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Abstract: In this paper, we show that 66666 is the largest repdigit expressible as the sum of four
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1. Introduction

A palindromic number is a number that has reflectional symmetry across a vertical
axis. A repdigit is a palindromic number N that only has one distinct digit when it is
represented in base 10. That is, N has the form

d

(
10l − 1

9

)
,

for some positive integers d and l with 1 ≤ d ≤ 9 and l ≥ 1.
The problem of finding all repdigits that are perfect powers was posed by Obláth [1]

and settled in 1999 by Bugeaud and Mignotte [2]. In 2000, Luca [3] proved that the largest
repdigits in Fibonacci and Lucas sequences were F10 = 55 and L5 = 11. Afterward, finding
repdigits in recurrence sequences has drawn much attention in the literature. For instance,
Dıaz-Alvarado and Luca [4] proved that the largest Fibonacci number that can be repre-
sented as a sum of two repdigits is F20 = 6765 = 6666 + 99. Luca [5] answered the question
of finding all repdigits as sums of three Fibonacci numbers. Luca, Normenyo, and Togbé [6]
obtained all repdigits expressible as sums of three Lucas numbers. They also solved a
similar problem involving three Pell numbers in [7]. Ddamulira [8] identified all repdigits
as sums of three balancing numbers. In [9], the authors confirmed a conjecture by Luca [5].
More precisely, they determined all repdigits expressible as sums of four Fibonacci or Lucas
numbers. Afterward, in [10], the authors obtained analogous results for Pell numbers.
Keskin and Erduvan [11] tackled the same problem with four balancing numbers.

Recently, Ddamulira [12] found all repdigits as sums of three Padovan numbers. As
far as we know, this is the only reference involving repdigits that are expressible as sums
of more than two numbers in a high-order recurrence sequence. Compared to the second-
order recurrence sequence, it is difficult to solve a similar question with a high-order
recurrence sequence. Therefore, it is interesting to find all repdigits that are sums of four
numbers in some other third-order recurrence sequence.

In this paper, we investigate the presence of repdigits as sums of four tribonacci
numbers. More precisely, we prove the following theorem.
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Theorem 1. All non-negative integer solutions (m1, m2, m3, m4, N, d, `) of the Diophantine equation

N = Tm1 + Tm2 + Tm3 + Tm4 = d

(
10l − 1

9

)
with d ∈ {1, · · · , 9} (1)

have

N ∈
{

4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99,
111, 333, 555, 666, 999, 2222, 3333, 66666

}
.

Our paper is organized as follows. In the following section, we recall some important
results that are useful for the proof of our main theorem. We use them in Section 3 to prove
Theorem 1. During the proof, first, we use Baker’s method several times to obtain a bound
of m1, which is too large to conduct a brute force search. We then apply the reduction
method of de Weger several times to find a very low bound for m1, which enables us to
run a simple computer program in Mathematica to find the small solutions. It is worth
mentioning that the reduction method is invalid in three cases during the computations.
For these cases, we use periodic properties of {Tn}(mod 9) to reach the contradictions.

2. Auxiliary Results

We use a definition of tribonacci numbers (see [13]) with little difference from the
common one that starts from 0, 0, 1. Let {Tn}n≥0 be the tribonacci sequence satisfying the
recurrence relation Tn+3 = Tn+2 + Tn+1 + Tn with initial conditions T0 = 0 and T1 = T2 = 1.
The first few terms of this sequence are

0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, 10609, 19513 . . . .

Its characteristic equation, z3 − z2 − z− 1 = 0, has one real root α and two complex roots β
and γ = β. In 1982, Spickerman [14] found the following “Binet-like” formula:

Tn = aαn + bβn + cγn, for all n ≥ 0, (2)

where
a =

1
−α2 + 4α− 1

, b =
1

−β2 + 4β− 1
, c =

1
−γ2 + 4γ− 1

= b.

