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Abstract: We designed magneto-electro-elastic piezoelectric, electromagnetic (EM) metamaterials
(MEEPEM) by using a square lattice of the periodic arrays of conducting wires, piezoelectric photonic
crystal (PPC), and split-ring resonators (SRRs). We analyzed the mechanism for multi-field coupling
in MEEPEM. The magnetic field of the EM wave excites an attractive Ampère force in SRRs, which
periodically compress MEEPEM, and this can create electric polarization due to the piezoelectric
effect. The electric field of the EM wave can excite a longitudinal superlattice vibration in the PPC,
which can also create electric polarization. The electric polarization can couple to the electric field
of the periodic arrays of conducting wires. The coupled electric field will couple to the EM wave.
These interactions result in multi-field coupling in MEEPEM. The coupling creates a type of polariton,
called multi-field coupling polaritons, corresponding to a photonic band gap, namely, the multi-field
coupling photonic band gap. We calculated the dielectric functions, the reflection coefficients, and the
effective magnetic permeability of MEEPEM. By using them, we analyzed the transmission properties
of EM waves in the MEEPEM. We analyzed the possibility of MEEPEM as left-handed metamaterials
and zero refractive index material.

Keywords: metamaterials; magneto-electro-elastic materials; piezoelectric photonic crystal; split-
ring resonators

1. Introduction

Electromagnetic (EM) metamaterials, i.e., artificial composite structures created by the
periodic arrays of conducting wires and split-ring resonators (SRRs), were shown to possess
both negative permittivity and permeability frequency bands, creating a negative refraction
index [1–6]. The EM metamaterials possess a number of peculiar properties, including
inverse light pressure, a reverse Doppler effect, and opposite phase and energy velocities,
which result in different capabilities for the manipulation of electromagnetic waves.

On the other hand, magneto-electro-elastic (MEE) materials have attracted exponen-
tially increasing attention. The main reason behind this attention is that MEE structures
can now convert electrical and magnetic energy due to the coupled effect between electric
and magnetic fields. Because of this feature, MEE materials have been widely applied in
many fields of modern technology, e.g., sensors [7], smart devices [8], and nondestructive
evaluation [9]. Various analytical and numerical techniques related to various MEE struc-
tures have been developed by numerous scholars. Ezzin et al. [10] studied Love waves
propagating in a transversely isotropic piezoelectric layer in a piezomagnetic half-space.
Xiao et al. [11] investigated the dispersion characteristics of guided waves in a multilay-
ered MEE curved panel. Chen et al. [12] investigated the dispersion and band structures
of elastic waves in nanoscale periodic piezoelectric/piezomagnetic laminates. However,
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magneto-electro-elastic, piezoelectric, electromagnetic metamaterials (MEEPEM) have not
been studied.

In this paper, we design the MEEPEM by using a square lattice of the periodic arrays of
conducting wires, piezoelectric photonic crystals (PPC), and SRRs in Section 2. We analyze
the mechanism for the coupling of the longitudinal superlattice vibrations, magnetic field,
and electric field. We calculate the dielectric functions by using the Plane Wave Method,
reflection coefficients by using the Transfer Matrix Method, and the effective magnetic
permeability of MEEPEM. By using them, we will analyze the transmission properties of
EM waves in the MEEPEM in Section 3. Conclusions are given in Section 4. We believe that
our studies can contribute to the design of EM wave devices on the basis of the MEEPEM.

