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Abstract: This article notably targets the more general (extended) function spaces by investigating
the regularity of the weak solutions or turbulent solutions to the Cauchy problem of the 3D mag-
netic Bénard system by converting it into mathematical symmetric form, in the absence of thermal
diffusion, in terms of pressure. In that regard, we successfully improved the results by obtaining
sufficient integrable regularity conditions for the pressure and gradient pressure in the homogeneous
Besov spaces.

Keywords: integrable regularity conditions; 3D magnetic Bénard system without thermal diffusion;
improved regularity criteria; homogenous Besov spaces; weak solutions; pressure

1. Introduction

In this academic study, we analyze the following magnetic Bénard system:

∂U
∂t + U · ∇U − β14U +∇ψ− V · ∇V − θe3 = 0, in R3 ×R+,
∂V
∂t + U · ∇V − β24V − V · ∇U = 0, in R3 ×R+,
∂θ
∂t + U · ∇θ − β34θ −U · e3 = 0, in R3 ×R+,
divU = 0, divV = 0, in R3 ×R+,
(U ,V , θ)|t=0 = (U0,V0, θ0) in R3,

(1)

where U (x, t), V(x, t), θ(x, t) are the velocity field vector, magnetic field vector and scalar
temperature field, respectively, while ψ(x, t) is the scalar pressure. β1 and β2 are the
viscosity and diffusivity with β3 as the thermal diffusion, e3 = (0, 0, 1) and θe3 reports the
acting buoyancy force on the fluid motion, U · e3 imitates the Rayleigh–Bénard convection
in a heated inviscid fluid. Equation (1)4 describes the divergence free velocity and magnetic
fields with (1)5 tells about the prescribed initial conditions U0,V0 and θ0.

As described by Mulone and Rionero [1] and Nakamura [2], the 3D magnetic Bénard
system models the heat convection phenomenon influenced by velocity, magnetic field
and temperature. The magnetic Bénard problem has sparked interest due to the thermal
instability caused by the magnetic field. Although in 2D, the well-posedness problem has
been resolved but the 3D case is still an unresolved issue in the whole space R3. When
we ignore θ system (1) is simplified to MHD system. System (1) is reduced to Boussinesq
equations if V is neglected and to Navier-Stokes equations (NSE) by taking V = 0 and
θ = 0. System (1) also studies chemotaxis model, an important biological model, which has
been extensively studied by [3–5] in the bounded domains.

In 1934, Leray [6] founded the concept of weak solutions (turbulent solutions), i.e.,
the solutions with finite kinetic energy belongs to a class L∞(0, T; L2) ∩ L2(0, T; H1) , for
the proper definition of weak solution and its properties see [7,8], and the first finite time
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regularity criteria were given by Serrin [9] for the incompressible NSE, i.e., U becomes
Leray-Hopf weak solution, if

U ∈ Lm(0, T; Ll(R3)),
2
m

+
3
l
= 1, 3 < l ≤ ∞, 1 < m ≤ ∞,

then smoothness of solution remains in the interval (0, T]. Later on, the regularity problem
has been extensively explored by establishing various geometrically important constraints
on the velocity, vorticity, pressure, strain tensor, etc.

In this paper, our interest is to explore the regularity in pressure terms for the system (1)
because pressure controls the solutions of the whole system (1) by taking the divergence
by test function, we can decouple velocity, magnetic field, and temperature from pressure.
Therefore, it plays a significant role in understanding fluid flows. The NSE’s regularity
criteria for pressure and its gradient were demonstrated by Chae and Lee [10], Berselli and
Galdi [11], and Zhou [12–14], given as

ψ ∈ L
2

2−l (0, T, L
3
l ) with 0 < l ≤ 1,

and
∇ψ ∈ L

2
3−l (0, T, L

3
l ) with 0 < l ≤ 1.

Duan [15] has obtained similar conditions for the MHD system.
For system (1), the global existence problem was addressed by Ma in [16], and the

blow-up and regularity problem in terms of U and ∇U in [17] for the multiplier space. The

Serrin-type criteria ψ
2

2−l (0.T; L
3
l ) with 0 < l ≤ 1, for the pressure, was given by Liu [18]

in Lebesgue space. Recently, Chen et al. [19] established numerous important regularity
results for the system (1), without thermal diffusion, based on pressure and its gradient in
various function spaces, i.e., in Lebesgue spaces

ψ ∈ L2(0, T; L
3
l ) with 0 < l ≤ 1,

∇ψ ∈ L
9−2l

2l (0, T; L
3
l ) with 0 < l ≤ 1.