Numerically, we have 1.83 ≤ α ≤ 1.84, 0.73 ≤ |β| = |γ| = α−
1
2 ≤ 0.74, 0.33 ≤ a ≤ 0.34

and 0.25 ≤ |b| = |c| ≤ 0.26. It follows that the complex conjugate roots β and γ have little
influence on the right side of Equation (2), setting

e(n) := Tn − aαn = bβn + cγn then |e(n)| ≤ 1

α
n
2

(3)

holds for all n ≥ 1. In addition, it is known that:

αn−2 ≤ Tn ≤ αn−1 holds for all n ≥ 1. (4)

Let η(1) = η be an algebraic number of degree d with a minimal primitive polynomial

f (X) = a0

d

∏
i=1

(X− η(i)) ∈ Z[X],

where the positive integer a0 is the leading coefficient and η(i)(i = 2, . . . , d) are the conju-
gates of η. The logarithmic height of η is given by

h(η) =
1
d

(
log |a0|+

d

∑
i=1

log
(

max
{∣∣∣η(i)

∣∣∣, 1
}))

. (5)
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In particular, if η = p/q is a rational number with gcd(p, q) = 1 and q > 0, then h(η) =
log max{|p|, q}. The following properties of h(η) will be used in the next section.

Lemma 1 ([15]). Let a and b be algebraic numbers. Then,

h(a± b) ≤ h(a) + h(b) + log 2,

h
(
ab±

)
≤ h(a) + h(b),

h(ar) = |r|h(a) (r ∈ Z).

We recall a variation of a result of Matveev [16] due to Bugeaud, Mignotte, and
Siksek [17], which helps us to give an upper bound of m1.

Lemma 2 ([17], Theorem 9.4). Let η1, . . . , ηt be positive real algebraic numbers in a real algebraic
number field K ⊂ R of degree DK, b1, . . . , bt be nonzero integers and assume that

Λ := ηb1
1 · · · η

bt
t − 1

is nonzero. Then

log |Λ| > −1.4× 30t+3 × t4.5 × D2
K(1 + log DK)(1 + log B)A1 A2 · · · At,

where
B ≥ max{|b1|, . . . , |bt|},

and
Ai ≥ max{DKh(ηi), | log ηi|, 0.16}, for all i = 1, . . . , t.

To reduce the bound we obtain from Lemma 2, we introduce a modified version of
the Baker and Davenport reduction method that appears in [18]. Let v1, v2, β ∈ R, and let
x1, x2 ∈ Z be unknown. Let

Λ = β + x1v1 + x2v2. (6)

Let c, δ be positive constants. Set X = max{|x1|, |x2|}. Let X0 be a (large) positive constant.
Assume that

|Λ| < c · exp(−δ ·Y), (7)

X ≤ X0. (8)

When β = 0 in (6), we have
Λ = x1v1 + x2v2.

Put v = −v1/v2. Let the continued fraction expansion of v be given by

[a0, a1, a2, . . .],

and let the k-th convergent of v be pk/qk for k = 0, 1, 2, . . .. We may assume without loss of
generality that |v1| < |v2| and that x1 > 0. We have the following result.

Lemma 3 ([18], Lemma 3.1). (1) If (7) and (8) hold for x1, x2 with X ≥ X∗, then (−x2, x1) =
(pk, qk) for an index k that satisfies

k ≤ −1 +
log(1 + X0

√
5)

log( 1+
√

5
2 )

:= Y0. (9)

Moreover, the partial quotient ak+1 satisfies

ak+1 > −2 +
|v2| exp(δqk)

cqk
. (10)
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(2) If for some k with qk ≥ X∗, we have

ak+1 >
|v2| exp(δqk)

cqk
, (11)

then (7) holds for (−x2, x1) = (pk, qk).

Lemma 4 ([18], Lemma 3.2). Let

A = max
0≤k≤Y0

ak+1.

If (7) and (8) hold for x1, x2 and β = 0, then

Y <
1
δ

log
(

c(A + 2)X0

|v2|

)
. (12)

When βv1v2 6= 0 in (6), put v = v1/v2 and ψ = β/v2. Then we have

Λ
v2

= ψ− x1v + x2.

Let p/q be a convergent of v with q > X0. For a real number x, we define

‖x‖ = min{|x− n|, n ∈ Z}

be the distance from x to the nearest integer. We have the following Davenport lemma.

Lemma 5 ([18], Lemma 3.3). Suppose that

‖qψ‖ > 2X0

q
.

Then, the solution of (7) and (8) satisfy

Y <
1
δ

log
(

q2c
|v2|X0

)
.

Finally, the following result of Le [19] will help us to deal with some inequalities
involving logarithms.