2. Dielectric Functions, Reflection Coefficients, and Effective Magnetic Permeability
of MEEPEM

In order to elucidate the ideal of MEEPEM, we consider a composite structure consist-
ing of a square lattice of the periodic arrays of conducting wires, PPCs, and SRRs shown
schematically in Figure 1. In Figure 1a, for PPC, we choose ion-doped periodically poled
lithium niobate crystal with the periodic concentration of the impurities in the positive and
negative domains (IPPLN). The IPPLN can be produced by the Czochralski method [13–15],
and the doping of ions does not change the symmetry of lithium niobate [16–18]. The
ion-doped concentration of the IPPLN changes periodically; thus, the physical proper-
ties of IPLLN will be periodically changed. The ferroelectric domains of the IPPLN are
periodically reversed along the x axis. We denote a and b as the thicknesses of positive
and negative domains, respectively, and N1 mol% and N2 mol% (N1 6= N2) as ion-doped
concentrations in positive and negative domains, respectively. The period of domains is
Λ = a + b, and the duty cycle is r = a/b. The thickness of the MEEPEM is b0 along the
x axis. The unit cell size of the MEEPEM is a1. For simplicity, we choose the single-ring
geometry of a lattice of cylindrical SRRs. The micro-structured material has been proposed
and constructed to create left-handed metamaterials [19]. The SRRs are installed on the
two surfaces of PPC along the x axis, and the directions of the gaps of the SRRs sharing
a common axis are the same. The SRR can be equivalent to the LC oscillator with the
capacitance C of the SRR gap, an effective inductance L, and resistance R. Figure 1b,c show
the comparison of an equivalent LC circuit and a metallic SRR. The parameters of SRR are
marked in Figure 1b: the gap size l1, the thickness l2, the width l3, and the radius r0. In
Figure 1d, r1 is the diameter of the conducting wire.
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been shown. The Mg concentrations in the positive and negative domains are N1 mol% and N2 

mol% (N1 ≠ N2), respectively. The bottom arrow indicates the direction of EM wave propagation. 

(b) SRR (with the gap size l1, the thickness l2, the width l3, and the radius 𝑟0). (c) SRR equivalent LC 

oscillator (with effective inductance L and the capacitance C). (d) 𝑟1 is the diameter of the conduct-

ing wire. 
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Figure 1. (a) A schematic diagram of MEEPEM, which is composed of a square lattice of the periodic
arrays of conducting wires, PPC, and SRRs. Here, PPC is chosen as IPPLN, the positive and negative
domains of which are arranged periodically along the x axis, and the arrows along the positive and
negative z axes indicate the positive and negative domains, respectively. Here, only one period has
been shown. The Mg concentrations in the positive and negative domains are N1 mol% and N2 mol%
(N1 6= N2), respectively. The bottom arrow indicates the direction of EM wave propagation. (b) SRR
(with the gap size l1, the thickness l2, the width l3, and the radius r0). (c) SRR equivalent LC oscillator
(with effective inductance L and the capacitance C). (d) r1 is the diameter of the conducting wire.
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As shown in Figure 1a, along the z axis, the EM waves with magnetic field Hx and
electric field Ey propagate into MEEPEM. From Faraday’s law of electromagnetic induction,
magnetic field Hx will induce electric currents in identical SRRs sharing a common axis.
In addition, the currents generate an attractive Ampère force between the SRRs, which
compress PPC periodically. The Ampère forces acting between the SRRs have only the axial
component, calculated as [20]:

Fi =
µ0b0

γ2
0

√
4r2

0 + b2
0

[
2r2

0 + b2
0

b2
0

E− K

](
∂φ

∂t

)2
, (1)

where K is the complete elliptic integral of the first, E is that of the second kind, φ is
magnetic flux, and

γ0 =

√
R2 +

[
ωL− 1

ωC

]2
, (2)

where γ0, L = µ0πr2
0/l2, and C = ε0εCl2l3/l1 are the impedance, inductance, and capaci-

tance of the SRR, respectively, and εC is the relative permittivity of the material filled in the
SRR gap (see Figure 1b). We assume additional forces between the SRRs in the neighboring
columns can be neglected. Because of the attractive Ampère forces between the SRRs, the
stress can be calculated on the cross-sectional area of PPC along x axis, that is,

T0 =
mFi

S
, (3)

where S is the cross-sectional area of the PPC along x axis, m is the number of SRRs, and T0
is the periodic stress which is applied to the S of PPC. Because of the piezoelectric effect,
the stress T0 can generate transverse electric polarization. In response to the piezoelectric
effect, the periodic electric field Ey of the EM wave can excite a longitudinal superlattice
vibration. These will result in the coupling of electric, magnetic, and acoustic fields in the
MEEPEM. The piezoelectric, Maxwell, and motion equations of the three field couplings
are written as follows [21–23]:

T1(x, t) + T0 = CE
11(x)S1(x, t) + e22(x)E2(z, t), (4)