In Morrey-Companato and Multiplier spaces

ψ ∈ L
4l

4l−6 (0, T; Ṁl,m) with
3
2
< l ≤ ∞,

ψ ∈ L2(0, T; Ẋ−l) with 0 < l ≤ 1.

In BMO and Besov spaces
∇ψ ∈ L2(0, T; BMO), (2)

ψ ∈ L2(0, T; Ḃ−1
∞,∞). (3)

Motivated by the above discussions and results, we will present improved integrable
regularity conditions for the following 3D magnetic Bénard system with zero thermal
diffusion:

∂U
∂t + U · ∇U − β14U +∇ψ− V · ∇V − θe3 = 0, in R3 ×R+,
∂V
∂t + U · ∇V − β24V − V · ∇U = 0, in R3 ×R+,
∂θ
∂t + U · ∇θ = 0, in R3 ×R+,
divU = 0, divV = 0, in R3 ×R+,
(U ,V , θ)|t=0 = (U0,V0, θ0) in R3.

(4)
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Remark 1. We will convert system (4) into mathematical symmetric form by puttingQ+ = U +V
and Q− = U − V , as it will be useful in calculations and to apply certain inequalities such as (7)
for the prove of our desired regularity conditions.

The very first log improvement in U for the 3D NSE system was given by Montgomery-
Smith [20]

∫ T

0

‖U‖l
Lm

1 + ln(e + ‖U‖Lm)
dt < ∞,

2
l
+

3
m

= 1, 2 < l ≤ ∞, and 3 < m ≤ ∞. (5)

Later on, such types of criteria were enhanced by (see, [21–23]) and also established for
other fluid models (see [24,25] and references therein).

Similar to the log-criterion for weak solutions, we established improved logarithmic
and double-logarithmic regularity conditions for the system (4) based on pressure and
its gradient. Our results naturally generalise the result (5). Throughout the calculations,
the non-negative parameters β1, β2, and β3 are taken 1. The following mathematical
preliminaries will help prove our main theorems.

Definition 1. Let σ ∈ R, 1 ≤ l, m ≤ ∞, the homogeneous Besov space Ḃσ
l,m(R

3) is defined by the
full dyadic decomposition such as

Ḃσ
l,m = { f ∈ Z′(R3); ‖ f ‖Ḃσ

l,m
< ∞},

where
‖ f ‖Ḃσ

l,m
= ‖{2jσ‖∆j f ‖Ll}∞

j=−∞‖lm .

The details on dyadic decomposition can be found in [26].
Given as follows is the norm of homogeneous Sobolev space:

‖ f ‖Ḣσ = ‖(−∆)
σ
2 f ‖L2 .

Definition 2 ([27]). Let l, m, σ1, σ2, σ3 ∈ [1, ∞] with σ3 ≤ min(σ1, σ2), 1
m = 1

l −
s
d , 1 ≤ r ≤ m,

and s1
d < 1

r −
1
m < s2

d . Then for f ∈ Ḃs1
r,σ2 ∩ Ḃs2

r,σ2 , then we have

‖ f ‖Ḃ0
m,σ3
≤ C

(
1 + ‖ f ‖Ḃs

l,σ1

(
log+ (‖ f ‖Ḃs

l,σ1
+ ‖ f ‖Ḃs

l,σ1

)) 1
σ3
− 1

σ1 ,

here, by choosing l = m = σ1 = ∞, σ3 = r = σ1 = s2 = 2 and s1 = s = 0, we have

‖ f ‖BMO ≤ C
(
1 + ‖ f ‖Ḃ0

∞,∞
log

1
2 (1 + ‖ f ‖H2)

)
. (6)

The well-known pressure-velocity relations by the Calderon-Zygmund are given as:

‖ψ‖Lα ≤ ‖U‖L2α ,
‖∇ψ‖Lα ≤ ‖U · ∇U‖Lα ,
‖ψ‖Lα ≤ C‖Q+‖L2α‖Q−‖L2α ,
‖∇ψ‖Lα ≤ C‖Q+ · ∇Q−‖Lα ,
‖∇ψ‖Lα ≤ C‖Q− · ∇Q+‖Lα .

(7)

2. Main Results and Proofs

This section focuses on the proofs of Theorem 1, Theorem 2, and Theorem 3 using
well-known energy methods.
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Theorem 1. Assume that (U0,V0, θ0) ∈ H1(R3) with ∇ · U0 = 0, ∇ · V0 = 0 in the sense of
distributions. Let T > 0 and (U ,V , θ) is a weak solution of system (1) in the interval (0, T]. If
pressure ψ satisfies ∫ T

0

‖ψ‖2
Ḃ−1

∞,∞(
1 + ln

(
e + ‖ψ‖Ḃ−1

∞,∞

)dt < ∞, (8)

then (U ,V , θ) remians its smoothness on R3 × (0, T], and there are no moving singular points or
blow-ups in the area under consideration, i.e, the interval (0, T].

