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Abstract: Bloom filters are widely used in genome assembly, IoT applications and several network
applications such as symmetric encryption algorithms, and blockchain applications owing to their
advantages of fast querying, despite some false positives in querying the input elements. There
are many research works carried out to improve both the insertion and querying speed or reduce
the false-positive or reduce the storage requirements separately. However, the optimization of all
the aforementioned parameters is quite challenging with the existing reported systems. This work
proposes to simultaneously improve the insertion and querying speeds by introducing a Cache-
efficient One-Hashing Blocked Bloom filter. The proposed method aims to reduce the number of
memory accesses required for querying elements into one by splitting the memory into blocks where
the block size is equal to the cache line size of the memory. In the proposed filter, each block has
further been split into partitions where the size of each partition is the prime number. For insertion
and query, one hash value is required, which yields different values when modulo divided with
prime numbers. The speed is accelerated using simple hash functions where the hash function is
called only once. The proposed method has been implemented and validated using random strings
and symmetric K-mer datasets used in the gene assembly. The simulation results show that the
proposed filter outperforms the Standard Bloom Filter in terms of the insertion and querying speed.

Keywords: cache memory; Bloom filter; hash function; K-mers; gene assembly

1. Introduction

Bloom filters are an approximate membership querying data structure that is widely
used in many applications owing to their space efficiency and fast querying behavior.
Bloom filters are used in named IP address lookup [1], named data networking [2–5]
genomics [6–8] image classification [9,10] and blockchain applications [11] because of their
advantages over other data structures. There is a two-fold increase in gene data every
year [12] due to the rapid increase in genome studies for preventing diseases in advance
and to unravel the properties of the species. Hence, handling a large amount of gene
data increases the storage requirement and also the computation speed. To address these
problems, the usage of probabilistic data structures is motivated owing to their use of
less memory for storing the input data and their efficient querying in less time. There are
several probabilistic data structures reported in the literature such as Bloom filter, quotient
filter, cuckoo filter, etc. Bloom filter is a probabilistic data structure which stores the index
of the input element in the array and executes the query in less time. In the de novo
genome assembly applications [13–15] the gene sequences are assembled by constructing
the de Bruijn graph where K-mers were used in the vertices of the graph. K-mers are the
DNA bases of length r partitioned from the sequence of reads in the gene database. There
exists symmetry in the genetic sequences generated from the DNA of a genome [16]. The
generated K-mers and their reverse complements follow inversion symmetry [17]. The
Bloom filters are used to store and query the K-mers in the genome assembly process. It has
also been used in other applications such as the search engines [18], networking sites for
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spotting malicious URLs and most visited sites [19] and in online shopping sites to collect
the most or recently viewed products [20]. Bloom filters use hash functions for mapping the
input elements into the memory. For a given arbitrary input data, the hash function gives
the fixed random output which is the index of the memory. The hash functions are used in
symmetric cryptographic applications, networking and block chain applications [21].

The Bloom filter has been optimized in anyone of the following parameters: the hash
function used to insert and query the data into the Bloom memory, the time taken for
inserting the string and querying for the existence of the string, memory used to store the
entire set of elements and the probability of false positives.

The Bloom filter utilizes k hash functions to insert and query the input data and, thus,
it takes k memory accesses in the storage. As the size of the Bloom filter grows, the Bloom
filter will be stored in the off-chip memory which uses k time’s disk access. As the number
of memory access increases, the latency for querying the input increases which in turn
deteriorates the system performance. Although the Bloom filter uses O(1) time complexity
for querying the input; for hashing each string k times, the hash function time complexity
will become significant. The hash function with less collision and fewer memory cycles
are preferred for the efficient Bloom filter applications. Many applications use Bloom filter
architecture which uses k memory accesses, and the hash functions use more memory
cycles and as a result it has more delay and computational cost. To overcome the above
issues, in this work we have proposed the following three points:

1. A hybrid hash function that uses murmur hash with the single hash (MSH). It com-
putes hash values in very less time compared to the traditional Murmur hash with
the double hash function (MDH).

2. An improved cache-efficient blocked Bloom filter (CBBF) [19], utilizes single hash
technique with fewer hash functions. It also reduces the insertion and querying time
of the input elements compared to the standard Bloom filter.

3. A cache efficient one hashing blocked Bloom filter (OHBB) that employs only one hash
function. The OHBB filter increases the insertion and the querying speed compared
to the standard Bloom filter (SBF) and reduces the false positive probability compared
to CBBF.

We have used three improvisations to increase the speed and reduce the false positive
probability.

First, the prevalently used non-cryptographic hash function with fewer collisions is
the Murmur hash function. For computing k hash functions, the two hash functions are
used. Instead, by using a single hash function the computation time required to calculate
the hash values is reduced with the same collision rate.