D2(z, t) = −e22(x)S1(x, t)− d22(x)T0 + ε0εS
11(x)E2(z, t), (5)

∂2E2(z, t)
∂z2 = µ0

∂2D2(z, t)
∂t2 , (6)

ρ(x)
∂2S1(x, t)

∂t2 =
∂2T1(x, t)

∂t2 , (7)

where

CE
11(x) =

{
CE

11a > 0 positive domain (−a/2 ≤ x ≤ a/2)
CE

11b > 0 negative domain (−Λ/2 ≤ x < −a/2, a/2 < x ≤ Λ/2)
(8)

e22(x) =
{

e22a > 0 positive domain (−a/2 ≤ x ≤ a/2)
−e22b > 0 negative domain (−Λ/2 ≤ x < −a/2, a/2 < x ≤ Λ/2)

(9)

d22(x) =
{

d22a > 0 positive domain (−a/2 ≤ x ≤ a/2)
−d22b > 0 negative domain (−Λ/2 ≤ x < −a/2, a/2 < x ≤ Λ/2)

(10)

εS
11(x) =

{
εS

11a > 0 positive domain (−a/2 ≤ x ≤ a/2)
εS

11b > 0 negative domain (−Λ/2 ≤ x < −a/2, a/2 < x ≤ Λ/2)
(11)

ρ(x) =
{

ρa > 0 positive domain (−a/2 ≤ x ≤ a/2)
ρb > 0 negative domain (−Λ/2 ≤ x < −a/2, a/2 < x ≤ Λ/2)

(12)
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where S1, T1, D2, and E2 are the strain, stress, electric displacement, and electric field,
respectively, and they are functions of both position x and time t. e22(x), d22(x), CE

11(x),
and εS

11(x) are the piezoelectric stress, piezoelectric strain, elastic, and dielectric coefficients,
respectively; ρ(x) is the mass density of PPC, and they are periodic functions of position x.
ε0 is the permeability of the vacuum. Here, the damping of materials has been neglected.

Equation (3) implies the principle that the stress T0 and Ey of EM wave create the
longitudinal superlattice vibration S1. Equation (4) implies the principle that the stress
T0 and longitudinal superlattice vibration S1 can excite additional electric polarizations.
Equations (3) and (4) imply the coupling of electric, magnetic, and acoustic fields due to the
piezoelectric effect in the MEEPEM, resulting in a type of polariton, called the multi-field
coupling polariton.

Substituting Equation (5) into Equation (6), we obtain:

T0 =
ε0
[
εS

11(x)− 1
]

4d22(x)
E2(z, t)− e22(x)S1(x, t)

4d22(x)
S1(x, t). (13)

Substituting Equation (13) into Equation (4), we obtain:

T1(x, t) = C′(x)S1(x, t) + e′(x)E2(z, t), (14)

where the modulation functions C′(x) and e′(x) are expressed as follows:

C′(x) =

{
C′a = CE

11a −
e22a

4d22a
positive domain

(
− a

2 ≤ x ≤ a
2
)

C′b = CE
11b −

e22b
4d22b

negative domain
(
−Λ

2 ≤ x < − a
2 , a

2 < x ≤ Λ
2

) , (15)

e′(x) =

 e′a = e22a −
ε0[εS

11a−1]
4d22a

positive domain (−a/2 ≤ x ≤ a/2)

e′b = e22b −
ε0[εS

11b−1]
4d22b

negative domain (−Λ/2 ≤ x < −a/2, a/2 < x ≤ Λ/2)
, (16)

respectively. Using Fourier transformation, the modulation functions C′(x) and e′(x) are
written as:

C′(x) = C0 + ∑
n 6=0

CneiGnx, (17)

e′(x) = e0 + ∑
n 6=0

eneiGnx, (18)

respectively, where Gn = n 2π
Λ :

C0 =
C′b + C′ar

r + 1
, (19)

e0 =
e′ar− e′b

r + 1
, (20)

Cn =
(
C′a − C′b

) 1
nπ

sin
(

nπr
1 + r

)
, (21)

en =
(
e′a + e′b

) 1
nπ

sin
(

nπr
1 + r

)
. (22)

Applying Equation (14) to Equation (7), we obtain:

S1 = ∑
n

enG2
neiGnx

ρ(x)ω2 − C′(x)G2
n

. (23)

Substitution of Equation (23) into Equation (5), we have:

D2 = ε0ε2(x, ω)E2, (24)
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where ε2(x, ω) is the relative dielectric function:

ε2(x, ω) = εS
11(x)− 1

ε0
∑
n

e22(x)enG2
neiGnx

ρ(x)ω2 − C′(x)G2
n
− d22(x)

ε0
T∗0 , (25)

where

T∗0 =
mµ2

0ε0ω2S2
0b0E2

γ2
0S
√

4r2
0 + b2

0

[
2r2

0 + b2
0

b2
0

E− K

]
, (26)

where S0 = πr2
0. The relative dielectric function ε2(x, ω) is the function of the position x

and angular frequencyω. We assume that the wavelength of an electromagnetic wave is
larger than the unit cell size a1 of the MEEPEM; then, the positive and negative domains of
the MEEPEM can be considered homogeneous in space. With this approximation, the space
average values are applicable, i.e., the positive domain ε2a = (1/a)

∫ a/2
−a/2 ε2(x, ω)dx and

the negative domain ε2b = (1/b)[
∫ −a/2
−Λ/2 ε2(x, ω)dx +

∫ Λ/2
a/2 ε2(x, ω)dx]. Then, the relative

dielectric function of the positive domain is written as:

ε2a(ω) = εS
11a −

4e22a
(
e′a + e′b

)
ε0aΛρa

∑n

sin2( nπr
1+r
)

ω2 −ω2
an
− d22a

ε0
T∗0 , (27)

where ωan = C′aG2
n/ρa is the resonance angular frequency of the n-order multi-field cou-

pling polariton of the positive domain. Furthermore, the relative dielectric function of the
negative domain is written as:

ε2b(ω) = εS
11b −

4e22b
(
e′a + e′b

)
ε0bΛρb

∑n

sin2( nπr
1+r
)

ω2 −ω2
bn
− d22b

ε0
T∗0 , (28)

where ωbn = C′bG2
n/ρb is the resonance angular frequency of the n-order multi-field cou-

pling polariton of the negative domain. For the unit cell of the periodic arrays of conducting
wires, the average macroscopic electric field is approximately equal to the local field in
the long-wavelength approximation. Taking into account Equations (27) and (28), and
the effective dielectric permittivity of conducting wires [2], the expression for the relative
dielectric function of the positive and negative domains of MEEPEM can be written as

εra = ε2a(ω)−
ωp

ω2 , (29)

and

εrb = ε2b(ω)−
ω2

p

ω2 , (30)

respectively, where ωp is the effective plasma frequency:

ω2
p =

2πc2
0

a2
1 ln(2a1/r1)

, (31)

where c0 is the velocity of light in free space, and ωp is the effective plasma frequency, r1
is the diameter of the conducting wire, and a1 is the unit cell size of the MEEPEM (see
Figure 1).

On the basis of the Transfer Matrix Method of the photonic crystal and the relative
dielectric functions εra and εrb of MEEPEM [24–26], we calculate the reflection coefficients
of the MEEPEM. It is derived as follows:

r =
Z1(M11 + ZN+1M12)−M21 − ZN+1M22

Z1(M11 + ZN+1M12) + M21 + ZN+1M22
, (32)
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where Z1 = n1
√

ε0/µ0 (n1 are the refractive indexes of the media before the EM waves
propagate into the MEEPEM, µ0 is the permeability of vacuum) and ZN+1 = nN+1

√
ε0/µ0

(nN+1 are the refractive indexes of the media after the EM waves propagate out of the
MEEPEM) are the impedances of electromagnetic waves.