Proof of Theorem 1. Firstly, we will convert the system (4) into a symmetric form:

∂Q+

∂t +Q− · ∇Q+ −4Q+ +∇ψ− θe3 = 0,
∂Q−

∂t +Q+ · ∇Q− −4Q− +∇ψ− θe3 = 0,
∂θ
∂t +

1
2 (Q+ +Q−) · ∇θ = 0,

divQ+ = 0, divQ− = 0,
(Q+,Q−, θ)|t=0 = (Q+

0 ,Q−0 , θ0).

(9)

Now, testing (9)1 with Q+|Q+|2, (9)2 with Q−|Q−|2 and (9)3 with θ|θ|2, integrating
over R3, adding all the equations, we finally get an L4−estimates for Q+, Q− and for θ,
given as

1
4

d
dt

(
‖Q+‖4

L4 + ‖Q−‖4
L4 + ‖θ‖4

L4

)
+

1
2

(
‖∇|Q+|2‖2

L2 + ‖∇|Q−|2‖2
L2

)
+

(
‖|Q+||∇Q+|‖2

L2 + ‖|Q−||∇Q−|‖2
L2

)
= −

∫
R3
∇Ψ

(
Q+|Q+|2 +Q−|Q−|2

)
dx +

∫
R3

θe3Q+|Q+|2dx +
∫
R3

θe3Q−|Q−|2dx

= I1 + I2 + I3. (10)

For I2 and I3, we derive that
I2 ≤ C‖θ‖4

L4 + ‖Q+‖4
L4 .

I3 ≤ C‖θ‖4
L4 + ‖Q−‖4

L4 .

I1 is estimated as in (5.2) by Chen et al. [19].
Putting all the estimates in (10), using ‖Q+‖4

L4 + ‖Q−‖4
L4 = ‖U‖4

L4 + ‖V‖4
L4 , we get

1
4

d
dt

(
‖U‖4

L4 + ‖V‖4
L4 + 1

)
+

1
4

(
‖∇|U|2‖2

L2 + ‖∇|V|2‖2
L2

)
+

1
2
(‖U · ∇U‖2

L2

+‖V · ∇U‖2
L2 + ‖U · ∇V‖2

L2 + ‖V · ∇V‖2
L2)

≤ C(‖ψ‖2
Ḃ−1

∞,∞
+ 1)

(
‖U‖4

L4 + ‖V‖4
L4 + 1

)
(11)

≤ C
(

1 +
‖ψ‖2

Ḃ−1
∞,∞

1 + ln(e + ‖ψ‖Ḃ−1
∞,∞

)

)
(1 + ln(e + ‖ψ‖Ḃ−1

∞,∞
)
(
‖U‖4

L4 + ‖V‖4
L4 + 1

)
.

Using inequality (7)1, we deduce

≤ C
(

1 +
‖ψ‖2

Ḃ−1
∞,∞

1 + ln(e + ‖ψ‖Ḃ−1
∞,∞

)

)
(1 + ln(e + ‖U‖2

L6)
(
‖U‖4

L4 + ‖V‖4
L4 + 1

)
.

≤ C
(

1 +
‖ψ‖2

Ḃ−1
∞,∞

1 + ln(e + ‖ψ‖Ḃ−1
∞,∞

)

)
(1 + ln(e + Z(t))

(
‖U‖4

L4 + ‖V‖4
L4 + 1

)
.
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∀ t ∈ [T∗, T], define Z(t) := supT∗≤s≤t‖Λ3U‖2
L2 + ‖Λ3V‖2

L2 + ‖Λ3θ‖2
L2 .

Applying Gronwall’s lemma on the interval [T∗, t], we have

(
‖U‖4

L4 + ‖V‖4
L4 + 1

)
≤ C0 exp

(
C
∫ t

T∗

(
1 +

‖ψ‖2
Ḃ−1

∞,∞

1 + ln(e + ‖ψ‖Ḃ−1
∞,∞

)

)
ds(1 + ln(e + Z(t))

)
,

where C0 =
(
‖U (·, T∗)‖4

L4 + ‖V(·, T∗)‖4
L4 + 1

)
.(

‖U‖4
L4 + ‖V‖4

L4 + 1
)
≤ C0 exp(2Cε ln(e + Z(t))) ≤ C0(e + Z(t))2Cε. (12)

If there were a sufficiently small constant ε > 0, ∃ T∗ < T, such that

∫ T

T∗

(
1 +

‖ψ‖2
Ḃ−1

∞,∞

1 + ln(e + ‖ψ‖Ḃ−1
∞,∞

)

)
dt < ε.