Second, the elements are inserted in random order in the Bloom filter at the index
given by the hash values. By using the blocked indexing and storing the elements in the
single block the traditionally used k memory accesses have been reduced to single memory
access. The single hash function is used for hashing the input elements. The querying
speed has been further increased by adopting single hash functions.

Third, the block in the blocked Bloom filter has been further partitioned into a number
of blocks where the size of each block is a prime number. Here only one hash computation
is performed, and the hash value is modulo divided by the size of each block that will
result in the random index from the block.

With the above proposed methods, the performance of the Bloom filter and the hash
functions were improved in terms of the insertion and query time and there is a significant
reduction in the false positive probability. This paper is organized as follows: Section 2
presents the works related to the Bloom filter. The proposed methodologies are described
in the Section 3 along with the false positive probability analysis. The experimental evalua-
tions along with the results are discussed in the Section 4 and finally the paper is concluded
in the Section 5. The main notations used in the paper are shown in Table 1.
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Table 1. Main Notations.

Symbol Description

k Number of hash functions
m Size of the Bloom array in bits
n Number of input elements being inserted and queried
L Number of blocks in the Bloom filter
W Number of bits in one block
r The length of the K-mer
Pi Partition sizes in the single block

h(x) Word and bit selector hash function

2. Related Works
2.1. Standard Bloom Filter (SBF)

Bloom filter [22] is a data structure which is probabilistic in nature, used for the
approximate membership queries. The Bloom filter data structure is shown in Figure 1.
It allows some false positives during the lookup of an element from the set. It stores n
elements from the set S, i.e., S € {A1, A2, A3 . . . .An}, in which the elements are hashed and
mapped into random bit locations ranging {0, 1, 2, 3 . . . m}. The element A1 in the set is
inserted into the Bloom filter as follows: Initially, the m bit array is initialized to all zeros.
The element A1 is hashed by k hash functions {h1, h2, . . . , hk} and each hash function will
provide an index to the m bit array. The bit in the index location hi (A1), 1 < i < k is set to
1. For querying the existence of element in the set, the element B being queried is hashed
again by k hash functions and the bits in the hashed bit locations hi (B), 1 < i < k are
checked for the existence of 1 in all the k locations. There is a possibility that the query
results as positive for the element which is not in the set, which is called a false positive.
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Figure 1. Standard Bloom filter data structure. The set of elements S1 {ab, cd} were inserted into the
Bloom array. The elements in the set S2 {xy, pq} were queried for the existence. All the bits were set
to zero in the hashed locations of element “pq”, which means that it is not present in the set. The
element “xy” is hashed where all the locations were updated as 1 which falsely identified it as an
element of the set S1.

2.2. False Positive Analysis

The probability of a bit in the m bit array to be set as 1 is 1/m and the probability of
that bit not being set is 1− 1/m. Since the element is hashed k times, the probability of
the element not set to 1 by any of the hash functions is (1− 1/m)k. The n elements are
inserted into the Bloom filter and the bit is still set as zero can be written as (1− 1/m)nk.
The probability of the bit that is set as 1 can be expressed as 1− (1− 1/m)nk. The element
that is not in the set is queried in the Bloom filter in k locations where all the k locations are
set as one is termed as false positive and it is expressed [23] as

FPPSBF = (1− (1− 1/m)nk)
k
'
(

1− e
−nk

m

)k
(1)
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The optimal number of hash functions for the false positive probability FPP with the
given memory m and the number of input elements n is given by

k =
m
n

ln2 (2)

There is a trade-off between the memory, accuracy and the processing time. If there is
a need for a very small false positive probability, then the size of the memory in turn has
to be increased. If the application requires fast processing, the memory size needs to be
minimal which results in an increase in false positive probability.

Several research works [24] have been carried out on Bloom filters to increase their
performance. The drawback of the Bloom filter is its poor cache locality. For inserting an
element or for querying an element the entire Bloom filter memory has to be read, which
requires k memory accesses. To reduce the memory accesses from k memory accesses to
1, Blocked Bloom filters [25] were developed where the Bloom filters are split into blocks.
Each block size is designed based on the cache line size of the system. An element being
mapped is first hashed and the hash value is used to select the block. The element is then
hashed k times and inserted into the single block. As all the k elements were mapped to
the single block, the false positive probability is increased due to the collisions, and it also
requires k + 1 hash functions. In Bloom-1 filter [26], the memory m is split into blocks where
the block size is same as the word size of the system. Each element is hashed by a hash
function; the first l hash bits from the hash function is used to select the word and the rest
of the hash bits are used to map the element into the word. By adopting this method, the
memory cycles are reduced further by mapping k values to a single word of 64 bits and it
uses fewer hash bits. This work has been generalized by mapping each element into two
words. The insertion process involves checking the flag bit of the first word and inserting
into the second word. Thus, it requires an average of two memory access for the querying
an element. The Bloom-1 filter has been further optimized by using Single instruction
multiple data (SIMD) where parallel instructions were used to speed up the computation.
The Ultrafast Bloom filter [27] used the blocked Bloom filter approach and divided the
memory into 256 bits. Each block is further divided into eight blocks of 32 bits each. Each
element is hashed and distributed in all the eight blocks in parallel. Thus, the number of
hash functions k is fixed to the sub block size which is 8.