M = mN =

(
M11 M12
M21 M22

)
, (33)

where

m =

(
cosβacosβb − nb

na
sinβasinβb −i

(
1

Za
sinβacosβb +

1
Zb

cosβasinβb

)
−i(Zbcosβasinβb + Zbsinβacosβb) cosβacosβb − na

nb
sinβasinβb

)
, (34)

where βa = 2πnaa/λ, βb = 2πnbb/λ, Za = na
√

ε0/µ0, and Zb = nb
√

ε0/µ0. na =
√

εra
and nb =

√
εrb are refractive indices of the positive domain and negative domain in

MEEPEM, respectively.
In addition, a negative value of the magnetic permeability of the SRR in MEEPEM

becomes possible (see Ref. [27]). According to the calculation method in the Refs. [1,27], we
obtain an explicit expression for the effective magnetic permeability µe f f of the composite
structure in the long-wavelength approximation, that is,

µe f f = 1− Fω2

ω2 −ω2
LC −

jRω
L

, (35)

where ωLC = 1/
√

LC is the magnetic resonance angular frequency.

3. Results and Discussion

According to the relative dielectric function, effective magnetic permeability, and
reflection coefficient, we can obtain the physical information required to study the trans-
mission properties of EM waves in MEEPEM [1,21–27]. For the doped ion of IPPLN, we
choose the Mg ion. The Mg ion concentrations of the positive and negative domains in
MEEPEM are 0 mol% and 7 mol% [28] (see Figure 1), respectively. From Equations (27)
and (28), the relative dielectric functions εra and εrb of the first-order multi-field coupling
polaritons in the MEEPEM are plotted in Figure 2. Because the damping of the material
is not considered, Figure 2 shows only the real parts of the relative dielectric functions,
and εra and εrb are represented by the blue solid line and red dashed line, respectively.
In this paper, the material parameters of the positive domain in MEEPEM are chosen
from Ref. [21]: CE

11a = 2.03 × 1011 N/m2, e22a = 2.50 C/m2, ρa = 4.700 × 103 kg/m3,
and εS

11a = 44.00. In addition, the proper values of the material parameters of the neg-
ative domain in MEEPEM are chosen as follows [28–32]: CE

11b = 3.00 × 1011 N/m2,
e22b = 2.32 C/m2, ρb = 4.630× 103 kg/m3, and εS

11b = 20.00. Other parameters include:
the period Λ = 2 ×10−5 m, the number of the period N = 20, the duty cycle r = a/b = 3,
m = 1, r0 = 2.0×10−3 m, S0 = 1.26×10−5 m2, S = 5.00×10−5 m2, the suitable values of the
complete elliptic integrals of the first K and second kind E chosen from Refs. [33–35], E = 0.6,
and K = 12.

Figures 3 and 4 show the high and low angular frequency regions of the dielectric
spectrum in Figure 2, respectively. From Figure 3, the real parts of two dielectric functions
εra and εrb in the positive and negative domains exhibit negative values below angular
frequencies ωp1 = 7.8 Grad/s and ωp2 = 11.6 Grad/s, respectively. If we do not consider
PPC and SRRs in the MEEPEM, the effective nonlinear dielectric permittivity of the periodic
arrays of conducting wires is written as [2]:

εe f f = 1−
ω2

p

ω2 , (36)
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where εe f f is the effective dielectric permittivity. From the above equation, we know
εe f f < 0 is below the effective plasma frequency ωp = 51.5 Grad/s. Because of PPC and
SRRs in the MEEPEM, the ωp splits into two angular frequencies ωp1 and ωp2, ωp1 < ωp,
and ωp2 < ωp. At angular frequencies ωp1 and ωp2, εra = 0, and εrb = 0, correspond to two
zero refractive indices. As shown in Figure 4, there are two dielectric abnormalities near
the resonance angular frequencies ωa1 = 1.91 Grad/s and ωb1 = 1.95 Grad/s, corresponding
to the first-order multi-field coupling polaritons for the coupled waves. The peaks of
two dielectric abnormalities are greater than zero. At ωa1 and ωb1, εra = 0 and εrb = 0,
correspond to two zero refractive indices.
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Figure 3. Relative dielectric functions εra and εrb of MEEPEM in the high angular frequency re-gion,
which are represented by the blue solid line and red dashed line, respectively. Because of PPC and
SRRs in the MEEPEM, the effective plasma frequency ωp conducting wires splits into two angular
frequencies of ωp1 and ωp2, ωp1 < ωp and ωp2 < ωp.
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Figure 4. Relative dielectric functions εra and εrb of MEEPEM in low angular frequency region, which
are represented by the blue solid line and red dashed line, respectively. There are two dielec-tric
abnormalities near the resonance angular frequencies ωa1 and ωb1 which are represented by the two
green dashed lines in the vertical direction, corresponding to the first-order multi-field coupling
polaritons for the coupled waves.