Now, we get bounds for Z(t).
Multiply Λ3 = (−∆)

3
2 with (9)1 and taking the inner product with Λ3Q+, Multiply

Λ3 with (9)2 and taking the inner product with Λ3Q−, Multiply Λ3 with (9)3 and taking
the inner product with Λ3θ, and using (4)4, adding all the equations. We finally obtain

1
2

d
dt
(
‖Λ3Q+‖2

L2 + ‖Λ3Q−‖2
L2 + ‖Λ3θ‖2

L2

)
+ ‖Λ4Q+‖2

L2 + ‖Λ4Q−‖2
L2

= −
∫
R3
(Λ3(Q− · ∇Q+)Λ3Q+))dx−

∫
R3
(Λ3(Q+ · ∇Q−)Λ3Q−))dx +

∫
R3

Λ3(θe3)Λ3Q+dx

+
∫
R3

Λ3(θe3)Λ3Q−dx−
∫
R3

Λ3((Q+ +Q−) · ∇θ
)
Λ3θdx.

= P1 + P2 + P3 + P4 + P5, (13)

where we used integration by parts, Λs = (−∆)
s
2 for s ∈ R, and property of differentiating

distributions. Now, we get estimate for P3 + P4

P3 + P4 =
∫
R3

Λ3(θe3)Λ3Udx

≤ C
(
‖Λ3θ‖2

L2 + ‖Λ3U‖2
L2

)
≤ C

(
e + ‖Λ3θ‖2

L2 + ‖Λ3U‖2
L2 ++‖Λ3V‖2

L2

)
≤ C1(e + Z(t))2,

where C1 is a positive constant.
Similarly,

|P5| =
∫
R3

Λ3(U · ∇θ)Λ3θdx

≤ C
(
‖Λ4U‖2

L2 + ‖Λ4θ‖2
L2

)
+ C1(e + Z(t))

3
2+

13
2 Cε,

here we use Q+ +Q− = U .
For P1 and P2, Due to Kato and Ponce [28], we shall utilize the commutator estimate

that follows:

‖∇α( f g)− f∇αg‖Ll ≤ C
(
‖Λα−1g‖Lm1 ‖∇ f ‖Ll1 + ‖Λ

α f ‖Ll2 ‖g‖Lm2

)
, (14)

for α > 1 and 1
l = 1

l1
+ 1

m1
= 1

l2
+ 1

m2
.

|P1 + P2| ≤
∣∣ ∫

R3
(Λ3(Q− · ∇Q+)−Q− · ∇Λ3Q+))Λ3Q+dx

+
∫
R3
(Λ3(Q+ · ∇Q−)−Q+ · ∇Λ3Q−))Λ3Q−dx

∣∣.
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Using (14) with these inequalities

‖∇U‖L3 ≤ C‖∇U‖
3
4
L2‖∇∆U‖

1
4
L2 , ‖∇∆U‖L3 ≤ C‖∇U‖

1
6
L2‖∆2U‖

5
6
L2 ,

we deduce the final estimate that is given as

|P1 + P2| ≤ C
(
‖∇Q−‖L3‖Λ3Q+‖2

L3 + ‖∇Q+‖L3‖Λ3Q+‖L3‖Λ3Q−‖L3
)

+C
(
‖∇Q+‖L3‖Λ3Q−‖2

L3 + ‖∇Q−‖L3‖Λ3Q+‖L3‖Λ3Q−‖L3
)

≤ C
(
‖∇Q+‖

13
2

L2 + ‖∇Q+‖2
L2‖∇Q−‖

9
2
L2 + ‖∇Q+‖

9
2
L2‖∇Q−‖2

L2 + ‖∇Q−‖
13
2

L2

)
·
(
‖Λ3Q−‖

3
2
L2 + ‖Λ3Q+‖

3
2
L2

)
+

1
2
(
‖Λ3∇Q−‖2

L2 + ‖Λ3∇Q+‖2
L2

)
≤ 1

2
(
‖Λ4Q+‖2

L2 + ‖Λ4Q−‖2
L2

)
+ C

(
‖∇Q+‖2

L2 + ‖∇Q−‖2
L2

) 13
4 Z

3
2 (t).