Lemma 6 ([19]). Let f (y) ∈ R[x] be a polynomial with degree n and f (m)(y) be its m-th derivative.
If there is a real number x0 satisfying

x0 > max
(

0, f (log x0), f (1)(log x0), · · · , f (n)(log x0)
)

,

then x− f (log x) > 0 when x ≥ x0.

3. Proof of Theorem 1
3.1. Bounding the Variables

We assume that m1 ≥ m2 ≥ m3 ≥ m4 ≥ 0. From (1) and (4), we have

αm1−2 ≤ Tm1 ≤ Tm1 + Tm2 + Tm3 + Tm4 = d

(
10` − 1

9

)
≤ 10` (13)

and

10`−1 ≤ d

(
10` − 1

9

)
≤ Tm1 + Tm2 + Tm3 + Tm4 ≤ 4Tm1 < αm1+2, (14)
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where we use 4 < α3. Thus,

` ≥ (m1 − 2)
log α

log 10
(15)

and
`− 1 ≤ (m1 + 2)

log α

log 10
. (16)

Since
1
6
<

log α

log 10
= 0.264649 . . . <

1
3

,

we have
m1 − 2

6
< ` <

m1 + 5
3

by (15) and (16). Therefore, if m1 ≤ 330, then 1 ≤ ` ≤ 111. Running a Mathematica
program in the range 0 ≤ m4 ≤ m3 ≤ m2 ≤ m1 ≤ 330, 1 ≤ d ≤ 9, and 1 ≤ ` ≤ 111, we find
no other solutions except those listed in Theorem 1.

From now on, we assume that m1 > 330. By using (3), Equation (1) can be written as

aαm1 + e(m1) + aαm2 + e(m2) + aαm3 + e(m3) = d

(
10` − 1

9

)
. (17)

We then consider (17) in four different cases as follows.

3.2. Case 1

Identity (17) is equivalent to

aαm1 − d · 10`

9
= −d

9
− a(αm2 + αm3 + αm4)− e(m1)− e(m2)− e(m3)− e(m4). (18)

Taking the absolute value on both sides of (18), estimate the size of the right-hand side of
the equality. We have∣∣∣∣∣aαm1 − d · 10`

9

∣∣∣∣∣ ≤ d
9
+ a(αm2 + αm3 + αm4) + |e(m1)|+ |e(m2)|+ |e(m3)|+ |e(m4)|

< 1 + 3aαm2 + 4α−m4/2

< 3a + 3aαm2 + 12aα(2m2−m4)/2

< 18aαm2 . (19)

To apply Lemma 2. We divide (through (19)) by aαm1 to obtain∣∣∣∣10` · α−m1

(
d
9a

)
− 1
∣∣∣∣ < 18

αm1−m2
. (20)

Then, let

Λ1 := 10` · α−m1

(
d
9a

)
− 1. (21)

It is sufficient to check that Λ1 6= 0. Suppose that Λ1 = 0, then we have

10` · d
9

= aαm1 . (22)
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Now, we consider the Q-automorphism σ of the Galois extension Q(α, β) over Q given by
σ(α) := β and σ(β) := α. Since Λ1 = 0, we have σ(Λ1) = 0. Thus, conjugating the relation
(22) under σ, and taking absolute values on both sides, we have

10` · d
9

= |σ(aαm1)| = b|β|m1 < |b| < 1
2

,

which is false for ` ≥ 1 and d ≥ 1. Therefore, Λ1 6= 0.
Then, we apply Lemma 2 with the data

η1 := 10, η2 := α, η3 :=
d
9a

, b1 := `, b2 := −m1, b3 := 1, t := 3.

The minimal polynomial of a is 44x3 − 2x− 1 and has roots a, b, c. Since |b| = |c| < |a| < 1,
we have

h(a) =
1
3

log 44.

Let K := Q(α). Then DK = 3 because η1, η2, η3 ∈ Q(α). Since max{`, m1, 1} ≤ m1, we take
B := m1. Further, the minimal polynomial of α over Z is x3 − x2 − x− 1 has roots α, β, γ
with 1.83 ≤ α ≤ 1.84 and |β| = |γ| < 1. Thus, we have h(α) = 1

3 log α. Since h(10) = log 10
and

h(η3) ≤ h(d) + h(9) + h(a) ≤ 4 log 3 +
1
3

log 44 < 6 log 3,

we take A1 := 3 log 10, A2 := log α and A3 := 18 log 3. Then, from Lemma 2, (21) is
bounded below by

log |Λ1| > −1.4× 306 × 34.5 × 32(1 + log 3)(1 + log m1)(3 log 10)(log α)(18 log 3)

> −7.39× 1014(log m1) log α.

