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Abstract: The reciprocal distance Laplacian matrix of a connected graph G is defined as RDL(G) =

RT(G)− RD(G), where RT(G) is the diagonal matrix of reciprocal distance degrees and RD(G) is
the Harary matrix. Clearly, RDL(G) is a real symmetric matrix, and we denote its eigenvalues as
λ1(RDL(G)) ≥ λ2(RDL(G)) ≥ . . . ≥ λn(RDL(G)). The largest eigenvalue λ1(RDL(G)) of RDL(G),
denoted by λ(G), is called the reciprocal distance Laplacian spectral radius. In this paper, we obtain
several upper bounds for the sum of k largest reciprocal distance Laplacian eigenvalues of G in terms
of various graph parameters, such as order n, maximum reciprocal distance degree RTmax, minimum
reciprocal distance degree RTmin, and Harary index H(G) of G. We determine the extremal cases
corresponding to these bounds. As a consequence, we obtain the upper bounds for reciprocal distance
Laplacian spectral radius λ(G) in terms of the parameters as mentioned above and characterize
the extremal cases. Moreover, we attain several upper and lower bounds for reciprocal distance
Laplacian spread RDLS(G) = λ1(RDL(G))− λn−1(RDL(G)) in terms of various graph parameters.
We determine the extremal graphs in many cases.

Keywords: distance Laplacian matrix; reciprocal distance Laplacian matrix; Harary index; reciprocal
distance Laplacian eigenvalues; reciprocal distance Laplacian spectral radius

1. Introduction

Let G = (V(G), E(G)) be a connected simple graph with vertex set V(G) and edge set
E(G). The order and size of G are |V(G)| = n and |E(G)| = m, respectively. The degree of a
vertex v, denoted by d(v), is the number of edges incident on the vertex v. Other undefined
notations and terminology can be seen in [1].

The adjacency matrix A(G) = (aij) of G is an n × n matrix in which (i, j)-entry is
equal to 1 if there is an edge between vertex vi and vertex vj and equal to 0 otherwise. Let
Deg(G) = diag(d(v1), d(v2), . . . , d(vn)) be the diagonal matrix of vertex degrees dG(vi),
i = 1, 2, . . . , n. The positive semi-definite matrix L(G) = Deg(G)− A(G) is the Laplacian
matrix of G. The eigenvalues of L(G) are called the Laplacian eigenvalues of G, which are
denoted by µ1(G), µ2(G), . . . , µn(G) and are ordered as µ1(G) ≥ µ2(G) ≥ . . . ≥ µn(G).

In G, the distance between two vertices vi, vj ∈ V(G), denoted by d(vi, vj), is defined
as the length of a shortest path between vi and vj. The diameter of G, denoted by d(G),
is the length of a longest path among the distance between every two vertices of G. The
distance matrix of G is denoted by D(G) and is defined as D(G) = (d(vi, vj))v1,vj∈V(G).

The transmission TrG(vi) (or briefly, Tri if graph G is understood) of a vertex vi is
defined as the sum of the distances from vi to all other vertices in G:

TrG(vi) = ∑
vj∈V(G)

d(vi.vj).
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Let Tr(G) = diag(Tr1, Tr2, . . . , Trn) be the diagonal matrix of vertex transmissions of
G. In [2], Aouchiche and Hansen introduced the Laplacian for the distance matrix of a
connected graph. The matrix DL(G) = Tr(G)− D(G) is called the distance Laplacian matrix
of G.

The Harary matrix of graph G, which is also called as the reciprocal distance matrix,
denoted by RD(G), is an n by n matrix defined as [3]

RDij =

{
1

d(vi ,vj)
if i 6= j

0 if i = j.

Henceforward, we consider i 6= j for d(vi, vj).
The reciprocal distance degree of a vertex vi, denoted by RTrG(vi) (or shortly RTi ), is

given by

RTrG(vi) = ∑
vj∈V(G)vi 6=vj

1
d(vi, vj)

.

Let RT(G) be an n× n diagonal matrix defined by RTii = RTrG(vi).
The Harary index of a graph G, denoted by H(G), is defined in [3] as

H(G) =
1
2

n

∑
i=1

n

∑
j=1

RDij =
1
2 ∑

vj∈V(G)vi 6=vj

1
d(vi, vj)

.