Now, testing (9)1 with −∆Q+ and (9)2 with −∆Q−, the weak form is derived as

1
2

d
dt
(
‖∇Q+‖2

L2 + ‖∇Q−‖2
L2

)
+ ‖∆Q+‖2

L2 + ‖∆Q−‖2
L2

= −
∫
R3
(Q− · ∇Q+) · ∆Q+dx +

∫
R3

θe3 · ∆Q+dx−
∫
R3
(Q+ · ∇Q−) · ∆Q−dx +

∫
R3

θe3 · ∆Q−dx.

≤ ‖∆Q+‖2
L2 + ‖∆Q−‖2

L2 +
1
2
(
‖∆Q+‖2

L2 + ‖∆Q−‖2
L2

)
+ C

(
‖Q+‖8

L6 + ‖Q−‖8
L6

)
, (15)

where we employed the following maximum principle frequently used and presented
in [19] for system (9)

‖θ‖Ll≤ ‖θ0‖Ll≤ 1, where 1 < l ≤ ∞. (16)

Integrating (15) in [T∗, t], we deduce that(
‖∇Q+‖2

L2 + ‖∇Q−‖2
L2

)
≤ C(1 + Z(t))

4Cε
3 (t− T∗) + ‖∇Q+(T∗)‖2

L2 + ‖∇Q−(T∗)‖2
L2 . (17)

Putting all the estimates into (13), absorbing dissipative terms together with (17) we have
final H3-bounds by applying Gronwall’s inequality providing that ε must be sufficiently
small. We get

‖Λ3Q+‖2
L2 + ‖Λ3Q−‖2

L2 + ‖Λ3θ‖2
L2 ≤ C. (18)

Bounds (18) and (17) together with (12) implies that(
‖U‖4

L4 + ‖V‖4
L4 + 1

)
≤ C.

Thus, by providing sufficient estimates that ensure the smoothness up to time T of our
solutions. Hence, Theorem 1 is proved.

Corollary 1. One of the foremost outcomes of above theroem is the result (3).

Theorem 2. Suppose that (U0,V0, θ0) ∈ H3(R3) with ∇ · U0 = 0, ∇ · V0 = 0 in distributional
sense. For T > 0, (U ,V , θ) is a weak solution of system (1). If pressure ψ satisfies an integrable
regularity condition ∫ T

0

‖∇ψ‖
2
3
Ḃ0

∞,∞(
1 + ln(e + ‖∇ψ‖Ḃ0

∞,∞
)
) 3

2
dt < ∞, (19)
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then (U ,V , θ) shows its smoothness in the interval R3 × (0, T], and there are no moving singular
points or blow-ups in the area under consideration, i.e, the interval (0,T].

Proof of Theorem 2. To prove this theorem we established a priori estimate for the weakly
formulated equation (10).

For I3

I3 ≤ ‖θ‖L4‖Q+‖L4‖Q+‖2
L4 ≤

1
2
(
‖θ‖2

L4‖Q+‖2
L4

)
+ C‖Q+‖4

L4

1
4
‖θ‖4

L4 + C‖Q+‖4
L4 + C‖Q+‖4

L4 ≤
1
4
‖θ‖4

L4 + C‖Q+‖4
L4 . (20)

Similarly,

I2 ≤
1
4
‖θ‖4

L4 + C‖Q−‖4
L4 . (21)

I1 = −
∫
R3
∇Ψ

(
Q+|Q+|2 +Q−|Q−|2

)
dx = −

∫
R3
∇Ψ

(
Q+|Q+|2)dx−

∫
R3
∇Ψ(Q−|Q−|2

)
dx

= P1 + P2. (22)

|P1| ≤
∣∣− ∫

R3
∇ψ · Q+|Q+|2dx

∣∣ ≤ ‖∇ψ‖L4‖Q+‖3
L4 ≤ C‖∇ψ‖

1
2
L2‖∇ψ‖

1
2
BMO‖Q

+‖3
L4 .

Similarly,

|P2| ≤
∣∣− ∫

R3
∇ψ · Q−|Q−|2dx

∣∣ ≤ ‖∇ψ‖L4‖Q−‖3
L4 ≤ C‖∇ψ‖

1
2
L2‖∇ψ‖

1
2
BMO‖Q

−‖3
L4 .