Combining the above inequality with (20), we have

m1 −m2 ≤ 7.41× 1014 log m1.

3.3. Case 2

Identity (17) is also equivalent to

a(αm1 + αm2)− d · 10`

9
= −d

9
− a(αm3 + αm4)− e(m1)− e(m2)− e(m3)− e(m4).

Thus, it follows that∣∣∣∣∣a(αm1 + αm2)− d · 10`

9

∣∣∣∣∣ ≤ d
9
+ a(αm3 + αm4) + |e(m1)|+ |e(m2)|+ |e(m3)|+ |e(m4)|

< 1 + 2aαm3 + 4α−m4/2

< 3a + 2aαm3 + 12aα(2m3−m4)/2

< 17aαm3 . (23)

As before, we divide both sides of (23) by a(αm1 + αm2) to have∣∣∣∣10`α−m2

(
d

9a(1 + αm1−m2)

)
− 1
∣∣∣∣ < 17αm3−m1

1 + αm2−m1
,

which yields ∣∣∣∣10`α−m2

(
d

9a(1 + αm1−m2)

)
− 1
∣∣∣∣ < 17

αm1−m3
. (24)
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Let

Λ2 := 10`α−m2

(
d

9a(1 + αm1−m2)

)
− 1. (25)

Again, we need to check that Λ2 6= 0. Suppose that Λ2 = 0, then

a(αm1 + αm2) =
10` · d

9
. (26)

We consider the Q-automorphism σ of the Galois extension Q(α, β) over Q given by
σ(α) := β and σ(β) := α. We have σ(Λ2) = 0 because Λ2 = 0. Thus, conjugating the
relation (26) under σ, and taking the absolute values on both sides, we have

10` · d
9

= |σ(a(αm1 + αm2))| = |b|(|β|m1 + |β|m2) < 2|b| < 1,

which is false for ` ≥ 1 and d ≥ 1. Therefore, Λ2 6= 0. Hence, we apply Lemma 2 with
the data

η1 := 10, η2 := α, η3 :=
d

9a(1 + αm1−m2)
,

b1 := `, b2 := −m2, b3 := 1, t := 3.

Let K := Q(α). Then DK = 3 because η1, η2, η3 ∈ Q(α). Since max{`, m1, 1} ≤ m1, we take
B := m1. Since

h(η3) ≤ h(d) + h(9) + h(a) + h
(
1 + αm1−m2

)
≤ 4 log 3 +

1
3

log 44 + (m1 −m2) log α + log 2

< 4.52× 1014 log m1,

we can take A1 := 3 log 10, A2 := log α and A3 := 1.36× 1015 log m1. So, Lemma 2 reveals
that (25) is bounded below by

log |Λ2| >− 1.4× 306 × 34.5 × 32(1 + log 3)(1 + log m1)(3 log 10)(log α)

× 1.36× 1015 log m1

>− 5.09× 1028(log m1)
2 log α.

Combining the above inequality with (24), we have

m1 −m3 ≤ 5.11× 1028(log m1)
2.

3.4. Case 3

Rewriting (17) as below:

a(αm1 + aαm2 + αm3)− d · 10`

9
= −d

9
− aαm4 − e(m1)− e(m2)− e(m3)− e(m4).

Thus, it follows that∣∣∣∣∣a(αm1 + αm2 + aαm3)− d · 10`

9

∣∣∣∣∣ ≤ d
9
+ aαm4 + |e(m1)|+ |e(m2)|+ |e(m3)|+ |e(m4)|

< 1 + aαm4 + 4α−
m4
2

< 3a + aαm4 + 12aα−
m4
2

< 16aαm4 , (27)
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Dividing through (27) by a(αm1 + αm2 + αm3), we have∣∣∣∣10`α−m3

(
d

9a(1 + αm1−m3 + αm2−m3)

)
− 1
∣∣∣∣ < 16αm4−m1

1 + αm2−m1 + αm3−m1
.