Clearly,

H(G) =
1
2 ∑

vi∈V(G)

RTrG(vi).

To see more work performed on the Harary matrix, we refer the reader to [4–6] and
the references therein.

In [7], the authors defined the reciprocal distance Laplacian matrix as RDL(G) =
RT(G)− RD(G). Since RDL(G) is a real symmetric matrix, we can denote by

λ1(RDL(G)) ≥ λ2(RDL(G)) ≥ . . . ≥ λn(RDL(G))

the eigenvalues of RDL(G). Since RL(G) is a positive semidefinite matrix, we will denote
the spectral radius of RDL(G) by λ(G) = λ1(RDL(G)), called the reciprocal distance
Laplacian spectral radius. More work on the matrix RDL(G) can be seen in [8–11].

Let Sk(G) =
k

∑
i=1

µi(G) be the sum of the k largest Laplacian eigenvalues of G. Several

researchers have been investigating the parameter Sk(G) because of its importance in
dealing with many problems in the theory, for instance, Brouwer’s conjecture and Laplacian
energy. We refer the reader to [12–15] for recent work conducted on the graph invariant
Sk(G). Motivated by the parameter Sk(G) of the Laplacian matrix, we define the following.
For 1 ≤ k ≤ n− 1, let RUk(G) denote the sum of the k largest reciprocal distance Laplacian
eigenvalues:

RUk(G) =
k

∑
i=1

λi(RDL(G)).

The Laplacian spread of a graph G is defined as LS(G) = µ1(G)− µn−1(G), where
µ1(G) and µn−1(G) are, respectively, the largest and second smallest Laplacian eigenvalues
of G. More on LS(G) can be found in [16–18].
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Since 0 is always a simple eigenvalue of the the reciprocal distance Laplacian matrix,
we define the reciprocal distance Laplacian spread of a connected graph G such as the
Laplacian spread as

RDLS(G) = λ1(RDL(G)− λn−1(RDL(G),

where λ1(RDL(G) and λn−1(RDL(G) are, respectively, the largest and second smallest
reciprocal distance Laplacian eigenvalues of G.

The rest of the paper is organized as follows. In Section 2, we obtain several upper
bounds for the graph invariant RUk(G) in terms of various graph parameters, such as order
n, maximum reciprocal distance degree RTmax, minimum reciprocal distance degree RTmin,
and Harary index H(G) of G. We characterize the extremal cases corresponding to these
bounds as well. As a consequence, we obtain the upper bounds for reciprocal distance
Laplacian spectral radius λ(G) in terms of the same parameters as mentioned above and
determine the extremal graphs. In Section 3, we find several upper and lower bounds for
reciprocal distance Laplacian spread RDLS(G) in terms of various graph parameters. We
characterize the extremal graphs in many cases.

2. Sum of the Reciprocal Distance Laplacian Eigenvalues

We begin with the following lemma.

Lemma 1. [7] For any connected graph G, 0 is a simple eigenvalue of RDL(G).

Proposition 1. Let G be a connected graph with n vertices. Then,

(i)
n−1

∑
i=1

λi(RDL(G)) = 2H(G).

(ii)
n−1

∑
i=1

λ2
i (RDL(G)) =

n

∑
i=1

RT2
i + 2 ∑

1≤i<j≤n

1
d2

ij
.

Proof. (i) Using the fact that the sum of eigenvalues is equal to the trace of a matrix and
using Lemma 1, we have

n

∑
i=1

λi(RDL(G)) =
n−1

∑
i=1

λi(RDL(G)) =
n

∑
i=1

RTi = 2H(G).

The proof for (ii) follows arguments similar to those for (i).

Proposition 2. Let G be a connected graph with n vertices. Then,

∑
1≤i<j≤n

1
d2

ij
≤ n(n− 1)

2

with equality if and only if G ∼= Kn.

