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Abstract: This article investigates different nonlinear systems of fractional partial differential equa-
tions analytically using an attractive modified method known as the Laplace residual power series
technique. Based on a combination of the Laplace transformation and the residual power series tech-
nique, we achieve analytic and approximation results in rapid convergent series form by employing
the notion of the limit, with less time and effort than the residual power series method. Three chal-
lenges are evaluated and simulated to validate the suggested method’s practicability, efficiency, and
simplicity. The analysis of the acquired findings demonstrates that the method mentioned above is
simple, accurate, and appropriate for investigating the solutions to nonlinear applied sciences models.

Keywords: Laplace transform; residual power series technique; system of partial differential
equations; analytical solution

1. Introduction

Fractional calculus (FC) is a fast-developing area of mathematics that mathemati-
cians use to explore the integrals and derivatives of any order of functions. Due to the
excellent outcomes produced when various tools from fractional calculus are used to sim-
ulate some aspects of a problem, it has been gaining appeal among scientists working
on multiple areas. FC was a hot topic at the end of the 17th century. Since its inception
almost 324 years ago, FC has remained firmly rooted in mathematical ideas. The core
and essential conclusions of the solution of fractional differential equations (FDEs) are
in [1–5]. The integer-order derivatives are local, while the fractional-order derivatives
are non-local. Integer-order derivatives can investigate variations in a point’s immediate
vicinity, whereas fractional-order derivatives can investigate variations throughout the
interval. Systems with an arbitrary order have recently gained considerable attention and
recognition for classical-order system generalization. Researchers are now aware of the
value of fractional calculus and how well it may simulate various natural processes. In
particular, given that fractional-order and integral operators are non-local, in contrast to
integer-order and integral operators, the system’s future state depends on its present and
past conditions [6–9]. Therefore, when studying partial differential equations, and more
particularly when studying equations from the mathematics of finance, symmetry analysis
is useful. Symmetry is the key to nature; however, the majority of observations in the
natural world lack symmetry. The phenomena of spontaneous symmetry-breaking is a
profound method of symmetry concealment. Symmetries come in two varieties: finite
and infinitesimal. Discrete or continuous finite symmetries are possible. While space is a
continuous transformation, parity and temporal reversal are discrete symmetries of nature.
Patterns have always captivated mathematicians. In the 19th century, classifications of
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spatial and planar patterns got off to a serious start. Unfortunately, solving non-linear
fractional differential equations precisely has proven to be rather challenging.

Fractional partial differential equations (FPDEs) are used to represent the majority of
complicated events mathematically. These non-linear FPDEs’ dynamic processes are crucial
for both scientific research and production, and they should be investigated using a method
that can manage non-linear issues. FPDEs have been used to describe various complicated
events in physics, engineering, chemistry, and other fields of study, such as elasticity, fluid
flow, electrostatics, electrodynamics, signal processing, control theory, and the transmission
of sound or heat [10–16]. An effective, dependable, and accurate numerical technique
is needed to solve FPDEs because most real-world problems are complicated to solve
precisely. The usefulness and significance of numerical approaches in physics, engineering,
and mathematics have substantially expanded with the development of effective and
quick computers [17–19]. As a result, researchers have suggested various numerical and
analytical techniques to resolve FPDEs: the Adomian decomposition method [20], the
He–Laplace variational iteration method [21], the pseudo-spectral method [22], the inverse
scattering method [23], the Backlund transformation method [24], the sine-cosine and
tanh methods [25], the tanh–coth methods [26], the homotopy perturbation method [27],
the residual power series (RPS) method [28], the meshless method [29], the generalized
differential transform method (GDTM) [30], and the fractional complex transform [31] have
all been used in recent years to construct solutions to the FPDEs.

The Laplace residual power series method (LRPSM) [32] was first introduced and
validated by El-Ajou [33] for research on precise solutions for nonlinear FPDEs [34–38].
LRPSM is a novel, efficient, and straightforward method. It is the focus of this study. Our
new strategy is based on the LT and the power series method [39,40], which involves
translating non-linear differential equations into Laplace space. Then, using the RPS
method, an appropriate expansion is utilized to solve the new equation obtained in Laplace
space. This involves putting an expansion that shows the equation’s solution in the Laplace
space. To calculate the expansion coefficients, the RPS method is utilized, but with a new
theory and mechanism that makes it simpler to use than the traditional RPS approach. This
paper is organized as follows: Some notions and theorems are provided in Section 2, while
the LRPSM algorithm is explained in Section 3. In Section 4, a few problems are solved. In
the final section, we provide the conclusion.

2. Preliminaries

In this section, we will discuss several basic definitions and conclusions relating to the
Caputo fractional derivative, as well as the fractional Laplace transform.

Definition 1. The fractional derivative of a function u(x, t) of order α in the Caputo sense is
defined as

CDα
t u(x, t) = Jm−α

t um(x, t), m− 1 < ζ ≤ m, t > 0. (1)

where m ∈ N, and Jγ
t is the Riemann-Liouville (RL) fractional integral (FI) of u(x, t) of fractional-

order γ, which is defined as

Jγ
t u(x, t) =

1
Γ(γ)

∫ t

0
(t− κ)u(x, t)dt, γ > 0, t > 0, κ ≥ 0, (2)

assuming that the given integral exists.