This means that ∣∣∣∣10`α−m3

(
d

9a(1 + αm1−m3 + αm2−m3)

)
− 1
∣∣∣∣ < 16

αm1−m4
. (28)

Thus,we put

Λ3 := 10`α−m3

(
d

9a(1 + αm1−m3 + αm2−m3)

)
− 1. (29)

Then, we need to verify that Λ3 6= 0. Suppose that Λ3 = 0, then we have

a(αm1 + αm2 + αm3) =
10` · d

9
. (30)

To see that this is not true, we again consider the Q-automorphism σ of the Galois extension
Q(α, β) over Q given by σ(α) := β and σ(β) := α. Since Λ3 = 0, we have σ(Λ3) := 0. Thus,
conjugating the relation (30) under σ, and taking absolute values on both sides, we have

10` · d
9

= |σ(a(αm1 + αm2 αm3))| = |b|(|β|m1 + |β|m2 + |β|m3) < 3|b| < 3
2

,

which is false for ` ≥ 1 and d ≥ 1 . Therefore, Λ3 6= 0. So, we apply Lemma 2 with the data

η1 := 10, η2 := α, η3 :=
d

9a(1 + αm1−m3 + αm2−m3)
,

b1 := `, b2 := −m3, b3 := 1, t := 3.

Since η1, η2, η3 ∈ Q(α), we take the field K := Q(α) with degree DK := 3. Since
max{`, m1, 1} ≤ m1, we take B := m1. Further,

h(η3) ≤ h(d) + h(9) + h(a) + h
(
1 + αm1−m3 + αm2−m3

)
≤ 4 log 3 +

1
3

log 44 + (m1 −m3) log α + (m2 −m3) log α + 2 log 2

≤ 4 log 3 +
1
3

log 44 + ((m1 −m2) + 2(m2 −m3)) log α + 2 log 2

< 9.36× 1028(log m1)
2.

Thus, we can take A1 := 3 log 10, A2 := log α, and A3 := 2.81× 1029(log m1)
2. According

to Lemma 2, (29) is bounded below by

log |Λ2| >− 1.4× 306 × 34.5 × 32(1 + log 3)(1 + log m1)(3 log 10)(log α)

× 2.81× 1029(log m1)
2

>− 1.05× 1043(log m1)
3 log α.

By comparing the above inequality with the right-hand side of (28), we have

m1 −m4 ≤ 1.07× 1043(log m1)
3.
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3.5. Case 4

Equation (17) is equivalent to

a(αm
1 + αm

2 + αm
3 + αm

4 )−
d · 10`

9
= −1

9
− e(m1)− e(m2)− e(m3)− e(m4). (31)

Taking the absolute value on both sides, (31) shows that∣∣∣∣∣a(αm
1 + αm

2 + αm
3 + αm

4 )−
d · 10`

9

∣∣∣∣∣ ≤ 1
9
+ |e(m1)|+ |e(m2)|+ |e(m3)|+ |e(m4)|

< 1 + 4α−
m4
2

< 3a + 12aα−
m4
2

< 15a. (32)

Dividing both sides by a(αm1 + αm2 + αm3 + αm4), we have∣∣∣∣10`α−m4

(
d

9a(αm1−m4 + αm2−m4 + αm3−m4)

)
− 1
∣∣∣∣ < 15aα−m1

a(αm2−m1 + αm3−m1 αm4−m1 + 1)
,

which implies ∣∣∣∣10`α−m4

(
d

9a(αm1−m4 + αm2−m4 + αm3−m4)

)
− 1
∣∣∣∣ < 15

αm1
. (33)

Put

Λ4 := 10`α−m4

(
d

9a(αm1−m4 + αm2−m4 + αm3−m4)

)
− 1.

As before, one can justify that Λ4 6= 0. Suppose that Λ4 = 0, then we have

a(αm1 + αm2 + αm3 + αm4) =
10` · d

9
. (34)

To see that this is not true, we consider the Q-automorphism σ of the Galois extension
Q(α, β) over Q given by σ(α) := β and σ(β) := α. Now, since Λ4 = 0, we have σ(Λ4) := 0.
Thus, conjugating the relation (34) under σ, and taking absolute values on both sides,
we have

10` · d
9

= |σ(a(αm1 + αm2 αm3 + αm4))| = |b|(|β|m1 + |β|m2 + |β|m3 + |β|m4) < 4|b| < 2,

which is false for ` ≥ 2 and d ≥ 1. Therefore, Λ4 6= 0.
Thus, we apply Lemma 2 with the data