Proof. For each 1 ≤ i < j ≤ n, we have dij ≥ 1 so that 1
dij
≤ 1. Thus,

∑
1≤i<j≤n

1
d2

ij
≤ ∑

1≤i<j≤n
1 =

(
n
2

)
=

n(n− 1)
2

,

which proves the required inequality.
Assume that the equality holds in the above inequality. Then, each dij = 1, whenever

1 ≤ i < j ≤ n, which is only possible if G ∼= Kn .
For the converse, we observe that the equality holds for Kn.
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Lemma 2. [19] Let x = (x1, x2 . . . , xn) and y = (y1, y2 . . . , yn) be n-tuples of real numbers
satisfying 0 ≤ m1 ≤ xi ≤ M1, 0 ≤ m2 ≤ yi ≤ M2 with i = 1, 2, . . . , n and M1M2 6= 0. Let
α = m1

M1
and β = m2

M2
. If (1 + α)(1 + β) ≥ 2, then

n

∑
i=1

x2
i

n

∑
i=1

y2
i −

( n

∑
i=1

xiyi

)2

≤ n2

4
(M1M2 −m1m2)

2. (1)

Let RTmax = max{RTi : i = 1, 2, . . . , n} and RTmin = min{RTi : i = 1, 2, . . . , n} be the
maximum reciprocal distance degree and the minimum reciprocal distance degree of the
graph G, respectively. Using Lemma 2, we obtain an upper bound for the graph invariant

n

∑
i=1

RT2
i in terms of Harary index H(G) and order n of graph G.

Lemma 3. Let G be a connected graph with n vertices. Then,

n

∑
i=1

RT2
i ≤

n
4
(RTmax − RTmin)

2 +
4H2(G)

n
. (2)

Moreover, inequality is sharp, as shown by all of the reciprocal distance degree regular graphs.

Proof. In Lemma 2, we take x = (RT1, RT2, . . . , RTn), y = (1, 1, . . . , 1), M1 = RTmax,
m1 = RTmin and M2 = m2 = 1. With these values, it is straightforward to check that the
condition (1 + α)(1 + β) ≥ 2 in Lemma 2 gets satisfied. Thus, from Inequality 1, we have

n

∑
i=1

RT2
i

n

∑
i=1

1−
( n

∑
i=1

RTi

)2

≤ n2

4
(RTmax − RTmin)

2

⇒ n
n

∑
i=1

RT2(i)− 4H2(G) ≤ n2

4
(RTmax − RTmin)

2

⇒
n

∑
i=1

RT2
i ≤

n
4
(RTmax − RTmin)

2 +
4H2(G)

n
.

Assume that G is k-reciprocal distance degree regular. Then, the left hand side of

Inequality 2 becomes nk2 and the right hand side becomes 4H2(G)
n = k2n2

n = nk2, which
shows that the equality holds for reciprocal distance degree regular graphs.

Now, we obtain an upper bound for the graph invariant RUk(G) in terms of various
graph parameters.

Theorem 1. Let G be a connected graph with n vertices and Harary index H(G). For 1 ≤ k ≤
n− 2, we have

RUk(G) ≤ 2H(G)k
n− 1

+

√
k(n− k− 1)

[
n2(n− 1)

(
(RTmax − RTmin)2 + 4(n− 1)

)
− 16H2(G)

]
2(n− 1)

√
n

with equality if and only if G ∼= Kn. For k = n− 1, equality always holds.
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Proof. Let RUk(G) = Rk. For 1 ≤ k ≤ n− 2, using Proposition 1 and Cauchy–Schwarz
inequality, we have(

λk+1(RDL(G)) + . . . + λn−1(RDL(G))
)2

= (2H(G)− Rk)
2 ≤ (n− k− 1)

(
λ2

k+1(RDL(G)) + . . . + λ2
n−1(RDL(G))

)
= (n− k− 1)

( n

∑
i=1

RT2
i + 2 ∑

1≤i<j≤n

1
d2

ij
− (λ2

1(RDL(G)) + . . . + λ2
k(RDL(G)))

)
≤ (n− k− 1)

( n

∑
i=1

RT2
i + 2 ∑

1≤i<j≤n
d2

ij −
R2

k
k

)
.

Further simplification gives

R2
k −

4kH(G)Rk
n− 1

+
4kH2(G)

n− 1
− k(n− k− 1)

n− 1

( n

∑
i=1

RT2
i + 2 ∑

1≤i<j≤n

1
d2

ij

)
≤ 0.