Definition 2. Suppose that u(x, t) is continuous piecewise and has α as its exponential order. This
can be explained as follows:

u(x, s) = Lt[u(x, t)] =
∫ ∞

0
e−stu(x, t)dt, s > α, (3)
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where the inverse LT is given as

u(x, t) = L−1
s [u](x, s)] =

∫ l+i∞

l−i∞
estu(x, s)ds, l = Re(s) > l0, (4)

where c0 is in the right half-plane of the Laplace integral’s absolute convergence [41].

Lemma 1. Assume that u(x, t) is a continuous piecewise function of exponential order ψ, and
u(x, s) = Lt[u(x, t)]. Then, we have

1. Lt[J
β
t u(x, t)] = u(x,s)

sβ , β > 0.

2. Lt[D
ψ
t u(x, t)] = sψu(x, s)−∑m−1

k=0 sψ−k−1uk(x, 0), m− 1 < ψ ≤ m.

3. Lt[D
nψ
t u(x, t)] = snψu(x, s)−∑n−1

k=0 s(n−k)ψ−1Dkψ
t u(x, 0), 0 < ψ ≤ 1.

Proof. The proofs are in [1–3,33].

Theorem 1. Let us assume that u(x, t) is a continuous piecewise function on I× [0, ∞). Consider
that u(x, s) = Lt[u(x, t)] has a fractional power series (FPS) representation:

u(x, s) =
∞

∑
i=0

fi(x)
s1+iα , 0 < ζ ≤ 1, x ∈ I, s > ψ. (5)

Then, fi(x) = Dnα
t u(x, 0).

Proof. Consider that u(x, s) has an FPS representation, as in Equation (5). Then, we have
fi(x) = lims→∞ su(x, s) = u(x, 0). Then, Equation (5) becomes:

u(x, s) =
u(x, 0)

s
+

∞

∑
i=1

fi(x)
s1+iα . (6)

Multiplying Equation (6) by s1+α, we get

f1(x) = sα+1u(x, s)− sαu(x, 0)− f2(x)
sα
− f3(x)

s2ζ
− f4(x)

s3α
− · · · . (7)

Using part (2) of Lemma 1, we get

f1(x) = lim
s→∞

(sα+1u(x, s)− sαu(x, 0)) = lim
s→∞

s(sαu(x, s)− sα−1u(x, 0)).

= lim
s→∞

s(Lt[Dα
t u(x, t)](s)) = Dα

t u(x, 0).
(8)

Similarly, if we multiply Equation (6) by s1+2α, again using part (2) of Lemma 1, we get

f2(x) = lim
s→∞

(s2α+1u(x, s)− s2αu(x, 0)− sαDα
t u(x, 0)).

= lim
s→∞

s(s2αu(x, s)− s2α−1u(x, 0)− sα−1Dα
t u(x, 0)),

= lim
s→∞

s
(
Lt

[
D2α

t u(x, t)
]
(s)
)
= D2α

t u(x, 0).

(9)

The mathematical induction principle is used to complete the proof. Assume that fi−1(x) =
D(i−1)α

t u(x, 0). Multiplying Equation (6) by s1+iα and using part (2) of Lemma 1, we get
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fi(x) = lim
s→∞

(siα+1u(x, s)− siαu(x, 0)− s(i−1)αDα
t u(x, 0)− · · · − sαD(i−1)α

t u(x, 0)).

= lim
s→∞

s
(

siαu(x, s)− siα−1u(x, 0)− s1−(i−1)αDα
t u(x, 0)− · · · − sα−1D(i−1)α

t u(x, 0)
)

.

= lim
s→∞

s
(
Lt

[
Diα

t u(x, t)
]
(s)
)
= Diα

t u(x, 0).

(10)

The proof is completed.

Remark 1. The inverse LT of Equation (5) is represented as:

u(x, t) =
∞

∑
i=0

Dψ
t u(x, 0)

Γ(1 + iψ)
ti(ψ), 0 < ψ ≤ 1, t ≥ 0. (11)

which is equivalent to the fractional Taylor’s formula shown in [42].

The convergence of the FPS in Theorem 1 is determined in the following Theorem.

Theorem 2. Assume that u(x, t) is a continuous piecewise function on I× [0, ∞) and of order
ψ, and as shown in Theorem 1, u(x, s) = Lt[u(x, t)] can be written as the new form of a frac-
tional Taylor’s formula. If

∣∣∣sLt[Diα+1
t u(x, t)]

∣∣∣ ≤ M(x), on I× (ψ, γ] where 0 < α ≤ 1,, then
Ri(x, s), and the remainder of the new form of fractional Taylor’s formula in Theorem 1 satisfies the
following inequality

|Ri(x, s)| ≤ M(x)
S1+(i+1)α

, x ∈ I, ψ < s ≤ γ. (12)

Proof. Let us consider thatLt

[
Dkα

t u(x, t)
]
(s) on interval I× (ψ, γ] for k = 0, 1, 2, 3, · · · , i+ 1,

and suppose that ∣∣∣sLt[Diα+1
t u(x, t)]

∣∣∣ ≤ M(x), x ∈ I, ψ < s ≤ γ. (13)

Using the definition of the remainder, Ri(x, s) = u(x, s)−∑i
k=0

Dkα
t u(x,0)
s1+kα , we can obtain:

S1+(i+1)αRi(x, s) =s1+(i+1)αu(x, s)−
i

∑
k=0

s(i+1−k)αDkα
t u(x, 0),

=s

(
s(i+1)αu(x, s)−

i

∑
k=0

s(i+1−k)α−1Dkα
t u(x, 0)

)
,

=sLt

[
D(n+1)ζ

t u(x, t)
]
.