η1 := 10, η2 := α, η3 :=
d

9a(1 + αm1−m4 + αm2−m4 + αm3−m4)
,

b1 := `, b2 := −m4, b3 := 1, t := 3.
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where η1, η2, η3 ∈ Q(α). We can take the field K := Q(α) with degree DK := 3. As
max{`, m1, 1} ≤ m1, we can also take B := m1. Further,

h(η3) ≤ h(d) + h(9) + h(a) + h(1 + αm1−m4 + αm2−m4 + αm3−m4)

≤ 4 log 3 +
1
3

log 17 + (m1 −m4) log α + (m2 −m4) log α + (m3 −m4) log α + 3 log 2

≤ 4 log 3 +
1
3

log 17 + ((m1 −m2) + 2(m2 −m3) log α + 3(m3 −m4)) log α + 3 log 2

< 3.92× 1043(log m1)
3.

Thus, we choose A1 := 3 log 10, A2 := log α and A3 := 1.18 × 1044(log m1)
3. From

Lemma 2, we obtain

log |Λ4| >− 1.4× 306 × 34.5 × 32(1 + log 3)(1 + log m1)(3 log 10)(log α)

× 1.18× 1044(log m1)
3

>− 4.41× 1057(log m1)
4 log α,

which, combined with (33), gives us

m1 ≤ 4.43× 1057(log m1)
4.

From Lemma 6, we can choose f (x) := 4.43× 1057x4. Then, we obtain m1 ≤ 2.42× 1066.
We record the above as the following Lemma.

Lemma 7. Let (m1, m2, m3, m4, N, d, `) be the nonnegative integer solutions to the Diophantine
Equation (1) with m1 ≥ m2 ≥ m3 ≥ m4 ≥ 0, 1 ≤ d ≤ 9, and ` ≥ 2. Then we have

` < m1 ≤ 2.42× 1066.

4. Reducing The Bounds

The bounds obtained in Lemma 7 are too large to carry out meaningful computations
on the computer. Thus, we need to reduce these bounds. To do so, we return to (20), (24),
(28) and (33) apply Lemma 5 via the following procedure.

4.1. Step 1

First, let

τ1 := ` log 10−m1 log α + log
(

d
9a

)
, 1 ≤ d ≤ 9. (35)

For technical reasons, we assume that m1 −m2 ≥ 20 for the moment and go to (19). We
will obtain a bound of m1 −m2 larger than 20. Thus, we can get rid of this condition in
both cases. Note that eτ1 − 1 = Λ1 6= 0. Thus, τ1 6= 0. If τ1 > 0, then

0 < τ1 < eτ1 − 1 = |Λ1| <
18

αm1−m2
.

If τ1 < 0, by (13), we have

∣∣e−τ1 − 1
∣∣ = ∣∣∣∣9aαm1

d10`
− 1
∣∣∣∣ < 9 · 18aαm2

d10`
≤ αm2+7

αm1−2 ≤
1

αm1−m2−9 ≤
1

α11 <
1
2

.

Hence, e−τ1 < 2. Thus, we have

0 < |τ1| < e|τ1| − 1 = e|τ1||Λ1| <
36

αm1−m2
.
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Therefore, in both cases, we have

0 < |τ1| =
∣∣∣∣` log 10−m1 log α + log

(
d
9a

)∣∣∣∣ < 36
αm1−m2

.

This means that

|τ1| < 36αm2−m1 < αm2−m1+6 < α6.1 exp(−0.609(m1 −m2)),

with
X = max{m1, n} = m1 ≤ 2.42× 1066.

Dividing through (35) by log 10, we have

τ1

log 10
=

log( d
9a )

log 10
−m1

log α

log 10
+ n. (36)

Then, we put

c1 := α6.1, δ := 0.609, X0 := 2.42× 1066, ψ :=
log( d

9a )

log 10
, Y := m1 −m2,

v :=
log α

log 10
, v1 := − log α, v2 := log 10, β := log

(
d
9a

)
.