3. Methodology

The one-hashing blocked Bloom filter (OHBB) method proposed in this work aimed
to reduce the time required to insert and query the elements from the set. This is achieved
by reducing the number of memory access for each element by splitting the memory into
blocks with the size same as the cache-line size and by using fewer hash functions. The
performance of the Bloom filter depends on the two stages. The first stage is the hash
computation which also plays an important role in speeding up the process. The second
stage is the membership check or insertion stage. At first, stage I is optimized by using the
efficient hash function, and the second stage is optimized by blocking the memory which is
aligned to the size of the cache line in the system.

3.1. Hash Function

Though the Bloom filter takes O(1) time for the membership check and insertion, for
each element k hashes need to be calculated which takes O(k) time for the hash computation.
Since the hash function directly impacts the speed of the membership check as well as
the insertion, there is a need to find a better hash function that takes less time for hash
computation with less collision rate. Since Murmur hash is the non-cryptographic hash
function with good avalanche properties among other hash functions [28], in this work,
Murmur Hash function is used for the hashing process. The Murmur hash [29] is to be
hashed k times for each membership check. When the k value increases, there is an increase
in the hash computation cost. To overcome this issue, Less hashing [30] was developed



Symmetry 2022, 14, 1911 5 of 24

to reduce the hash computation where only two hash functions h1 and h2 are needed to
compute k hash values with the same collision rate and less computation time. The hash
values are calculated as

H(x) = (h1(x) + i× h2(x)) mod m (3)

where i value ranges from 1 to k, h1 and h2 are two hash functions. The hash value is modulo
by the size of the Bloom filter to obtain the index. So far, these double hash functions have
been widely used in applications where h1 and h2 are the murmur hash function with
different seed values. This hash function involves multiplication and addition operations
to calculate k hash values. When the k value increases, the cost of the arithmetic operations
also increases.

To reduce the hash computation cost further, another hash function called single
hash [31] has been developed. In the single hash, the complex multiplication and the
addition operations were replaced by the logical operations. The Murmur hash function
results in 64-bit or 128-bit hash values where most of the higher order bits were omitted
during the modulo operation. Thus, with the minimum bits resulting from the hash
operation and by using minimal operations such as bit shift and Xor operations, the speed
of the hash computation has been improved in comparison to the widely used double hash
methodology. For example, with a 64-bit hash value 264 values can be generated where all
the 64 bits are not needed for addressing the index of the Bloom filter. With nearly half of
the bits, the index in the Bloom filter can be addressed, and the remaining bits can be used
for hashing another element. The hash function can be expressed as

H(x) = ((h(x)� 32)⊕ (h(x)� i)) mod m (4)

where i value ranges from 1 to k, h(x) is the murmur hash. When an element e is inserted,
the element is hashed by the murmur hash function which results in the hash value h(x). It
is then hashed k times to update 1 in the index given by H(x).

The Hash computation using murmur with single hash (MSH) is shown in Algorithm
1. The Hash1 value gives the index of an element in the Bloom filter. By using the Murmur
hash function with the single hash function, only one hash value needs to be calculated
with the same false positive probability as compared to the Murmur hash with double hash
function (MDH) where two hash values are normally calculated. Moreover, in the double
hash function the complex operations such as multiplication and addition were performed
as compared to the simple bit shift and the Xor operations.

Algorithm 1: Hash computation of an element x

1: procedure HASH(x)
2: seed ← random seed(prime number)
3: hash ← Murmur64(element, length(element), seed)
4: for i = 1 to k do
5: hash1(i) = ((hash >> 32) ⊕ (hash << i))
6: end for
7: end procedure

3.2. Improved Cache Efficient Blocked Bloom Filter (CBBF)

The drawback in the standard Bloom filter is poor cache locality i.e., for an element
that needs to be inserted and queried, the element is hashed k times and the index given by
the hash functions are random locations in the Bloom array. Hence the entire memory needs
to be accessed for a single membership check and insertion. If the Bloom filter memory is
large, more cache misses will occur. Since the L1 cache is the fastest memory in the system
and the size of the L1 cache is very minimal, the Bloom filter is split into blocks equal to the
cache line size. With this approach, the spatial locality of reference (the chance of accessing
the elements in the near memory location) is increased, thereby increasing the speed of
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fetching the data from the memory. The Bloom filter memory is divided to L blocks where
each block size W is equal to the size of the L1 cache line. In the processors, the cache line
size is 64 bytes. The total memory of the Bloom filter m can be expressed as L×W.