(14)

From Equations (13) and (14), we can obtain that |s1+(i+1)αRi(x, s)| ≤ M(x). Thus,

−M(x) ≤ s1+(i+1)αRi(x, s) ≤ M(x), x ∈ I, ψ < s ≤ γ. (15)

The proof of Theorem 2 is completed.
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3. LRPS Methodology

In this section, we will go through the LRPS methodology for the nonlinear system of
fractional-order partial differential equations.

Dα
t u(x, t) + v2(x, t)

(
∂u(x, t)

∂x

)2

+ u(x, t) = h(x),

Dα
t v(x, t) + u2(x, t)

(
∂v(x, t)

∂x

)2

− v(x, t) = h(x), 0 < α ≤ 1,

(16)

subject to the initial conditions

u(x, 0) = f0(x), v(x, 0) = g0(x). (17)

Using Laplace transform on Equation (16) and the initial conditions of Equation (17), we get

U(x, s)− f0(x)
s

+
1
sα
Lt

[
L−1

t

(
V2(x, s)

)
L−1

t

((
∂U(x, s)

∂x

)2
)
+ L−1

t (U(x, s))

]
=

H(x)
sα+1 ,

V(x, s)− g0(x)
s

+
1
sα
Lt

[
L−1

t

(
U2(x, s)

)
L−1

t

((
∂V(x, s)

∂x

)2
)
−L−1

t (V(x, s))

]
=

h(x)
sα+1 .

(18)

The solution of Equation (18) has the following series:

U(x, s) =
∞

∑
n=0

fn(x)
snα+1 ,

V(x, s) =
∞

∑
n=0

gn(x)
snα+1 .

(19)

and the kth-truncated term series are

U(x, s) =
f0(x)

s
+

k

∑
n=1

fn(x)
snα+1 ,

V(x, s) =
g0(x)

s
+

k

∑
n=1

gn(x)
snα+1 .

(20)

The Laplace residual functions are

LtResu(x, s) = Uk(x, s)− g0(x)
s

+
1
sα
Lt

[
L−1

t

(
V2(x, s)

)
L−1

t

((
∂U(x, s)

∂x

)2
)
+ L−1

t (U(x, s))

]
− h(x)

sα+1 ,

LtResv(x, s) = V(x, s)− g0(x)
s

+
1
sα
Lt

[
L−1

t

(
U2(x, s)

)
L−1

t

((
∂V(x, s)

∂x

)2
)
−L−1

t (V(x, s))

]
− h(x)

sα+1 .

(21)

and the kth-Laplace residual functions are

LtResu,k(x, s) = Uk(x, s)− g0(x)
s

+
1
sα
Lt

[
L−1

t

(
V2

k (x, s)
)
L−1

t

((
∂Uk(x, s)

∂x

)2
)
+ L−1

t (Uk(x, s))

]
− h(x)

sα+1 ,

LtResv,k(x, s) = Vk(x, s)− g0(x)
s

+
1
sα
Lt

[
L−1

t

(
U2

k (x, s)
)
L−1

t

((
∂Vk(x, s)

∂x

)2
)
−L−1

t (Vk(x, s))

]
− h(x)

sα+1 .

(22)
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Here are some properties that arise in the LRPSM [43], to point out some facts:

(i)LtRes(x, s) = 0 and lim
j→∞
LtResu,k(x, s) = LtResu(x, s) for each s > 0.

(ii)LtRes(x, s) = 0 and lim
j→∞
LtResv,k(x, s) = LtResv(x, s) for each s > 0.

(iii) lim
s→∞

sLtResu(x, s) = 0⇒ lim
s→∞

sLtResu,k(x, s) = 0.

(iv) lim
s→∞

sLtResv(x, s) = 0⇒ lim
s→∞

sLtResv,k(x, s) = 0.

(v) lim
s→∞

skα+1LtResu,k(x, s) = lim
s→∞

skα+1LtResu,k(x, s) = 0, 0 < α ≤ 1, k = 1, 2, 3, · · · .

(vi) lim
s→∞

skα+1LtResv,k(x, s) = lim
s→∞

skα+1LtResv,k(x, s) = 0, 0 < α ≤ 1, k = 1, 2, 3, · · · .

To find the coefficients fn(x) and gn(x), we recursively solve the following system:

lim
s→∞

skα+1LtResu,k(x, s) = 0, k = 1, 2, · · · ,

lim
s→∞

skα+1LtResv,k(x, s) = 0, k = 1, 2, · · · ,
(23)

At last, we use inverse LT on Equation (20), to get the kth approximate solutions of uk(x, t),
vk(x, t).

4. Numerical Problem

In this section, we consider a system of equations that describes the unsteady flow of
a polytropic gas of fractional order in order to validate the applicability and accuracy of the
proposed technique.