Therefore,

Rk ≤
2H(G)k +

√
k(n− k− 1)

[
(n− 1)

( n
∑

i=1
RT2

i + 2 ∑
1≤i<j≤n

1
d2

ij

)
− 4H2(G)

]
n− 1

. (3)

Using Proposition 2, Lemma 3 in Inequality 3 and after simplifications, we have

Rk ≤
2H(G)k

n− 1
+

√
k(n− k− 1)

[
n2(n− 1)

(
(RTmax − RTmin)2 + 4(n− 1)

)
− 16H2(G)

]
2(n− 1)

√
n

,

which proves the required inequality.
Assume that equality holds in the above inequality. Then, equality must hold simul-

taneously in the Cauchy–Schwarz inequality, Proposition 2, and Lemma 3, which is only
possible if G ∼= Kn.

Conversely, if G ∼= Kn, then the left hand side of the main equality is equal to kn.
After performing the necessary calculations, the right-hand side reduces to 2H(Kn)k

n−1 + 0 =
n(n−1)k

n−1 = kn, which proves the converse part.
Using the fact that traces of a matrix are equal to the sum of its eigenvalues and noting

that 2H(G) = Rn−1, we easily see that equality always holds when k = n− 1 in the main
inequality.

Taking k = 1 in Theorem 1, we obtain an upper bound for the reciprocal distance
Laplacian spectral radius λ(G) of a connected graph G in terms of the maximum reciprocal
distance degree RTmax, minimum reciprocal distance degree RTmin, order n, and Harary
index H(G).

Theorem 2. Let G be a connected graph with n vertices and Harary index H(G). Then,

λ(G) ≤ 2H(G)

n− 1
+

√
(n− 2)

[
n2(n− 1)

(
(RTmax − RTmin)2 + 4(n− 1)

)
− 16H2(G)

]
2(n− 1)

√
n

with equality if and only if G ∼= Kn.
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Lemma 4. [20] Let [n] = {1, 2, . . . , n} be the canonical n-element set, and let [n](2) denote the set
of two-element subsets of [n], that is, the edge set of Kn. To each entry {i, j} = ij in [n](2), associate
a real variable zij; then, for n ≥ 2, and for all z′ijs, we have

(
∑
ij

zij

)2
+

(
n− 1

2

)
∑
ij

z2
ij −

n− 1
2 ∑

i

(
∑
j 6=i

zij

)2
≥ 0.

Now, we obtain an upper bound for the sum of the squares of the reciprocal distance
degrees in terms of the Harary index H(G) and the order n of the graph G.

Lemma 5. Let G be a connected graph with order n and having diameter d. Then

∑
i

RT2
i ≤

n(n− 1)(n− 2)
2

+
2H2(G)

n− 1

with equality if and only if G ∼= Kn.

Proof. Put 1
dij

for zij in Lemma 4 and observe that with each 1
dij
≤ 1, we have

(
∑
ij

1
dij

)2
+

(
n− 1

2

)
∑
ij

( 1
dij

)2
− n− 1

2 ∑
i

(
∑
j 6=i

1
dij

)2
≥ 0

or H2(G) +

(
n− 1

2

)
∑
ij

( 1
dij

)2
− n− 1

2 ∑
i

RT2
i ≥ 0.

Simplifying further, we have

∑
i

RT2
i ≤

2
n− 1

(n− 1)(n− 2)
2

(n(n− 1)
2

)
+

2H2(G)

n− 1

or ∑
i

RT2
i ≤

n(n− 1)(n− 2)
2

+
2H2(G)

n− 1
.

proving the required inequality.
Assume that the equality holds in the above inequality. Then, each 1

dij
= 1 or dij = 1

which is only possible if G is the complete graph Kn.
Conversely, assume that G ∼= Kn. Then, we observe that H(G) = n(n−1)

2 and
∑
i

RT2
i = n(n − 1)2. Substituting these values in the main inequality, we see that the

equality holds.

A similar argument has been adopted in studying Estrada index [21]. Using Lemma 5,
we have the following upper bound for the graph invariant RUk(G) in terms of order n
and Haray index H(G). This bound seems to be more elegant than the bound in Theorem 1
since it uses relatively less number of parameters.