When an element ‘x’ is inserted in the Bloom filter, the element is first hashed by a
hash function h(x) to choose a single block in the memory of L blocks. Then, the element is
hashed by k hash functions and updates the bit in the k positions in block selected by h(x)
as shown in Figure 2.
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Figure 2. Cache Blocked Bloom filter data structure. The element x from the set S{x,y,z} is inserted
into the Bloom array. The element “x” is hashed by a hash function h1(x) to choose one block from L
blocks where each block size is 64 bytes i.e., 512 bits. Then the element is hashed k times and updates
the bits in the index positions given by the hash functions h1(x), h2(x), h3(x) to 1.

The insertion procedure is shown in Algorithm 2. The element being inserted is hashed
by the Murmur hash with random prime seed and the hash value generated is used to
choose the block from L blocks. The same hash value is used to select the index location in
the block. Then the hash value is passed to the single hash function to generate k random
values. These values are used to select k bits from the block of 512 bits.

Algorithm 2: Insertion of element x into CBBF

1: procedure INSERT(Bloom f ilter BF, element x)
2: seed ← random seed(prime number)
3: hash← Murmur64(x, strlen(x), seed)
4: for i = 1 to k do
5: hash(i) = ((hash� 32)⊕ (hash� i))
6: Blockindex = hash mod L
7: O f f set = hash mod W
8: index = Blockindex + O f f set
9: Bitindex = hash mod bits
10: Bitpos = 1� Bitindex
11: BF[index] = BF[index]OR Bitpos
12: end for
13: end procedure

For the membership check, the element is hashed by h1(x) to choose the block from
L blocks. Then the element is hashed k times h1(x), h2(x), . . . , hk(x) and checks the bits
positions in the index given by the hash functions. If all the bit positions in the block are
set as 1, the element is a member of the set. Otherwise, the element is not in the set. The
querying process is shown in Algorithm 3.
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Algorithm 3: Membership query of element x in CBBF

1: procedure QUERY(Bloom f ilter BF, element x)
2: seed ← random seed(prime number)
3: hash← Murmur64(x, strlen(x), seed)
4: for i = 1 to k do
5: hash = ((hash� 32)⊕ (hash� i))
6: Blockindex = hash mod L
7: O f f set = hash mod W
8: index = Blockindex + O f f set
9: Bitindex = hash mod bits
10: Bitpos = 1� Bitindex
11: if BF[index] AND Bitpos == 1 then
12: return True
13: else
14: return False
15: end if
16: for
17: end procedure

In standard Bloom filter, for positive query k cache misses will occur and for negative
queries one to two cache misses occurs on average. In blocked Bloom filter, for each
insertion and membership check, only one block of memory with the size equal to the
cache line size is accessed. For positive queries, k locations need to be checked and for
negative queries a minimum of 1 and maximum k locations are accessed where all the
bit locations lie in the single cache line. This reduces the number of cache misses to one
and thereby increases the insertion as well as the querying speed of the input elements.
Furthermore, instead of k hash functions, the hash value is fixed as five for the lesser false
positive probabilities. As a result, the hash computation time is also reduced. Since all
the k bits are inserted in one block, there is a little increase in the false positive probability
compared to the standard Bloom filter.

False Positive Analysis

The false positive probability is the probability that an element which is not a member
of the set is mistakenly identified as the member of the set. To check the presence of element
in the set, it is hashed k times and checked in the block. Let x be the number of elements
mapped to the same block, the false positive probability is given as

P{X} =
(

1−
(

1− 1
W

)xk
)k

(5)

X is a random variable where the members map to the same word, x is a constant
ranging from 0 to n elements, k is the number of hash functions and W is the size of the
block which is the size of the cache line (512 bits).

The Bloom filter is partitioned into L blocks of 512 bits each. The n elements can be
mapped to any one of the L blocks. The probability of the block being chosen from the L
blocks follows binomial distribution and it can be represented as

P{X = x} =
(

n
x

)(
1
L

)x(
1− 1

L

)n−x
, 0 ≤ x ≤ n (6)

The false positive probability can be written as

FPPCBBF = P{X = x} × P{X} (7)
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FPPCBBF =
n

∑
x=0

(
n
x

)(
1
L

)x(
1− 1

L

)n−x
×
(

1−
(

1− 1
W

)xk
)k

(8)

The false positive probability of CBBF has been approximated [32] and it is given as

FPPCBBF =
n

∑
x=0

((
n
x

)(
1
L

)x(
1− 1

L

)n−x
×
(

W!
Wk(x+1)

W

∑
i=1

i

∑
j=1

(−1)i−j × jkxik

(w− i)!j!(i− j)!