The results of the dielectric spectra in Figures 2–4 are interpreted as follows. Magnetic
field Hx of the EM wave induces electric currents in two identical SRRs sharing a common
axis, and the currents generate an attractive Ampère force between the SRRs, which
periodically compress PPC, and this can create an additional electric polarization due to
the piezoelectric effect. The electric field Ey of the EM wave can excite the longitudinal
superlattice vibration in PPC, which can also create additional electric polarization. Two
additional electric polarizations are coupled to the electric field excited by the periodic
arrays of conducting wires. The coupled electric field is coupled to the EM wave along
the z axis. These interactions result in the coupling between the longitudinal superlattice
vibrations, magnetic field, and electric field in the MEEPEM, which cause variations in the
dielectric spectrum. When the EM waves propagate along the x axis through the MEEPEM,
it will be strongly reflected as long as its frequency lies in the angular frequency regions in
which the dielectric function is negative. This is called the multi-field coupling photonic
band gap (PBG).

In Figure 5, the entire reflection spectra of the MEEPEM and of the PPC are represented
by the blue solid line and red dashed line, respectively. Here, the PPC is the IPPLN
mentioned above. Figure 6 shows the cases in the low frequency region in Figure 5. In
Figure 6, the reflection spectrum of the MEEPEM shows two reflection peaks and two zero
reflection coefficients near the resonance angular frequencies ωa1 and ωb1 of the first-order
multi-field coupling polaritons. Similar cases also exist in the reflection spectrum of the
PPC. While the positions of two reflection peaks of PPC are higher than those of MEEPEM
due to the resonant angular frequencies of PPC, they are higher than that of MEEPEM. In
addition, the intensities of two reflection peaks of PPC are weaker than those of MEEPEM
because the coupling of three fields in PPC is weaker than that of MEEPEM. We know
the dielectric permittivity is a key factor in the calculation of the reflection coefficients.
Therefore, the dielectric anomaly phenomena lead to the changes in the reflection spectra
of the MEEPEM and PPC in Figure 6.
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Figure 6. Reflection spectrums of MEEPEM and PPC in the low angular frequency region. Reflection
spectra of MEEPEM and PPC are represented by the blue solid line and red dashed line, respectively.
Near the resonance angular frequencies ωa1 and ωb1 of the first-order multi-field coupling polaritons,
there are two reflection peaks and two zero reflection coefficients in the reflection spectrum of the
MEEPEM, which also exist in the reflection spectrum of the PPC.

Figure 7 shows the cases in the high frequency region in Figure 5. As shown in Figure 7,
the reflection spectrum of MEEPEM shows one very wide PBG, and that of PPC shows
three PBGs (two of them are in the PBG of MEEPEM). The comparison is made in Table 1.
The frequency position of MEEPEM is higher than that of PPC, and the frequency width of
the PBG of the MEEPN is wider than the case of the PPC. The simulation results can be
clarified by the variations in impedance Za and Zb in Equation (32), which have a great
influence on electromagnetic wave propagation. The impedance depends on the variation
in the permittivity. Here, the variations in the permittivity are a result of the coupling
between electric, acoustic, and magnetic fields in the MEEPEM. By fixing the values of
other parameters in the Equation (32), we have investigated the effect of the dielectric
permittivity on the PBGs. The research found the larger the ratio of ε2a to ε2b, the more the
widths of the PBGs increase, and the higher the positions the PBGs move to, and vice versa.
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Figure 7. Reflection spectra of MEEPEM and PPC in high angular frequency region. Reflection
spectra of MEEPEM and PPC are represented by the blue solid line and red dashed line, respectively.
The reflection spectra of MEEPEM shows one very wide PBG, that of PPC shows three PBGs (two of
them are in the PBG of MEEPEM).

Table 1. Comparison between PBGs of PPC and that of MEEPEM.

Number of PBGs Width of PBG (×1013 rad/s)

PPC three 0.164; 0.173; 0.102 1

MEEPEM one 2.357
1 From left to right in Figure 7.