Putting estimates (20), (21) and for (22) into (10), and using ‖Q+‖3
L4 + ‖Q−‖3

L4 = ‖U‖3
L4

+‖V‖3
L4 , we are down to

1
4

d
dt

(
‖U‖4

L4 + ‖V‖4
L4 + 1

)
+

1
4

(
‖∇|U|2‖2

L2 + ‖∇|V|2‖2
L2

)
+

1
2
(‖U · ∇U‖2

L2 + ‖V · ∇U‖2
L2

+‖U · ∇V‖2
L2 + ‖V · ∇V‖2

L2)

≤ ‖U‖3
L4

(
‖U · ∇U‖

1
2
L2‖∇ψ‖

1
2
BMO

)
+ ‖V‖3

L4

(
‖U · ∇U‖

1
2
L2‖∇ψ‖

1
2
BMO

)
+
(
‖U‖4

L4 + ‖V‖4
L4 + ‖θ‖4

L4

)
≤ 1

2
‖|U ||∇U|‖2

L2 + C‖∇ψ‖
2
3
BMO‖U‖

4
L4 +

1
2
‖|U ||∇U|‖2

L2 + C‖∇ψ‖
2
3
BMO‖V‖

4
L4

+
(
‖U‖4

L4 + ‖V‖4
L4 + ‖θ‖4

L4)

≤ C
(
‖U‖4

L4 + ‖V‖4
L4 + ‖θ‖4

L4

)(
1 + ‖∇ψ‖

2
3
BMO

)
.

Using (6) for ∇ψ, we get that

≤ C
(
‖U‖4

L4 + ‖V‖4
L4 + ‖θ‖4

L4

)(
1 + ‖∇ψ‖

2
3
Ḃ0

∞,∞
ln

1
3 (1 + ‖∇ψ‖H2

)
)

≤
(
‖U‖4

L4 + ‖V‖4
L4 + ‖θ‖4

L4

)(
1 +

‖∇ψ‖
2
3
Ḃ0

∞,∞

(1 + ln(1 + ‖∇ψ‖Ḃ0
∞,∞

)
2
3

)
ln(1 + ‖Λ3U‖L2)

)
. (23)

For θ we use (16), which implies that

≤
(
‖U‖4

L4 + ‖V‖4
L4 + 1

)(
1 +

‖∇ψ‖
2
3
Ḃ0

∞,∞

(1 + ln(1 + ‖∇ψ‖Ḃ0
∞,∞

)
2
3

)
ln(1 + κ(t)

)
.
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Because of (19), ∃ T∗ < T, such that

∫ T

T∗

‖∇ψ‖
2
3
Ḃ0

∞,∞

1 + ln(1 + ‖∇ψ‖Ḃ0
∞,∞

)
2
3
< ε.

We set
κ(t) := (‖Λ3U‖L2 + ‖Λ3V‖L2 + ‖Λ3θ‖L2).

κ(t) is bounded by the same process as Z(t).
Due to the application of Gronwall’s Lemma to (23), we obtain

sup
T∗<t≤T

(
‖U‖4

L4 + ‖V‖4
L4 + 1

)
≤ C∗(e + κ(t))Cε

This proves Theorem 2.

Corollary 2. The continuous embedding BMO ↪→ Ḃ0
∞,∞ results in very important consequence of

Theorem 2 that is the condition
∇ψ ∈ L

2
3
(
0, T; Ḃ0

∞,∞
)
,

which improves the criteria (2) by taking it from BMO (Bounded mean oscillations) space to larger
Besov space Ḃ0

∞,∞.

Theorem 3. Suppose that (U0,V0, θ0) ∈ H1(R3) with ∇ · U0 = 0, ∇ · V0 = 0 in the sense of
distributions. Let T > 0 and (U ,V , θ) is a weak solution of system (1) on the interval (0, T]. If
pressure ψ satisfies

∫ T

0

‖ψ‖2
Ḃ−1

∞,∞(
e + ln

(
e + ‖ψ‖Ḃ−1

∞,∞

)
ln
(

e + ln
(

e + ‖ψ‖Ḃ−1
∞,∞

))dt < ∞, (24)

then (U ,V , θ) is a regular solution on R3 × (0, T], and there are no moving singular points or
blow-ups in the area under consideration, i.e, the interval (0, T].

Proof of Theorem 3. To prove this theorem, we will continue from inequality (11), taking
the Gronwall’s lemma into consideration for (11), we can show that(

‖U‖4
L4 + ‖V‖4

L4 + 1
)
≤
(
‖U0‖4

L4 + ‖V0‖4
L4 + 1

)
exp

(
C
∫ T

0
(‖Ψ‖2

Ḃ−1
∞,∞

+ 1)
)
. (25)

Now, testing (4)1 with ∆U∫
R3

∂tU ·∆Udx+
∫
R3
(U ·∇U )∆Udx−

∫
R3

∆U ·∆Udx+
∫
R3
∇ψ ·∆Udx−

∫
R3
(V ·∇V)∆Udx

−
∫
R3

θe3 · ∆Udx = 0. (26)