))
(9)

The false positive probability of the cache blocked Bloom filter is increased compared
to the standard Bloom filter. There is a trade-off between the insertion andquery speed with
the false positive probability, but the difference between both Bloom filter false positive
probabilities is very much less.

3.3. One Hashing Blocked Bloom Filter (OHBB)

In the Blocked Bloom filter, the insertion and the querying speed have been accelerated
by splitting the memory into blocks where the block size is equal to the cache line size. The
number of memory access has been reduced from the k memory access in the standard
Bloom filter to one memory access. However, there is an increase in the false positive
probability compared to the standard Bloom filter. As the k bits are inserted into the single
block of memory there is a probability of collision inside the block.

To overcome the issue of collision, OHBB filter has been proposed in this work. In
this approach, the memory size m is split into L blocks where each block is equal to the
size of the cache line of the system which is 64 bytes. Thus, the memory access is reduced
to one. On the other hand, in cache blocked Bloom filter, k hash functions are needed for
the insertion and querying of elements. This has been further reduced by partitioning the
block into k blocks where the size of each partition is the unique prime number. The hash
function is called only once to choose the block in the memory. The same hash function
is used to choose the k where each hash function is modulo divided by the unique prime
number as shown in Figure 3. When the hash function is modulo divided by the prime
number, the randomness is increased, and the collision rate is decreased.
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Figure 3. One hash Blocked Bloom filter data structure. The element x from the set S{x,y,z} is inserted
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into 3 blocks for k = 3. Each partition size is the prime number. The element “x” is hashed by a hash
function h1(x) to choose one block from L blocks. Then the hash function is modulo divided by the
partition length which gives the random location. The bits at the location were set to 1.

The procedure for choosing the partition length is shown in Algorithm 4. The entire
prime numbers were stored in the prime table. Select the nearest prime number equal to
m/k as the middle value; Choose the prime numbers before and after the middle value and
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store k prime values; The sum of all the k prime numbers should be less than or equal to
512; If the value is more or far less than the size of 512, replace the smallest prime number
with the next highest prime number; By repeating the procedure the partition length can be
chosen nearest to the block size. The sum of the partition length should be near to or equal
to the size of the cache line size. If the sum is greater than 512, then two cache lines needs
to be accessed for single insertion and query which results in two memory access.

Algorithm 4: Selecting the Partition length (prime numbers) in OHBB filter

Input: Prime Table (Prime), mb = 512, k
Output: Primes
1: Find the prime number close to mb/k from the prime table and the index as Pindex
2: Total← 0
3: for i = 1 to k do
4: P(i) = Prime(Pindex - round(k/2) + i)
5: end for
6: Total = ∑(P)
7: Pmax = Prime(P(k)) //Index of kth prime number in prime table
8: Pmin = Prime(P(1)) //Index of 1st prime number in prime table
9: while true do
10: if (Total ' mb ) then
11: Break
12: else
13: Replace Pmax and Pmin with the next prime number from the prime table
14: Total= ∑(P)
15: end if
16: end while
17: for i = 1 to k do
18: Primes(i) = P(i)
19:end for

The prime numbers should be the consecutive values or nearby values and also the
difference between the partitions should not be too large. If the difference is more, then
the distribution of the hash bits in the Bloom array will not be uniform which leads to an
increase in the false positive probability. For example, the Bloom filter memory m = 10,000
is divided into 19 blocks. The size of each block is 512 bits. The 512 bits are further
partitioned into three partitions for k = 3 where P1 = 151, P2 = 179, and P3 = 181. The sum
of all the partitions is less than the size of the block.

The insertion procedure is shown in Algorithm 5. The prime table contains the
partition length is loaded initially. The element is being stored into the Bloom filter is hashed
by Murmur hash which gives a 64-bit hash value. The modulo operation is performed on
the hash value to find the block index and then the same hash value is modulo divided by
the k prime numbers which provide the bit index in each partition. The bits in the index
provided by the hash function were set to 1.
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Algorithm 5: Insertion of element x into OHBB filter

1: procedure INSERT(Bloom f ilter BF, element x)
2: seed ← random seed(prime number)
3: P[k]← Table contains the partition length
4: hash← Murmur64(x, strlen(x), seed)
5: for i = 1 to k do
6: Blockindex = hash mod L
7: O f f set = hash mod P[i]
8: index = Blockindex + O f f set
9: Bitindex = hash mod bits
10: Bitpos = 1� Bitindex
11: BF[index] = BF[index] OR Bitpos
12: end for
13:end procedure

The same hash value is used for finding the block index, partition, and also the bit
index because the hash value divided by different prime numbers gives different index
values. The membership querying procedure of the proposed approach is explained in
Algorithm 6. The element being queried is first hashed by the murmur hash function. The
block index, the bit index from each partition is calculated by the same hash function. The
bits in the corresponding index positions were checked for 1. If all the bits were set as 1,
then the element is the member of the set, otherwise the element is not a member of the set.