From Equation (33), the real part of the effective magnetic permeability function µe f f of
SRR is shown in Figure 8, which is represented by the blue solid lines; here, l1 = 1× 10−7m,
l2 = 1× 10−6m, and l3 = 1× 10−4m. As can be seen in Figure 8, there is one anomalous
peak near the magnetic resonance angular frequency ωLC = 2.68 Grad/s. The effective
magnetic permeability µe f f exhibits negative values in the angular frequency gap (ωLC,
ωLCP), i.e., PBG, in which the propagation of EM waves in MEEPEM will be forbidden,
where ωLCP = 2.70 Grad/s, which can be obtained by setting µe f f = 0 in Equation (33).
Upon inserting ωLCP in the expression ωLCP − ωLC, we can obtain the width of the PBG.
While in the PBG (ωLC, ωLCP), the real parts of two dielectric functions εra and εrb also
exhibit negative values. That is, both the magnetic permeability and dielectric permittivity
of the MEEPEM are negative, and the MEEPEM will become the left-handed metamaterial
with negative refraction [2,36–39]. In the MEEPEM, the condition for obtaining a negative
refractive index is ωLCP < min (ωp1, ωp2), which can be obtained by adjusting the structural
parameters of the SRRs in MEEPEM.
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Figure 8. Effective magnetic permeability function µe f f for the SRRs which is represented by the
blue solid lines. There is one anomalous peak near the magnetic resonance frequency ωLC which is
represented by the pink dashed line in the vertical direction. The µe f f exhibits negative values in the
PBG (ωLC, ωLCP), where the EM wave propagation will be forbidden.

4. Conclusions

In summary, we have designed an MEEPEM with a square lattice of the periodic
arrays of conducting wires, PPC, and SRRs. We analyzed the mechanism for multi-field
coupling in MEEPEM. The magnetic field of the EM wave excites an attractive Ampère
force in two identical SRRs sharing a common axis, which periodically compress PPC, and
this can create additional electric polarization due to the piezoelectric effect. While the
electric field of the EM wave can excite longitudinal superlattice vibration in the PPC, it
can also create additional electric polarization. Two additional electric polarizations are
coupled to the electric field of the periodic arrays of conducting wires. The coupled electric
field is coupled to the EM wave. These interactions result in the coupling between the
longitudinal superlattice vibrations, magnetic field, and electric field in the MEEPEM.

We have calculated the dielectric functions, the effective magnetic permeability, and
the reflection coefficients of MEEPEM. By using them, we have analyzed the transmission
properties of EM waves in the MEEPEM. From the dielectric spectrum, we found the
effective plasma frequency of conducting wires splits into two angular frequencies. Near
the resonance angular frequencies of multi-field coupling polaritons, there are two dielectric
abnormalities. The negative regions of the dielectric spectrum form PBGs. In addition, the
dielectric spectrum exhibits four frequency positions of zero refractive indices. According
to the reflection spectrum, near the resonance angular frequencies of multi-field coupling
polaritons, there are two reflection peaks of both MEEPEM and PPC. The positions and
intensities of two reflection peaks of PPC are higher and weaker than those of MEEPEM,
respectively. In addition to these, the reflection spectrum of MEEPEM shows one very wide
PBG, and that of PPC shows three PBGs (two of them are in the PBG of MEEPEM). The PBG
position of MEEPEM is higher that of PPC, and the PBG width of MEEPN is wider than the
case of the PPC. The variations in these properties are a result of the coupling between the
longitudinal superlattice vibrations, magnetic field, and electric field in the MEEPEM.

The effective magnetic permeability also exhibits one PBG near the magnetic resonance
angular frequency. By adjusting the structure parameters of the SRRs in MEEPEM, if PBG
of effective magnetic permeability exists in the range of the PBGs of the dielectric function,
the MEEPEM will become a left-handed metamaterial with negative refraction.

Furthermore, by modulating the MEEPEM parameters, the MEEPEM can meet the ap-
plication requirements. These basic theoretical studies provide guidance for the application
of MEEPEM in the field of electromagnetic waves, such as the polarizer, the reflector, and
wavelength division multiplexing devices.
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