Testing (4)2 with ∆V∫
R3

∂tV · ∆Vdx +
∫
R3
(U · ∇V)∆Vdx−

∫
R3

∆V · ∆Vdx−
∫
R3
(V · ∇U )∆Vdx = 0. (27)

Testing (4)3 with ∆θ ∫
R3

∂tθ · ∆θdx +
∫
R3
(U · ∇θ) · ∆θdx = 0. (28)
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Adding (26), (27) and (28), we derive that

1
2

d
dt
(
‖∇U‖2

L2 + ‖∇V‖2
L2 + ‖∇θ‖2

L2

)
+
(
‖∆U‖2

L2 + ‖∆V‖2
L2

)
= −

∫
R3
(U · ∇U )∆Udx

+
∫
R3
(V · ∇V)∆Udx−

∫
R3
(U · ∇V)∆Vdx +

∫
R3
(V · ∇U )∆Vdx +

∫
R3

θe3 · ∆Udx

−
∫
R3
(U · ∇θ) · ∆θdx

≤ ‖∇U‖3
L3 + 3‖∇U‖L3‖∇V‖2

L3 + ‖∇U‖L2‖∇θ‖L2 + ‖∇U‖L3‖∇θ‖2
L3 .

Using Gagliardo-Nirenberg inequality, we get

1
2

d
dt
(
‖∇U‖2

L2 + ‖∇V‖2
L2 + ‖∇θ‖2

L2

)
+
(
‖∆U‖2

L2 + ‖∆V‖2
L2

)
≤ 1

2
(
‖∆U‖2

L2 + ‖∆V‖2
L2

)
+ C‖U‖12

L4 + C‖V‖12
L4 + C‖θ‖12

L4 + ‖∇U‖2
L2 + ‖∇θ‖2

L2 . (29)

Integrating (29) on the interval (0, t]

(
‖∇U‖2

L2 + ‖∇V‖2
L2 + ‖∇θ‖2

L2

)
+
∫ t

0

(
‖∆U‖2

L2 + ‖∆V‖2
L2

)
dτ

≤
(
‖∇U0‖2

L2 + ‖∇V0‖2
L2 + ‖∇θ0‖2

L2

)
+ C

∫ t

0

(
‖U‖12

L4 + ‖V‖12
L4 + ‖θ‖12

L4

)
dτ. (30)

Now, by Sobolev embedding theorem Ḣ1(R3) ⊂ L6(R3), (7)1, (30) and (25), we obtain

e + ‖ψ(·, t)‖L3 ≤ e + C‖U‖2
L6 ≤ e + C(‖∇U‖2

L2 + ‖∇V‖2
L2 + ‖∇θ‖2

L2)

≤ e + C
(
‖∇U0‖2

L2 + ‖∇V0‖2
L2 + ‖∇θ0‖2

L2

)
+ C

∫ t

0

(
1 + ‖U (·, τ)‖12

L4 + ‖V(·, τ)‖12
L4 + ‖θ(·, τ)‖12

L4

)
dτ

≤ C
(
e + ‖∇U0‖2

L2 + ‖∇V0‖2
L2 + ‖∇θ0‖2

L2

)
(e + t) sup

0≤τ≤t

(
1 + ‖U (·, τ)‖12

L4 + ‖V(·, τ)‖12
L4 + ‖θ(·, τ)‖12

L4

)
≤ C0(e + t) exp

(
C
∫ t

0
(1 + ‖ψ‖2

˙B−1
∞,∞

)dτ
)

.

Now, using L3(R3) ⊂ Ḃ−1
∞,∞(R3)

e + ‖ψ‖Ḃ−1
∞,∞
≤ C(e + t) exp

(
C
∫ t

0
(1 + ‖ψ‖2

Ḃ−1
∞,∞

)dτ
)

.

Applying ln on both sides

ln
(

e + ‖ψ‖Ḃ−1
∞,∞

)
≤ ln(C(e + t)) +

(
C
∫ t

0
(1 + ‖ψ‖2

Ḃ−1
∞,∞

)dτ
)

. (31)

For ease in the calculations, we let

Υ(t) = ln(e + ‖ψ‖Ḃ−1
∞,∞

). (32)

Φ(t) = ln(C(e + t)) +
(

C
∫ t

0
(1 + ‖ψ‖2

Ḃ−1
∞,∞

)dτ
)

. (33)

By (32) and (33), Inequality (31) implies that

0 < Υ ≤ Φ
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It results in
(e + Υ)(ln(e + Υ)) ≤ (e + Φ)(ln(e + Φ)).