Problem 1. Consider the following system of inhomogeneous FPDEs:

Dα
t u(x, t) + v2(x, t)

(
∂u(x, t)

∂x

)2

+ u(x, t) = 1,

Dα
t v(x, t) + u2(x, t)

(
∂v(x, t)

∂x

)2

− v(x, t) = 1, 0 < α ≤ 1,

(24)

subject to the initial conditions

u(x, 0) = ex, v(x, 0) = e−x. (25)

Using Laplace transform on Equation (24) and the initial conditions of Equation (25), we get

U(x, s)− ex

s
+

1
sα
Lt

[
L−1

t

(
V2(x, s)

)
L−1

t

((
∂U(x, s)

∂x

)2
)
+ L−1

t (U(x, s))

]
=

1
sα+1 ,

V(x, s)− e−x

s
+

1
sα
Lt

[
L−1

t

(
U2(x, s)

)
L−1

t

((
∂V(x, s)

∂x

)2
)
−L−1

t (V(x, s))

]
=

1
sα+1 .

(26)

The Kth-truncated term series are

U(x, s) =
ex

s
+

k

∑
n=1

fn(x)
snα+1 ,

V(x, s) =
e−x

s
+

k

∑
n=1

gn(x)
snα+1 .

(27)

The kth-Laplace residual functions are
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LtResu,k(x, s) = Uk(x, s)− ex

s
+

1
sα
Lt

[
L−1

t

(
V2

k (x, s)
)
L−1

t

((
∂Uk(x, s)

∂x

)2
)
+ L−1

t (Uk(x, s))

]
− 1

sα+1 ,

LtResu,k(x, s) = Vk(x, s)− e−x

s
+

1
sα
Lt

[
L−1

t

(
U2

k (x, s)
)
L−1

t

((
∂Vk(x, s)

∂x

)2
)
−L−1

t (Vk(x, s))

]
− 1

sα+1 .

(28)

Now, to find fk(x) and gk(x), k = 1, 2, 3, · · · , we substitute the kth-truncated series Equation (27)
into the kth-Laplace residual function Equation (28), multiply the obtained results by skα+1, and then
recursively solve the relation lims→∞(skα+1LtResu,k(x, s)) = 0, and lims→∞(skα+1LtResv,k(x, s))
= 0, k = 1, 2, 3, · · · . The first few terms are as follows:

f0 = ex, g0 = e−x,

f1 = −ex, g1 = e−x,

f2 = ex, g2 = e−x,

f3 = −ex, g3 = e−x,

f4 = ex, g4 = e−x,

f5 = −ex, g5 = e−x,
....

(29)

Substituting the values of fk(x) and gk(x), k = 1, 2, 3, · · · into Equation (27), we have

U(x, s) =
ex

s
+

f1(x)
sα+1 +

f2(x)
s2α+1 +

f3(x)
s3α+1 +

f4(x)
s4α+1 +

f5(x)
s5α+1 + · · · ,

V(x, s) =
e−x

s
+

g1(x)
sα+1 +

g2(x)
s2α+1 +

g3(x)
s3α+1 +

g4(x)
s4α+1 +

g5(x)
s5α+1 + · · · ,

U(x, s) =
ex

s
− ex

sα+1 +
ex

s2α+1 −
ex

s3α+1 +
ex

s4α+1 −
ex

s5α+1 + · · · ,

V(x, s) =
e−x

s
+

e−x

sα+1 +
e−x

s2α+1 +
e−x

s3α+1 +
e−x

s4α+1 +
e−x

s5α+1 + · · · .
(30)

Applying inverse Laplace transform, we get

u(x, t) = ex
(

1− tα

Γ(α + 1)
+

t2α

Γ(2α + 1)
− t3α

Γ(3α + 1)
+

t4α

Γ(4α + 1)
− t5α

Γ(5α + 1)
+ · · ·

)
,

v(x, t) = e−x
(

1 +
tα

Γ(α + 1)
+

t2α

Γ(2α + 1)
+

t3α

Γ(3α + 1)
+

t4α

Γ(4α + 1)
+

t5α

Γ(5α + 1)
+ · · ·

)
.

(31)

Taking α = 1, we get the exact solutions

u(x, t) = ex−t,

v(x, t) = e−x+t.
(32)

In Figure 1, show that the different fractional order graph (a) represent with respect
to u(x, (t)) and (b) represent with respect to v(x, (t)) of Problem 1. Figure 2, (a) represent
fractional order α = 0.5 and (b) fractional order α = 0.75 of u(x, (t)). Figure 2 shows (c) the
exact and (d) LRPSM solutions for u(x, t) at k = 2

3 , c = 1 of integer order α for Problem 1.
Figure 3, (a) represent fractional order α = 0.5 and (b) fractional order α = 0.75 of u(x, (t)).
Figure 3 shows (c) the exact and (d) LRPSM solutions for u(x, t) at k = 2

3 , c = 1 of integer
order α for Problem 1. In Tables 1 and 2, error analysis is shown for the LRPSM solution of
u(x, t) and v(x, t) for the proposed Problem 1 with various values of x and t.
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Figure 1. Subplot (a) presents the approximate solution u(x, (t)) and subplot (b) presents the approx-
imate solution v(x, (t)) of Problem 1.

