which is not almost Einstein. These results support Corollary 1,
Theorem 3, Theorem 4(i), and Corollary 2(i).

In addition, we can calculate the scalar curvature ˜̄τ with respect to ˜̄g. In [17] (see
also [20] (Corollary 2.4, p. 38)), the relation of this quantity to the ∗-scalar curvature is
expressed. For the case under consideration, the given formula can be read in the following
way: ˜̄τ = −τ̄∗ − 5

4 (θ
∗(ξ))2 − 2ξ(θ∗(ξ)). Using the fact that θ∗(ξ) = 2

t in the present
example, we get ˜̄τ = − 1

t2 , i.e., it is also negative as τ̄.

5. F0-Manifolds That Are G(F0)-Manifolds and Admit the Studied Solitons

In this section, we consider an F0-manifold (M, ϕ, ξ, η, g), i.e., F = 0. Moreover, the
resulting manifold (M, ϕ, ξ̄, η̄, ḡ), via a G-transformation, is again in F0, i.e., F̄ = 0.

To ensure that both considered manifolds are in F0, the transformation between them
must be of a subgroup G0 of the group G and defined by the following conditions [18]:

du ◦ ϕ = dv ◦ ϕ2, du(ξ) = dv(ξ) = dw ◦ ϕ = 0. (36)

In this case, the relationship between the curvature tensors R and R̄ for g and ḡ,
respectively, is known from [20] (p. 83) (see also [18,24]) and can be written as follows:

R̄ = R− g ? S + g∗ ? S∗ + (η ⊗ η)? S, (37)

where S∗ = S(·, ϕ·) and

S = ∇du + du⊗ du + (du ◦ ϕ)⊗ (du ◦ ϕ) + 1
2 du(grad u)[g− η ⊗ η]

− 1
2 du(ϕ grad u)[g̃− η ⊗ η].

(38)
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Theorem 5. Let (M, ϕ, ξ, η, g) and its image via a G0-transformation (M, ϕ, ξ̄, η̄, ḡ) be F0-mani-
folds. Then the corresponding scalar curvatures for the pair of B-metrics satisfy the relations

τ̄ = e−4u cos 4v{τ − 4(n− 1) tr S}+ e−4u sin 4v{τ̃ + 4(n− 1) tr S∗},
˜̄τ = e−4u cos 4v{τ̃ + 4(n− 1) tr S∗} − e−4u sin 4v{τ − 4(n− 1) tr S},

(39)

where
tr S = δ(du) + 2n du(grad u), tr S∗ = δ̃(du) + 2n du(ϕ grad u) (40)

for δ(du) = gij(∇du)ij and δ̃(du) = g̃ij(∇du)ij.

Proof. Using (37) with (38) for the corresponding curvature tensors R and R̄, through
lengthy but standard calculations, we obtain expressions for the corresponding scalar
curvatures given in (39).

Obviously, the trace δ(du) involved in (40) is actually the Laplacian of u for g, usually
denoted by ∆u or ∇2u, whereas δ̃(du) is some kind of associated quantity of ∆u using g̃.

Corollary 4. Let (g̃, ϑ̄, σ̄) be an almost-Riemann soliton with vertical potential on (M, ϕ, ξ̄, η̄, ḡ)
and let the requirements of Theorem 5 be fulfilled. Then (M, ϕ, ξ, η, g) has constant scalar curvatures
for both B-metrics g and g̃.

Proof. According to Theorem 1, (M, ϕ, ξ̄, η̄, ḡ) is flat, i. e., R̄ = 0 and therefore we have
τ̄ = ˜̄τ = σ̄ = dk̄ = 0. Substituting the last equalities into (39) and considering (40), we get

τ = 4(n− 1)
{

δ(du) + 2n du(grad u)
}

,

τ̃ = −4(n− 1)
{

δ̃(du) + 2n du(ϕ grad u)
}

.
(41)

In this way, we can obtain the conditions that the scalar curvatures of an F0-manifold
must satisfy in order to be mapped by a G0-transformation to an F0-manifold, admitting
an almost-Riemann soliton under study.

As a consequence of Theorem 5.2 in [20] (p. 81), we can deduce for an F0-manifold
that the functions arctan τ̃

τ and ln
√

τ2 + τ̃2 are constants, which implies that τ and τ̃
are constants.

As is well known, the Bochner curvature tensor B on a Kähler manifold can be
considered in some sense as an analogue of the Weyl curvature tensor, and the vanishing of
B has remarkable geometric interpretations.

In [24], the Bochner curvature tensor of ϕ-holomorphic type for a curvature tensor with
the Kähler property is introduced on an arbitrary accR manifold of dimension at least
7, i. e., n ≥ 3. The Riemannian curvature tensor R of an F0-manifold has the Kähler
property (15) and the definition of the Bochner curvature tensor B(R) as a tensor of type
(0, 4) corresponding to R can be written in the following form:

B(R) = R− 1
2(n−2){g ? ρ− g∗ ? ρ∗ − (η ⊗ η)? ρ}

+ 1
8(n−1)(n−2){τ[g ? g− g∗ ? g∗ − 2(η ⊗ η)? g]

+2τ̃[g ? g∗ − (η ⊗ η)? g∗]},
(42)

where ρ∗ = ρ(·, ϕ·).