On the other hand, to prove our result we take time derivative of ln(e + Φ), and obtain

d
dt ln(e + Φ) = 1

(e+Φ)

(
1

e+t + C(1 + ‖ψ‖2
Ḃ−1

∞,∞
)
)

≤ 1
e2 + C

1+‖ψ‖2
Ḃ−1

∞,∞
e+Φ

= 1
e2 + C

1+‖ψ‖2
Ḃ−1

∞.∞
(e+Φ) ln(e+Φ)

ln(e + Φ)

≤ 1
e2 + C

1+‖ψ‖2
Ḃ−1

∞,∞
(e+Υ) ln(e+Υ) ln(e + Φ).

Apply the Gronwall’s lemma to ln(e + Φ), we get that

ln(e + Φ(t)) ≤ ln(e + Φ(0)) exp
( T

e2 + C
∫ t

0

1 + ‖ψ‖2
Ḃ−1

∞,∞

(e + Υ(τ)) ln(e + Υ(τ))
dτ
)

,

resulting as

(e + Φ(t)) ≤ (e + Φ(0))
exp
(

T
e2 +C

∫ t
0

1+‖ψ‖2
Ḃ−1

∞,∞
(e+Υ(τ)) ln(e+Υ(τ)) dτ

)
,

and from (33) we deduce that

∫ t

0
(1 + ‖ψ‖2

Ḃ−1
∞,∞

)dτ ≤ (e + Φ(0))
exp
(

T
e2 +

1
C
∫ t

0

1+‖ψ‖2
Ḃ−1

∞,∞
(e+Υ(τ)) ln(e+Υ(τ)) dτ

)
< ∞. (34)

Estimate (34) together with (29) ensures the regularity of weak solutions in the interval
C∞(R3 × [0, T)). Thus, completing the prove of Theorem 3.

The other very important aspect of the non-linear differential system (1), i.e., the 3D
ma- gnetic Bénard system, is the occurrence of movable singularities, i.e., starting from
smooth initial data, the solution becomes infinite in finite time due to the cumulative effect
of the nonlinearities. Such types of singularity formations in non-linear differential systems
are also known as blow-ups. In the framework of the regularity theory of weak solutions,
the blow-up or singularity occurs if the solution becomes infinite at some (or many) points
as t approaches a certain finite time T. The singularity or blow-up problem states that the
sol- ution with some smooth initial data is well-defined in some function space for some
time 0 < t < T. Such type of singularities explicitly depend upon the type of function space
and time. The alternative interpretation of conditions (8), (19), and (24) is let T = T† < ∞
is the maximal time for the existence of a smooth solutions, then the solution blows up
(also called the first time blow up) to create finite time singularity, and condition (8) takes
the form shown as ∫ T†

0

‖ψ‖2
Ḃ−1

∞,∞(
1 + ln

(
e + ‖ψ‖Ḃ−1

∞,∞

)dt = ∞,

similarly, the condition (19) becomes

∫ T†

0

‖∇ψ‖
2
3
Ḃ0

∞,∞(
1 + ln(e + ‖∇ψ‖Ḃ0

∞,∞
)
) 3

2
dt = ∞,
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and the regularity condition (24) appears as

∫ T†

0

‖ψ‖2
Ḃ−1

∞,∞(
e + ln

(
e + ‖ψ‖Ḃ−1

∞,∞

)
ln
(

e + ln
(

e + ‖ψ‖Ḃ−1
∞,∞

))dt = ∞.

Therefore, the blow-up is exactly the inability to continue the weak solution up to or past a
given time.

Remark 2. The integrable regularity condition (8) improves the regularity criteria (3), and re-
sult (19) is the improvement of criteria (2). Result (24) is the optimal in the sense that it refines all
the previous results for pressure terms in the largest scale invariant double logarithmic Besov spaces.

3. Conclusions

In this work, the mathematical significance of results (8) and (24) lies in wider spaces,
i.e., Besov spaces of a negative index. Such spaces are important due to their criticality
defined by their scale invariance because the local regularity results by using scale invari-
ance pro- perty could be taken to global regularity results. The criteria (19) replace BMO
space with larger space, i.e., Ḃ0

∞,∞, consequently, improving the regularity of solutions.
Our results that are proved in the finite-time interval C∞(R3 × [0, T)) constitute vital work
on the millennium clay mathematical problem [29] which requires the solutions to be
regular in C∞(R3 × [0, ∞)) i.e., for all time. We use pressure, which has remarkable proper-
ties, to control the solutions of the system (4) by imposing sufficient integrable regularity
conditions that improve numerous previously established results.
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