Figure 2. Exact and LRPSM solutions for u(x, t) at k = 2
3 , c = 1, and distinct values of α for Problem 1.
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Figure 3. Exact and LRPSM solutions for v(x, t) at k = 2
3 , c = 1, and distinct values of α for Problem 1.

Table 1. Error analysis for the LRPSM solution of u(x, t) for the proposed Problem 1 with various
values of x and t.

t x AE at α = 0.5 AE at α = 0.75 AE at α = 1

0.2 0.2215650201 0.093544132 2.00 × 10−9

0.4 0.270620127 0.114255061 2.00 × 10−9

0.1 0.6 0.330536170 0.139551447 3.00 × 10−9

0.8 0.403717788 0.170448522 3.00 × 10−9

1 0.493102021 0.208186295 4.00 × 10−9

0.2 0.2017453516 0.1032370436 4.00 × 10−7

0.4 0.2464123288 0.126094010 4.88 × 10−7

0.25 0.6 0.300968699 0.154011572 5.97 × 10−7

0.8 0.367603998 0.188110158 7.29 × 10−7

1 0.448992538 0.229758266 8.91 × 10−7
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Table 2. Error analysis for the LRPSM solution of v(x, t) for the proposed Problem 1 with various
values of x and t.

t x AE at α = 0.5 AE at α = 0.75 AE at α = 1

0.2 0.3122588000 0.0937357454 8.0 × 10−10

0.4 0.2556558826 0.0767443373 8.0 × 10−10

0.1 0.6 0.2093133334 0.0628329492 6.0 × 10−10

0.8 0.1713712630 0.0514432677 5.0 × 10−10

1 0.1403069234 0.0421181854 3.0 × 10−10

0.2 0.544332261 0.176001462 2.88 × 10−7

0.4 0.4456615616 0.1440978086 2.358 × 10−7

0.25 0.6 0.3648768263 0.1179773077 1.930 × 10−7

0.8 0.2987358784 0.0965916499 1.581 × 10−7

1 0.2445842508 0.0790825544 1.293 × 10−7

Problem 2. Let us consider a coupled system of reaction-diffusion equations [28]:

Dα
t u = u− u2 − uv + uxx,

Dα
t v = vxx − uv, 0 < α ≤ 1, t > 0,

(33)

with initial conditions

u(x, 0) =
epx(

1 + e0.5px
)2 ,

v(x, 0) =
1

1 + e0.5px ,

(34)

where p is constant.
Applying Laplace transform on Equation (33) and using Equation (34), we have

U(x, s) =
epx(

1 + e0.5px
)2s

+
1
sα
Lt

[
L−1

t (U(x, s))−L−1
t

(
U2(x, s)

)
−L−1

t (U(x, s))L−1
t (V(x, s)) + L−1

t (Uxx(x, s))
]
,

V(x, s) =
1(

1 + e0.5px
)
s
+

1
sα
Lt

[
L−1

t (Vxx(x, s))−L−1
t (U(x, s))L−1

t (V(x, s))
]
.

(35)

The Kth-truncated term series are

U(x, s) =
epx(

1 + e0.5px
)2s

+
k

∑
n=1

fn(x)
snα+1 ,

V(x, s) =
1(

1 + e0.5px
)
s
+

k

∑
n=1

gn(x)
snα+1 ,

(36)

The kth-Laplace residual functions are

LtResu,k(x, s) =Uk(x, s)− epx(
1 + e0.5px

)2s
− 1

sα
Lt

[
L−1

t (Uk(x, s))−L−1
t

(
U2

k (x, s)
)

−L−1
t (Uk(x, s))L−1

t (Vk(x, s)) + L−1
t (Uk,xx(x, s))

]
,

LtResu,k(x, s) =Vk(x, s)− 1(
1 + e0.5px

)
s
− 1

sα
Lt

[
L−1

t (Vk,xx(x, s))−L−1
t (Uk(x, s))L−1

t (Vk(x, s))
]
.

(37)

Now, for finding fk(x), and gk(x), k = 1, 2, 3, · · · , we substitute the kth-truncated se-
ries Equation (36) into the kth-Laplace residual function Equation (37), multiply the obtained
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results by skα+1, and then recursively solve the relation lims→∞(skα+1LtResu,k(x, s)) = 0, and
lims→∞(skα+1LtResv,k(x, s)) = 0, k = 1, 2, 3, · · · . The first few terms are

f0(x) =
epx(

1 + e0.5px
)2 ,

g0(x) =
1

1 + e0.5px ,

f1(x) =
(p2e0.5px − 2p2 − 2e0.5px)epx

(1 + e0.5px)4 ,

g1(x) =− 0.25(4epx + p2e0.5px − p2ep∗x)

(1 + e0.5px)3 ,

f2(x) =
1

8(1 + e0.5px)6

(
− 32p2e2px + 16e2px + 28e1.5px p2 − 33p4e1.5px + 4p2e2.5px + 18p4e2px − p4e2.5px

+ 8p4epx
)

,

g2(x) =
1

16(1 + e0.5px)5

(
p4e2px + 16e2px − 8p2e2px + 11p2epx − 11p4e1.5px + 40p2e1.5px − p4e0.5px

− 32p2epx − 16e1.5px
)

.