Corollary 5. Let (g̃, ϑ̄, σ̄) be an almost-Riemann soliton with vertical potential on (M, ϕ, ξ̄, η̄, ḡ)
of dimension at least 7 and let the requirements of Theorem 5 be fulfilled. Then the Ricci tensor of
(M, ϕ, ξ, η, g) has the following form:

ρ = −2(n− 2)S + 1
4(n−1){τ[g− η ⊗ η] + τ̃[g̃− η ⊗ η]}, (43)
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where S is determined by (38). Moreover, tr S, tr S∗, τ and τ̃ are constants.

Proof. It is known from [18] that B(R) on an F0-manifold is a contact conformal invariant
of the group G0, i.e., B(R̄) = B(R).

For the considered manifold (M, ϕ, ξ̄, η̄, ḡ) we obtained R̄ = 0. Hence, B(R̄) also
vanishes and this means B(R) = 0 for (M, ϕ, ξ, η, g). Then, due to (42), we can obtain an
expression of R as follows:

R = 1
2(n−2){g ? ρ− g∗ ? ρ∗ − (η ⊗ η)? ρ}
− 1

8(n−1)(n−2){τ[g ? g− g∗ ? g∗ − 2(η ⊗ η)? g] +2τ̃[g ? g∗ − (η ⊗ η)? g∗]}
(44)

where τ and τ̃ are constants, according to Corollary 4 and have values given in (41).
Using the fact that the Ricci tensor is hybrid with respect to ϕ, i.e., ρ = −ρ(ϕ·, ϕ·), on

an F0-manifold, we can rewrite (44) in the following more compact form:

R = −g ? L + g∗ ? L∗ + (η ⊗ η)? L, (45)

where L is defined by

L =
1

2(n− 2)
ρ− 1

8(n− 1)(n− 2)
{τ[g− η ⊗ η] + τ̃[g̃− η ⊗ η]}. (46)

The vanishing of R̄ and (37) imply the following

R = g ? S− g∗ ? S∗ − (η ⊗ η)? S. (47)

Comparing (47) with (45), we deduce that S = −L and consequently (43) holds.
Equalities (40) and (41) imply that tr S and tr S∗ are also constants like τ and τ̃.

5.1. Example of an F0-Manifold of Arbitrary Dimension

Let us consider again the F0-manifold
(
R2n+1, ϕ, ξ, η, g

)
that was described at the

beginning of Section 4.1.
In [23], the following example of a pair of functions (u, v) on an accR manifold is given

as follows:

u =
n

∑
i=1

ln
√(

xi
)2

+
(
yi
)2, v =

n

∑
i=1

arctan
yi

xi . (48)

It is shown that (u, v) is a ϕ-holomorphic pair of functions, i.e., the conditions for them
in (36) are satisfied.

Let w be the function et. Then, we have dw = wη, which implies dw ◦ ϕ = 0. As
a result, (36) holds and (u, v, w) determine a contact conformal transformation from G0.
This transformation deforms

(
R2n+1, ϕ, ξ, η, g

)
into (R2n+1, ϕ, ξ̄, η̄, ḡ), which is again an

F0-manifold.
Bearing in mind (37) and the fact that

(
R2n+1, ϕ, ξ, η, g

)
is flat, we obtain the curvature

tensor of the resulting manifold in the form

R̄ = −g ? S + g∗ ? S∗ + (η ⊗ η)? S,

where S is denoted in (38) and here u is given in (48). Then, we compute the scalar
curvatures and they have the following values:

τ̄ = 4(n− 1)e−4u{sin 4v tr S∗ − cos 4v tr S},
˜̄τ = 4(n− 1)e−4u{cos 4v tr S∗ + sin 4v tr S},
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where u and v are given in (48), and

tr S = −2(n− 1)
n

∑
i=1

(
xi)2 −

(
yi)2[(

xi
)2 −

(
yi
)2
]2 , tr S∗ = −4(n− 1)

n

∑
i=1

xiyi[(
xi
)2 −

(
yi
)2
]2 . (49)

This result supports Theorem 5.
Bearing in mind (49), we obtain vanishing scalar curvatures τ̄ and ˜̄τ for n = 1, i.e.,

(R3, ϕ, ξ̄, η̄, ḡ) is scalar-flat.
Since the two considered F0-manifolds are related by a transformation from G0,

(R2n+1, ϕ, ξ, η, g) is flat and the Bochner curvature tensor is an invariant of G0 for dimension
at least 7, we deduce that B(R̄) = 0.

Then, bearing in mind (42), the curvature tensor R̄ has an expression corresponding
to (45) with (46), namely,

R̄ = −ḡ ? L̄ + ḡ∗ ? L̄∗ + (η̄ ⊗ η̄)? L̄,

L̄ =
1

2(n− 2)
ρ̄− 1

8(n− 1)(n− 2)
{τ̄[ḡ− η̄ ⊗ η̄] + ˜̄τ[ ˜̄g− η̄ ⊗ η̄]}.

Let us recall from [18] that if ` is a G-transformation determined by (3) for functions
(u, v, w), then its inverse transformation `−1 is the G-transformation determined for the
functions (−u,−v,−w). Then, the present example is in unison with Corollary 4 and
Corollary 5.

6. Conclusions

Steady-state solutions of geometric flows, including almost-Riemann solitons, are
still the subject of intense research and interest in differential geometry. In the present
paper, we introduced almost-Riemann solitons on almost-contact complex Riemannian
manifolds and achieved the first results in the study the coexistence of these structures on
an odd-dimensional manifold. More precisely, the most important curvature properties of
the manifolds obtained from manifolds of the cosymplectic type by means of conformal
transformations of the considered structures have been described. Since the study of
Riemann solitons is still in its early stages, any contribution in this direction may introduce
new perspectives on the geometry of the manifold.
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