Theorem 3. Let G be a connected graph with n vertices and Harary index H(G). For 1 ≤ k ≤
n− 2, we have

RUk(G) ≤ 2H(G)k
n− 1

+

√
k(n− k− 1)

(
n(n− 1)− 2H(G)

)(
n(n− 1) + 2H(G)

)
(n− 1)

√
2

with equality if and only if G ∼= Kn. For k = n− 1, equality always holds.
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Proof. We proceed exactly as in Theorem 1 upto Inequality 3, then use Lemma 5 and
Proposition 2, and obtain

Rk ≤
2H(G)k +

√
k(n− k− 1)

[
(n− 1)

(
n(n−1)(n−2)

2 + 2H2(G)
n−1 + n(n− 1)

)
− 4H2(G)

]
n− 1

.

Simplifying further, we have

Rk ≤
2H(G)k +

√
k(n− k− 1)

(
n2(n−1)2

2 − 2H2(G)
)

n− 1
.

or

Rk ≤
2H(G)k

n− 1
+

√
k(n− k− 1)

(
n(n− 1)− 2H(G)

)(
n(n− 1) + 2H(G)

)
(n− 1)

√
2

which is the inequality in the statement of theorem.
The remaining part of the proof follows by using similar arguments as in

Theorem 1.

As a consequence of Theorem 3, we obtain the following upper bound for reciprocal
distance Laplacian spectral radius λ(G) of a connected graph G in terms of the Harary
index H(G) and order n of the graph G.

Theorem 4. Let G be a connected graph with n vertices and Harary index H(G). Then,

λ(G) ≤ 2H(G)

n− 1
+

√
(n− 2)

(
n(n− 1)− 2H(G)

)(
n(n− 1) + 2H(G)

)
(n− 1)

√
2

with equality if and only if G ∼= Kn.

3. Reciprocal Distance Laplacian Spread

We begin this section with the following observations.

Lemma 6. [7] Let G be a connected graph on n vertices with diameter d = 2. Then,

λi(RDL(G)) =
n + µi(G)

2

for i = 1, 2, . . . , n − 1. Furthermore, n+µi(G)
2 and µi(G) both have the same multiplicity for

i = 1, 2, . . . , n.

A special case of the well-known min–max theorem is the following result.

Lemma 7. [22] If M is a symmetric n× n matrix with eigenvalues δ1 ≥ δ2 ≥ . . . ≥ δn, then for
any x ∈ Rn (x 6= 0),

δ1 ≥
xT Nx
xTx

.

Equality holds if and only if x is an eigenvector of M corresponding to the largest eigenvalue δ1.

Lemma 8. [7] If G is a graph on n > 2 vertices, then the multiplicity of λ(G) is always less than
or equal to n− 1 with equality if and only if G is the complete graph.
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Lemma 9. [23] Let G be a connected graph of order n ≥ 2. Then, µ1(G) ≥ 4(G) + 1, with
equality if and only if4(G) = n− 1.

Theorem 5. Let G be a connected graph with n vertices having Harary index H(G). Then,

RDSL(G) ≤

√
(n− 2)

(
n(n− 1)− 2H(G)

)(
n(n− 1) + 2H(G)

)
√

2
(4)

Equality holds if and only if G ∼= Kn.

Proof. To prove the inequality, we consider 2H(G) = λ1(RDL(G)) + λ2(RDL(G)) + . . . +
λn−1(RDL(G)), which gives 2H(G) ≤ (n − 2)λ1(RDL(G)) + λn−1(RDL(G)) or
λn−1(RDL(G)) ≥ 2W(G)− (n− 2)λ1(RDL(G)). Therefore,

RDLS(G) = λ1(RDL(G))− λn−1(RDL(G)) ≤ λ1(RDL(G))− 2H(G) + (n− 2)λ1(RDL(G)),

which gives
RDSL(G) ≤ (n− 1)λ1(RDL(G))− 2H(G). (5)

Using Theorem 4 in Inequality 5, we have

RDSL(G) ≤

√
(n− 2)

(
n(n− 1)− 2H(G)

)(
n(n− 1) + 2H(G)

)
√

2
,

proving the required inequality.
From Inequality 5 and Theorem 4, we see that equality holds in Inequality 4 if and

only if λ1(RDL(G)) = λ2(RDL(G)) = . . . = λn−2(RDL(G)) and G ∼= Kn.
Since the reciprocal distance Laplacian spectrum of Kn is {n(n−1), 0}, therefore, equality

holds in Inequality 4 if and only if G ∼= Kn.