(38)

Putting the values of fk(x) and gk(x), k = 1, 2, 3, · · · in Equation (36), we get

U(x, s) =
epx(

1 + e0.5px
)2s

+
( (p2e0.5px − 2p2 − 2e0.5px)epx

(1 + e0.5px)4

) 1
sα+1 +

( 1
8(1 + e0.5px)6

(
− 32p2e2px + 16e2px + 28e1.5px p2

− 33p4e1.5px + 4p2e2.5px + 18p4e2px − p4e2.5px + 8p4epx
)) 1

s2α+1 ,

V(x, s) =
1(

1 + e0.5px
)
s
−
(0.25(4epx + p2e0.5px − p2ep∗x)

(1 + e0.5px)3

) 1
sα+1 +

( 1
16(1 + e0.5px)5 (p4e2px + 16e2px − 8p2e2px

+ 11p2epx − 11p4e1.5px + 40p2e1.5px − p4e0.5px − 32p2epx − 16e1.5px)
) 1

s2α+1 .

(39)

Using inverse Laplace transform, we get

u(x, t) =
epx(

1 + e0.5px
)2 +

( (p2e0.5px − 2p2 − 2e0.5px)epx

(1 + e0.5px)4

) tα

Γ(α + 1)
+
( 1

8(1 + e0.5px)6

(
− 32p2e2px + 16e2px

+ 28e1.5px p2 − 33p4e1.5px + 4p2e2.5px + 18p4e2px − p4e2.5px + 8p4epx
)) t2α

Γ(2α + 1)
,

v(x, t) =
1(

1 + e0.5px
) − (0.25(4epx + p2e0.5px − p2ep∗x)

(1 + e0.5px)3

) tα

Γ(α + 1)
+
( 1

16(1 + e0.5px)5 (p4e2px + 16e2px − 8p2e2px

+ 11p2epx − 11p4e1.5px + 40p2e1.5px − p4e0.5px − 32p2epx − 16e1.5px)
) t2α

Γ(2α + 1)
.

(40)

In Figure 4, show that the different fractional order graph (a) represent with respect
to u(x, (t)) and (b) represent with respect to v(x, (t)) of Problem 2. Figure 5, (a) represent
fractional order α = 0.5 and (b) fractional order α = 0.75 of u(x, (t)). Figure 5 shows (c) the
exact and (d) LRPSM solutions for u(x, t) at p = 2

3 , c = 1 of integer order α for Problem 2.
Figure 6, (a) represent fractional order α = 0.5 and (b) fractional order α = 0.75 of u(x, (t)).
Figure 6 shows (c) the exact and (d) LRPSM solutions for u(x, t) at p = 2

3 , c = 1 of integer
order α for Problem 2. In Tables 3 and 4, error analysis is shown for the LRPSM solution of
u(x, t) and v(x, t) for the proposed Problem 2 with various values of x and t.
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Figure 4. Subplot (a) presents the approximate solution u(x, (t)) and subplot (b) presents the approx-
imate solution v(x, (t)) of Problem 2.

Figure 5. Exact and LRPSM solutions for u(x, t) at k = 2
3 , c = 1, and distinct values of α for Problem 2.
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Figure 6. Exact and LRPSM solutions for v(x, t) at p = 2
3 , c = 1, and distinct values of α for Problem 2.

Table 3. Error analysis for the LRPSM solution of u(x, t) for the proposed Problem 2 with various
values of x, t, and p = 2

3 .

t x AE at α = 0.5 AE at α = 0.75 AE at α = 1

0.2 0.0805629452 0.0502204062 0.0325020875
0.4 0.0825454718 0.0515331039 0.0334241734

0.1 0.6 0.0839111844 0.0524787587 0.0341170570
0.8 0.0846437383 0.0530448606 0.0345706478
1 0.0847452771 0.0532295274 0.0347813764

0.2 0.1386150391 0.1064055404 0.0816294703
0.4 0.1421027846 0.1091805284 0.0838571430

0.25 0.6 0.1445063572 0.1111623891 0.0855012205
0.8 0.1457962927 0.1123251454 0.0865387309
1 0.1459764695 0.1126662559 0.0869633834
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Table 4. Error analysis for the LRPSM solution of v(x, t) for the proposed Problem 2 with various
values of x, t, and p = 2

3 .

t x AE at α = 0.5 AE at α = 0.75 AE at α = 1

0.2 0.0365409370 0.0162647517 0.0044485940
0.4 0.0372349264 0.0167576585 0.0047433264

0.1 0.6 0.0378161928 0.0172017544 0.0050225392
0.8 0.0382802895 0.0175933608 0.0052838629
1 0.0386242276 0.0179294469 0.0055251728

0.2 0.0493801887 0.0277102702 0.0109897476
0.4 0.0502167121 0.0285674155 0.0116808654

0.25 0.6 0.0508790642 0.0293301937 0.0123303104
0.8 0.0513628857 0.0299925619 0.0129326754
1 0.0516662223 0.0305498127 0.0134832205

Problem 3. Next, we consider the two-dimensional reaction-diffusion Brusselator model [30,31]:

Dα
t u(x, y, t) =u2(x, y, t)v(x, y, t)− u(x, y, t)(A + 1) +

1
500

(
uxx(x, y, t) + uyy(x, y, t)

)
+ B,

Dα
t v(x, y, t) =− u2(x, y, t)v(x, y, t) + Au(x, y, t) +

1
500

(
uxx(x, y, t) + uyy(x, y, t)

)
,

(41)

subject to the initial conditions

u(x, y, 0) =2 +
1
4

y,

v(x, y, 0) =1 +
4
5

x,
(42)

where u(x, y, t) and v(x, y, t) represent the chemical concentrations [30] of intermediate reaction
products, and A and B are constant concentrations of input reagents, where A = 17

5 and B = 1.
Applying Laplace transform on Equation (41) and using Equation (42), we have

U(x, y, s) =
2 + 1

4 y
s

+
1
sα
Lt

[
L−1

t

(
U2(x, y, s)

)
L−1

t (V(x, y, s))−L−1
t (U(x, y, s))(A + 1)

+
1

500

(
L−1

t (Uxx(x, y, s)) + L−1
t
(
Uyy(x, y, s)

))
+ B

]
,

V(x, y, s) =
1 + 4

5 x
s

+
1
sα
Lt

[
−L−1

t

(
U2(x, y, s)

)
L−1

t (V(x, y, s)) + AL−1
t (U(x, y, s))

+
1

500

(
L−1

t (Uxx(x, y, s)) + L−1
t
(
Uyy(x, y, s)

))]
.

(43)

The kth truncated term series are

U(x, s) =
2 + 1

4 y
s

+
k

∑
n=1

fn(x, y)
snα+1 ,

V(x, s) =
1 + 4

5 x
s

+
k

∑
n=1

gn(x, y)
snα+1 ,

(44)

The kth-Laplace residual functions are
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LtResu,k(x, y, s) =Uk(x, y, s)−
2 + 1

4 y
s
− 1

sα
Lt

[
L−1

t

(
U2

k (x, y, s)
)
L−1

t (Vk(x, y, s))−L−1
t (Uk(x, y, s))(A + 1)

+
1

500

(
L−1

t (Uk,xx(x, y, s)) + L−1
t

(
Uk,yy(x, y, s)

))
+ B

]
,

LtResv,k(x, y, s) =Vk(x, y, s)−
1 + 4

5 x
s
− 1

sα
Lt

[
−L−1

t

(
U2

k (x, y, s)
)
L−1

t (Vk(x, y, s)) + AL−1
t (Uk(x, y, s))

+
1

500

(
L−1

t (Uk,xx(x, y, s)) + L−1
t

(
Uk,yy(x, y, s)

))]
.

(45)

Now, to determine fk(x, y) and gk(x, y), k = 1, 2, 3, · · · , we substitute the kth-truncated series
Equation (44) into the kth-Laplace residual function Equation (45), multiply the resulting equa-
tion by skα+1, and then recursively solve the relation lims→∞(skα+1LtResu,k(x, ψ, s)) = 0, and
lims→∞(skα+1LtResv,k(x, ψ, s)) = 0, k = 1, 2, 3, · · · . Following are the first few terms:

f0(x, y) =2 +
y
4

,

g0(x, y) =1 +
4x
5

,

f1(x, y) =− 1899
500

+
16x

5
− y

10
+

4xy
5

+
1y2

16
+

y2x
20

,

g1(x, y) =
1401
500
− 16x

5
− 3y

20
− 4yx

5
− y2

16
− y2x

20
,

f2(x, y) =
66261
5000

− 36667x
1250

+
256y2

251
− 13y3

320
− y4

256
− y3x

20
+

y
2
+

96x2y
25

+
16x

5
+

12x2y2

25

+
y3x2

50
− y4x

320
− 33y2x

50
− 9199yx

1250
− 2

5
− 2399y2

8000
− 157y

1000
+

2yx
5

,

g2(x, y) =− 44021
5000

+
y3x
20
− 96yx2

25
− 12y2x2

25
+

y4x
320
− y3 ∗ x2

50
+

28917x
1250

− 256x2

25
+

13y3

320

+
y4

256
+

1899y2

8000
+

7699yx
1250

+
61y2x

100
− 243y

1000
,

....

(46)

Putting the values of fk(x, y) and gk(x, y), k = 1, 2, 3, · · · into Equation (44), we get

U(x, y, s) =
2 + 1

4 y
s

+
[
− 1899

500
+

16x
5
− y

10
+

4xy
5

+
1y2

16
+

y2x
20

] 1
sα+1 +

[66261
5000

− 36667x
1250

+
256y2

251

− 13y3

320
− y4

256
− y3x

20
+

y
2
+

96x2y
25

+
16x

5
+

12x2y2

25
+

y3x2

50
− y4x

320
− 33y2x

50
− 9199yx

1250

− 2
5
− 2399y2

8000
− 157y

1000
+

2yx
5

] 1
s2α+1 + · · · ,

V(x, y, s) =
1 + 4

5 x
s

+
[1401

500
− 16x

5
− 3y

20
− 4yx

5
− y2

16
− y2x

20

] 1
sα+1 +

[
− 44021

5000
+

y3x
20
− 96yx2

25

− 12y2x2

25
+

y4x
320
− y3x2

50
+

28917x
1250

− 256x2

25
+

13y3

320
+

y4

256
+

1899y2

8000
+

7699yx
1250

+
61y2x

100
− 243y

1000

] 1
s2α+1 + · · · .