Algorithm 6: Membership query of element x in OHBB filter

1: procedure QUERY(Bloom f ilter BF, element x)
2: seed ← random seed(prime number)
3: P[k]← Table contains the partition length
4: hash← Murmur64(x, strlen(x), seed)
5: for i = 1 to k do
6: Blockindex = hash mod L
7: O f f set = hash mod P[i]
8: index = Blockindex + O f f set
9: Bitindex = hash mod bits
10: Bitpos = 1� Bitindex
11: if BF[index] AND Bitpos == 1 then
12: return True
13: else
14: return False
15: end if
16: end for
17: end procedure

The partition length is decided based on the number of hash functions. Each partition
is a unique prime number where the sum of all the partition lengths is equal to the block
size. By blocking and partitioning, the number of memory access has been reduced to 1
which directly impacts the insertion and querying speed. By partitioning the block further
into the prime number of blocks, the collision rate is reduced compared to the cache blocked
Bloom filter. The false positive probability is in between the standard Bloom filter and the
cache blocked Bloom filter.

False Positive Analysis

The element which is not in the set being queried in the Bloom filter is mistakenly
identified as the element is termed as false positive. The element is hashed and checked
in all the partitions for the existence of the element. The probability that the element is
present in all the partitions [33] is given below:
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The Bloom filter memory is split into L blocks of 512 bits each. The probability of
selection of one block out of L blocks follows binomial distribution. The probability that
each element can be mapped to any one block with equal probability is given by

F{X = x} =
(

n
x

)(
1
L

)x(
1− 1

L

)n−x
, 0 ≤ x ≤ n (10)

where X is a random variable and x is a constant ranging between 0 and n, n is the number
of inputs elements.

The probability of the bit in the partition pi being set as 1 is given by 1/pi. The
probability that the bit in all the partitions set as 1 by the element x is given as

Fp(X) =
k

∏
i=1

(
1−

(
1− 1

p i

)x)
(11)

where k is the number of hash functions and pi is the partitions in each block.
It can be approximated as

Fp(X) ≈

1− k

√√√√ k

∏
i=1

((
1− 1

p i

)x)k

(12)

Fp(X) ≈

1− k

√√√√ k

∏
i=1

(
e
−x
pi

)k

(13)

The false positive probability of the OHBB filter is the product of the probability of
choosing a single block from L blocks (F {X}) and the probability of the bits set in the
partitions pi from the block selected (Fp(X)).

FPPOHBB =
n

∑
x=0

(
F{X = x} × Fp(X)

)
(14)

FPPOHBB =
n

∑
x=0

((
n
x

)(
1
L

)x(
1− 1

L

)n−x
)
×

1− k

√√√√ k

∏
i=1

(
e
−x
pi

) (15)

The theoretical false positive probability of OHBB filter and the standard Bloom filter
for the different load factor (n/m) and different hash count (k) is given in Tables 2 and 3.

Table 2. Theoretical false positive probability of Standard Bloom filter and One hashing blocked
Bloom filter where n = 10,000 and k = 3.

Load Factor (n/m) F_SBF F_OHBB Difference
F_S– F_OHBB

0.02 1.98 × 10−04 2.56 × 10−04 5.85 × 10−05

0.04 1.45 × 10−03 1.65 × 10−03 2.06 × 10−04

0.06 4.47 × 10−03 4.88 × 10−03 4.11 × 10−04

0.08 9.71 × 10−03 1.04 × 10−02 6.51 × 10−04

0.1 1.74 × 10−02 1.83 × 10−02 9.07 × 10−04

0.12 2.76 × 10−02 2.88 × 10−02 1.17 × 10−03

0.14 4.03 × 10−02 4.18 × 10−02 1.42 × 10−03

0.16 5.54 × 10−02 5.71 × 10−02 1.65 × 10−03

0.18 7.26 × 10−02 7.45 × 10−02 1.87 × 10−03

0.2 9.18 × 10−02 9.39 × 10−02 2.06 × 10−03
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Table 3. Theoretical false positive probability of Standard Bloom filter and One hashing blocked
Bloom filter where n = 10,000 and k = 5.