We now apply Lemma 5 on (36). A quick computer search in Mathematica reveals that the
convergent

p130

q130
=

1779234883646329125716285138173060634490565368549796513064476646863
6722987436594440887072037743863558091187499203687945561784124798326

of τ is such that q130 > X0. Therefore, we find that q = q134 satisfies the hypothesis of
Lemma 5 for d = 1, . . . , 9. Applying Lemma 5, we have m1 −m2 ≤ 273.

4.2. Step 2

Next, we put

τ2 := ` log 10−m2 log α + log
(

d
9a(1 + αm1−m2)

)
, 1 ≤ d ≤ 9. (37)

For technical reasons, as before, we assume that m1 − m3 ≥ 20 for the moment and go
to (23). We will obtain a bound of m1 − m3 larger than 20. Thus, we can get rid of this
condition in both cases. Note that eτ2 − 1 = Λ2 6= 0. Thus, τ2 6= 0. If τ2 > 0, then

0 < τ2 < eτ2 − 1 = |Λ2| <
17

αm1−m3
.

If τ2 < 0, we have

∣∣e−τ2 − 1
∣∣ = ∣∣∣∣9a(αm1 + αm2)

d10`
− 1
∣∣∣∣ < 9 · 17aαm3

d10`
≤ αm3+7

αm1−2 ≤
1

αm1−m3−9 ≤
1

α11 <
1
2

.

Hence, e−τ2 < 2. Thus, we have

0 < |τ2| < e|τ2| − 1 = e−τ2 |Λ2| <
34

αm1−m3
.
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Therefore, in both cases, we have

0 < |τ2| =
∣∣∣∣` log 10−m2 log α + log

(
d

9a(1 + αm1−m2)

)∣∣∣∣ < 36
αm1−m3

.

This means that
|τ2| < αm3−m1+6 < α6.1 exp(−0.609(m1 −m3)).

Dividing through (37) by log 10, we have

τ2

log 10
=

1
log 10

log
(

d
9a(αm1−m2 + 1)

)
−m2

log α

log 10
+ `. (38)

Thus,we put

c1 := α6.1, δ := 0.609, X0 := 2.42× 1066,

Y := m1 −m3, v :=
log α

log 10
, v1 := − log α, v2 := log 10,

ψ :=
1

log 10
log
(

d
9(αm1−m2 + 1)

)
, β := log

(
d

9(αm1−m2 + 1)

)
.

We now apply Lemma 5 on (38). We found that q = q138 satisfies the hypothesis of Lemma 5
for d = 1, . . . , 9. Thus, we have m1 − m3 ≤ 298. Hence, m3 ≥ 32 by the assumption
m1 ≥ 330.

4.3. Step 3

Now, we put

τ3 := ` log 10−m3 log α + log
(

d
9a(1 + αm1−m3 + αm2−m3)

)
, 1 ≤ d ≤ 9. (39)

For technical reasons, we assume that m1 −m4 ≥ 20 for the moment and go to (27). We
will obtain a bound of m1 −m4 larger than 20. Thus, we can remove this condition in both
cases. Note that eτ3 − 1 = Λ3 6= 0. Thus, τ3 6= 0. If τ3 > 0, then

0 < τ3 < eτ3 − 1 = |Λ3| <
16

αm4−m1
.

If τ3 < 0, we have

∣∣e−τ3 − 1
∣∣ = ∣∣∣∣∣9a

(
αm

1 + αm
2 + αm

3
)

d10`
− 1

∣∣∣∣∣ < 9 · 16aαm4

d10`
≤ αm4+7

αm1−2 ≤
1

αm1−m4−9 ≤
1

α11 <
1
2

.

Hence, e−τ3 < 2. Thus, we have

0 < |τ3| < e|τ3| − 1 = e−τ3 |Λ3| <
32

αm1−m4
.

Therefore, in both cases, we have

0 < |τ3| =
∣∣∣∣` log 10−m3 log α + log

(
d

9a(1 + αm1−m3 + αm2−m3)

)∣∣∣∣ < 36
αm1−m4

.

This means that
|τ3| < αm4−m1+6 < α6.1 exp(−0.609(m1 −m4)).
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Dividing through (39) by log 10, we have

τ3

log 10
=

1
log 10

log
(

d
9a(αm1−m3 + αm2−m3 + 1)

)
−m3

log α

log 10
+ `

Thus, we can take

c1 := α6.1, δ := 0.609, X0 := 4.1× 1066,

Y := m1 −m4, v :=
log α

log 10
, v1 := − log α, v2 := log 10,

ψ :=
1

log 10
log
(

d
9a(αm1−m3 + αm2−m3 + 1)

)
, β := log

(
d

9a(αm1−m3 + αm2−m3 + 1)

)
.