(47)

Now, applying inverse Laplace transform, we get
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u(x, y, t) =2 +
1
4

y +
[
− 1899

500
+

16x
5
− y

10
+

4xy
5

+
y2

16
+

y2x
20

] tα

Γ(α + 1)
+
[66261

5000
− 36667x

1250
+

256y2

251

− 13y3

320
− y4

256
− y3x

20
+

y
2
+

96x2y
25

+
16x

5
+

12x2y2

25
+

y3x2

50
− y4x

320
− 33y2x

50
− 9199yx

1250

− 2
5
− 2399y2

8000
− 157y

1000
+

2yx
5

] t2α

Γ(2α + 1)
+ · · · ,

v(x, y, t) =1 +
4
5

x +
[1401

500
− 16x

5
− 3y

20
− 4yx

5
− y2

16
− y2x

20

] tα

Γ(α + 1)
+
[
− 44021

5000
+

y3x
20
− 96yx2

25

− 12y2x2

25
+

y4x
320
− y3x2

50
+

28917x
1250

− 256x2

25
+

13y3

320
+

y4

256
+

1899y2

8000
+

7699yx
1250

+
61y2x

100
− 243y

1000

] t2α

Γ(2α + 1)
+ · · · .

(48)

In Figure 7, show that the different fractional order graph (a) represent with respect
to u(x, (t)) and (b) represent with respect to v(x, (t)) of Problem 3. Figure 8, (a) represent
fractional order α = 0.5 and (b) fractional order α = 0.75 of u(x, (t)). Figure 8 shows (c)
the exact and (d) LRPSM solutions for u(x, t) at A = 17

5 , B = 1, and y = 1 of integer order
α for Problem 3. Figure 9, (a) represent fractional order α = 0.5 and (b) fractional order
α = 0.75 of u(x, (t)). Figure 9 shows (c) the exact and (d) LRPSM solutions for u(x, t) at
A = 17

5 , B = 1, and y = 1, of integer order α for Problem 3. In Tables 5 and 6, error analysis
is shown for the LRPSM solution of u(x, t) and v(x, t) for the proposed Problem 3 with
various values of x and t.

Figure 7. Subplot (a) presents the approximate solution u(x, (t)) and subplot (b) presents the approx-
imate solution v(x, (t)) at A = 17

5 , B = 1, x = 0.1, and y = 0.1, respectively, of Problem 3.
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Figure 8. LRPSM solutions for u(x, t) at A = 17
5 , B = 1, y = 1, and distinct values of α for Problem 3.

(a) (b)

(c) (d)

Figure 9. LRPSM solutions for v(x, t) at A = 17
5 , B = 1, y = 1, and distinct values of α for Problem 3.
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Table 5. Numerical simulation for the LRPSM solution of u(x, t) for the proposed Problem 2 with
various values of x, t, and p = 2

3 .

t x Numerical Simulation at α = 0.5 Numerical Simulation at α = 0.75 Numerical Simulation at α = 1

0.2 1.837707373 1.917052547 1.980814044
0.4 1.625576979 1.975701657 2.036756119

0.1 0.6 1.530086586 2.045377487 2.098530194
0.8 1.551236193 2.126080036 2.166136269
1 1.689025800 2.217809305 2.239574344

0.2 1.713577815 1.674859093 1.702150273
0.4 1.553928691 1.670189950 1.748038242

0.25 0.6 1.503958022 1.722897876 1.830376211
0.8 1.563665809 1.832982869 1.949164180
1 1.733052051 2.000444931 2.104402148

Table 6. Numerical simulation for the LRPSM solution of v(x, t) for the proposed Problem 2 with
various values of x, t, and p = 2

3 .

t x Numerical Simulation at α = 0.5 Numerical Simulation at α = 0.75 Numerical Simulation at α = 1

0.2 1.459238898 1.424447874 1.321163456
0.4 1.754369291 1.528622455 1.421371381

0.1 0.6 1.932859684 1.605050337 1.515747306
0.8 1.994710077 1.653731523 1.604291231
1 1.939920471 1.674666009 1.687003156

0.2 1.324648176 1.528861254 1.499959102
0.4 2.088050864 1.776106048 1.590008633

0.25 0.6 2.559853552 1.913672387 1.643608164
0.8 2.740056238 1.941560270 1.660757695
1 2.628658925 1.859769698 1.641457227

5. Conclusions

In this article, significant nonlinear fractional partial differential equations are solved
by utilizing a combination of the residual power series and the Laplace transformation.
The advantage of the new method is that it reduces the amount of computational effort
required to obtain a solution in a power series form, whose coefficients must be computed
in successive algebraic steps. The suggested method is employed to solve three distinct
physical models, and its capacity to address fractional nonlinear equations with high
precision and simple computation steps has been demonstrated. Finally, we can conclude
that the regarded technique is better than its competitors and highly effective, and it can be
utilized to study the various classes of nonlinear problems that arise in real life.
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