Load Factor (n/m) F_SBF F_OHBB Difference
F_S– F_OHBB

0.02 7.80 × 10−06 1.74 × 10−05 9.56 × 10−06

0.04 1.96 × 10−04 2.99 × 10−04 1.04 × 10−04

0.06 1.17 × 10−03 1.55 × 10−03 3.82 × 10−04

0.08 3.89 × 10−03 4.79 × 10−03 8.91 × 10−04

0.1 9.43 × 10−03 1.10 × 10−02 1.61 × 10−03

0.12 1.87 × 10−02 2.12 × 10−02 2.48 × 10−03

0.14 3.23 × 10−02 3.57 × 10−02 3.40 × 10−03

0.16 5.06 × 10−02 5.49 × 10−02 4.27 × 10−03

0.18 7.36 × 10−02 7.86 × 10−02 5.01 × 10−03

0.2 1.01 × 10−01 1.06 × 10−01 5.55 × 10−03

From the above table it is concluded that the false positive probability is increasing
with the increase in the load factor. The false positive probability of OHBB is greater than
the standard Bloom filter but the difference is very minimal, and it is within the acceptable
limits of the applications.

4. Results and Discussion
4.1. Experimental Setup

This work is implemented in Intel(R) Xeon(R) processor (E5-2620v4, 2.10 GHz, 8 cores)
with 32 GB DDR Memory and 1TB SDD running on Ubuntu 16.04 LTS in HPZ640 machine.
The proposed one hashing cache blocked Bloom filter is implemented in C++ in the above
platform.

A set of random strings with different numbers were generated for inserting into the
Bloom filter and another set of disjoint random strings were generated to check the false
positive probability and the membership query speed. These random strings are used as
Dataset 1, while Dataset 2 is comprised of a set of K-mers used in genome assembly, gene
sequencing, and genome studies. Random K-mers of different sizes were generated and
inserted into the Bloom filter and, another set of distinct random K-mers were used for
the querying purpose. The two datasets were used to evaluate the performance of the
proposed methods as shown in Table 4. All the experiment results were repeated five times
and the average result is taken for evaluation.

Table 4. Datasets used for experimental evaluation.

Name Input No. of Input Files

Dataset 1 Random Strings 7
Dataset 2 Random K-mers 10

4.2. Hash Computation

The hashing process is tested with double hash and single hash along with the Murmur
hash to find the best hash function in terms of the hashing speed since both the hash
functions have similar false positive probability. The hash functions were tested using the
two mentioned data sets and their results were shown in Figure 4. There is an increase in the
speed of the MSH compared to the MDH. The Bloom filter is used to evaluate the insertion
and the membership check speed. Random K-mers were inserted into the Bloom filter and
another set of distinct K-mers were queried. The performance of MSH outperforms the
other for both random K-mers as well as with the random strings.
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Figure 4. Comparison of single hash and double hash with random strings and random K-mers as
input for hash function k = 7.

The increase in the performance is due to the murmur hash function is called only once
while in the double hash the murmur hash is called two times with different seed values. In
some applications, the second hash value is generated from the first hash function with few
shift operations. Moreover, the arithmetic operations in the double hash involve complex
multiplication and addition operations which are called k times. In the single hash the
complex operations were replaced by simple shift and Xor operations.

To check the performance of both hash functions for different string length, one million
random strings and random K-mers were generated with different lengths. The input files
were hashed using single hash and double hash and the time taken for hashing the strings
were shown in Figure 5. It is clear from the results that the single hash outperforms the
double hash irrespective of the string length. This hash function can be used in applications
using input strings with variable lengths.
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Figure 5. Comparison of single hash and double hash with one million random strings and random
K-mers of different length for hash function k = 4 and k = 7.

4.3. Insertion Speed Check

The CBBF is compared with the SBF in terms of the insertion speed with the two
datasets. The standard Bloom filter with the double hash function and single hash function
is also implemented to study the behavior of hash functions in the Bloom filter with different
datasets. All the versions were implemented for the false positive probability (FPP) of 0.1,
0.01, 0.001, and 0.0001. Different applications use different FPP values as their benchmarks
based on their requirement. For some applications, the querying speed is the major area of
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interest and the FPP has been given least significance, but for some applications the FPP
values should be very minimal.

The Bloom filter is designed for different input sizes with different FPR values. The
insertion speed in the cache blocked Bloom filter is improved because of the reduction in
the memory access from k to 1.

The insertion speed is increased for the Bloom with Single hash because the double
hash uses addition and the multiplication in the hash function, which is called k times,
whereas the single hash uses the simple bitwise shift and the Xor operations. Because of
the improvement in the hash operations as well as the reduction in the cache misses due
to blocking of the memory aligned to the size of the cache line, there is a reduction in the
insertion time compared to the existing SBF with Double hash approach.

The results shown in Figures 6 and 7 prove that the hashing speed of the single hash
is increased compared to the double hash. For the dataset 2, only the SBF with MSH is
compared with the CBBF. The random K-mers of length r = 27 were generated and inserted
into the Bloom filter with different false positive probabilities. In the genome assembly, the
K-mers were generated and stored in the Bloom filter, then a set of K-mers were queried
for the existence. Figure 7 shows that the performance of CBBF outperformed the SBF.
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Figure 7. The comparison of insertion time of Bloom filter with Murmur hash + Single hash and
Cache Blocked Bloom filter with Murmur hash + Single Hash for different false positive probabilities
for K-mers (Dataset 2).