If we use Theorem 2 instead of Theorem 4 in the above result, we have the following
theorem:

Theorem 6. Let G be a connected graph with n vertices having Wiener index W(G). Then,

RDSL(G) ≤

√
(n− 2)

[
n2(n− 1)

(
(RTmax − RTmin)2 + 4(n− 1)

)
− 16H2(G)

]
2
√

n
.

Equality holds if and only if G ∼= Kn.

Let Sd = 1 + 1
2 + 1

3 + . . . + 1
d . The following lemma gives the lower bound for the

reciprocal distance Laplacian spectral radius in terms of order n, diameter d, and Sd.

Lemma 10. Let G be a connected graph on n vertices having diameter d. Then,

λ(G) ≥ Sd +
(n− d− 2)

d
.

Proof. Let v1v2 . . . vd+1 be the diametral path in G such that dG(v1, vd+1) = d. Consider
the n-vector x = (x1, x2, . . . , xd−1, xd, xd+1, . . . , xn)

T defined by

xi =

{
1√
2

if i = 1, d + 1

0 otherwise.
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By Lemma 7, we have

λ(G) ≥ xTDQy
yTy

=
RT1 + RTd+1

2
− 1

dG(v1, vd+1)
=

RT1 + RTd+1
2

− 1
d

. (6)

It can be easily seen that

RT1 ≥ 1 +
1
2
+

1
3
+ . . . +

1
d
+

(n− d− 1)
d

= Sd +
(n− d− 1)

d
(7)

Similarly,

RTd+1 ≥ Sd +
(n− d− 1)

d
. (8)

On substituting inequalities 7, 8 in Inequality 6, we have

λ(G) ≥ Sd +
(n− d− 1)

d
− 1

d
= Sd +

(n− d− 2)
d

.

Theorem 7. Let G be a connected graph with order n having diameter d. Then,

RDLS(G) ≥ Sd +
(n− d− 2)

d
− 2H(G)

n− 1
.

Proof. Note that
n−1

∑
i=1

λi(RDL(G)) = 2H(G). From this equality, we see that

λn−1(RDL(G)) ≤ 2H(G)

n− 1
. (9)

Using Lemma 10 and Inequality 9, we have

RDSL(G) = λ1(RDL(G))− λn−1(RDL(G))

≥ Sd +
(n− d− 2)

d
− 2H(G)

n− 1
.

Theorem 8. Let G be a connected graph on n ≥ 3 vertices having diameter d ≤ 2. Then,

RDLS(G) ≥ n +4(G) + 1
2

− 2H(G)

n− 1
. (10)

Equality holds if and only if d = 1, that is, G ∼= Kn.

Proof. First, we show that equality holds for Kn. Note that the reciprocal distance Laplacian
spectrum of the complete graph Kn is {n(n−1), 0} so that RDLS(Kn) = λ1(RDL(Kn))−
λn−1(RDL(Kn)) = n− n = 0. Additionally, the right-hand side of Inequality 10 for Kn is
equal to4(Kn) + 1− 2H(Kn)

n−1 = n− 1 + 1− n(n−1)
n−1 = 0. Thus, from the above arguments,

we see that equality holds in Inequality 10 when G is a complete graph.
Now, let G be a graph with diameter d = 2. Using Lemma 6, we have

RDLS(G) = λ1(RDL(G))− λn−1(RDL(G)) =
n + µ1

2
− λn−1(RDL(G)). (11)
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By Lemma 8, we see that Inequality 9 is strict since G is a noncomplete graph, that is,
λn−1(RDL(G)) < 2H(G)

n−1 . Using this observation with Lemma 9 in Equality 11, we have

RDLS(G) >
n +4(G) + 1

2
− 2H(G)

n− 1
.
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