We find that q = q143 satisfies the hypothesis of Lemma 5 for 1 ≤ d ≤ 9, 0 ≤ m2 −m3 ≤
m1 −m3 ≤ 298. Applying Lemma 5, we have m1 −m4 ≤ 313 and, hence, m4 ≥ 17.

4.4. Step 4

Lastly, we put

τ4 := ` log 10−m4 log α + log
(

d
9a(1 + αm1−m4 + αm2−m4 + αm3−m4)

)
1 ≤ d ≤ 9. (40)

We use the original assumption that m1 > 330 and go to (32). Note that eτ4 − 1 = Λ4 6= 0.
Thus, τ4 6= 0. If τ4 > 0, then

0 < τ4 < eτ4 − 1 = |Λ4| <
15

αm1
.

If τ4 < 0, we have

∣∣e−τ4 − 1
∣∣ = ∣∣∣∣9a(αm1 + αm2 + αm3 + αm4)

d10`
− 1
∣∣∣∣ < 9 · 15a

d10`
≤ α7

αm1−2 ≤
1

αm1−9 ≤
1

α11 <
1
2

.

Hence, e−τ4 < 2. Thus, we have

0 < |τ4| < e|τ4| − 1 = e−τ4 |Λ4| <
30

αm1
.

Therefore,in both cases, we have

0 < |τ4| =
∣∣∣∣` log 10−m4 log α + log

(
d

9a(1 + αm1−m4 + αm2−m4 + αm3−m4)

)∣∣∣∣ < 36
αm1

.

This means that
|τ4| < α−m1+6 < α6.1 exp(−0.609m1).

Dividing through (40) by log 10, we have

τ4

log 10
=

1
log 10

log
(

d
9a(αm1−m4 + αm2−m4 + αm3−m4 + 1)

)
−m4

log α

log 10
+ `
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Thus, we can take

c1 := α6.1, δ := 0.609, X0 := 4.1× 1066,

Y := m1, v :=
log α

log 10
, v1 = − log α, v2 = log 10,

ψ :=
1

log 10
log
(

d
9a(αm1−m4 + αm2−m4 + αm3−m4 + 1)

)
,

β := log
(

d
9a(αm1−m4 + αm2−m4 + αm3−m4 + 1)

)
.

We find that q = q147 satisfies the hypothesis of Lemma 5 for 1 ≤ d ≤ 9, 0 ≤ m3 −m4 ≤
m2 −m4 ≤ m1 −m4 ≤ 313 except for three special cases (d, m1 −m4, m2 −m4, m3 −m4) =
(9, 3, 0, 1), (9, 6, 5, 1), (9, 6, 4, 4). Applying Lemma 5, we have m1 ≤ 322, which contradicts
the assumption that m1 > 330.

Now, we consider the three cases

(d, m1 −m4, m2 −m4, m3 −m4) = (9, 3, 1, 0), (9, 6, 5, 1), (9, 6, 4, 4).

Obviously, d(10m − 1)/9 ≡ 0(mod 9) when d = 9. It is easy to see that the period of
tribonacci numbers modulo 9 is 39. Since

Tn + Tn + Tn+1 + Tn+3 6≡ 0(mod 9),

Tn + Tn+1 + Tn+5 + Tn+6 6≡ 0(mod 9),

Tn + Tn+4 + Tn+4 + Tn+6 6≡ 0(mod 9)

for 1 ≤ n ≤ 39, there is no solution to Equation (1) in the above cases. �

5. Conclusions

In this paper, we completely solved the diophantine Equation (1). More precisely, we
found that 66666 is the largest repdigit expressible as the sum of four tribonacci numbers.
Our method is based on Baker’s method. We first gave a larger upper bound of m1.
Then, the reduction method reduced such a bound to an applicable one. During the
reduction procedure, the periodic properties of {Tn}(mod 9) were used to deal with three
individual cases.

It is worth mentioning that our method could be applied in b-repdigits. For each b, we
may give a large bound. It would be a challenge to find all solutions for every b. We may
not find a unified bound of b. It likely has infinite solutions.
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