There is a good improvement in the speed when the value of the FPP is decreased. For
FPP = 0.0001 the difference between the SBF and CBBF is substantial due to the number of
hash functions used. For FPP = 0.0001, fourteen hash values were used in the SBF while
the cache blocked filter uses only five hash functions. When the hash functions are more,
the entire memory should be accessed to update k bits in the memory while in the blocked
Bloom filter only one memory block is accessed. For lesser false positive probability, the
performance of the CBBF is better in terms of the insertion speed. Both of the Bloom filters
used the same amount of memory.

The comparison between standard Bloom filter (SBF), cache blocked Bloom filter
(CBBF) and one hashing Bloom filter (OHBB) is simulated for Dataset 1 and Dataset 2 to
measure the performance of insertion and querying speed with different false positive
probabilities.

The time taken for inserting the set of random strings into the Bloom filter for FPP = 0.1,
0.01, 0.001, 0.0001 is shown in Figure 8. In CBBF, the membership and the querying speed
increases albeit there is an increase in the FPP compared to SBF due to the collisions in
the block because all the k bits were mapped to the same block randomly. In OHBB,
the collisions in the block were effectively handled by partitioning the block further into
k blocks. Since the size of each partition is prime number, when the hash function is
modulo divided by the prime number the randomness increased and the collision decreased
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resulting in the lesser FPP. However, there is a slight increase in the FPP compared to the
SBF and the difference is significantly less compared to the CBBF.
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The time taken for inserting the K-mer strings into the Bloom filter with varying FPP is
shown in Figure 9. The insertion time of OHBB is better than the SBF. There is an increase in
the insertion time compared to the CBBF because of the modulo operation in the partition
sizes. When the hash value increases, the partition size also grows which in turn increases
the number of modulo operations performed on the hash value, However, the difference is
very much less because the modulo operation replaces the hash function carried out for all
the k values in the SBF and CBBF.

4.4. Membership Check Speed

The querying speed of the SBF with different hash functions and CBBF with MSH are
shown in Figure 10 for the different false positive probabilities. Random strings of different
sizes were generated and inserted in the Bloom filter. Another set of unique random strings
were generated and queried in the Bloom filter. The negative membership query is needed
for evaluating the exact false positive probability of the system. In all the experiments, the
theoretical false positive probability is fixed; by varying the number of inputs n, the size
of the Bloom filter m has been calculated and then the memory is allocated. The query
performance also shows promising results for all the range of false positive probability.
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Figures 10 and 11 show the membership query performance of the SBF and the CBBF
for the different FPP. In all the four versions, CBBF shows an increase in the querying speed.
When the same algorithm is applied for the real time datasets, for example human genome
assembly, the performance improvement in the insertion and querying process is more
significant because of the linear relationship between the input data and Bloom filter size.

Figures 12 and 13 show the membership check performance of the SBF, CBBF and
OHBB for dataset 1 and dataset 2.

It is shown in Figures 12 and 13 that the query performance of the random strings is
increased for all the false positive probabilities. There is a minimal difference in the speed
compared to the CBBF. For Dataset 2, the performance lies in between the SBF and CBBF.
The membership check speed for the random strings is almost same as the CBBF. The clock
cycles taken for modulo operation in less compared to the clock cycles required for the
hash function computation. The datasets used in experiments were simulated datasets. The
performance comparison of the proposed Bloom filter and SBF on real time gene data is
shown in Table A1. The results also supports that there is an improvement in the insertion
and query time of the proposed Bloom filter compared to Standard Bloom filter (SBF).
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Bloom filter with MSH and Cache Blocked Bloom filter with MSH for different false positive
probabilities FPP = 0.1, 0.01, 0.001, 0.0001 for Dataset 1.

We have not compared the memory utilization of the different Bloom filter approaches
because: In improved CBBF, the entire Bloom filter memory is logically split into blocks
where the block size is equal to the size of the cache line. By rounding off the Bloom filter
memory bits to 512, the entire memory can be split into blocks of size 512. Therefore, the
increase in the memory in CBBF is negligible compared to SBF. In OHBB, the blocks were
further partitioned into prime number of blocks where the partition length is less than the
block size. Thus, there is also a negligible increase in the memory of OHBB filter compared
to SBF. Hence in all the above approaches, the memory utilization remains same.

4.5. False Positive Probability (FPP)

The simulated false positive probabilities of all the four versions of Bloom filter are
shown in Figures 14 and 15. The Bloom filter and its variants were designed based on
the input elements by fixed FPP. The corresponding FPP values were recorded from the
experiments. Each experiment is repeated five times and the average value is chosen to
plot the figures.

The comparison of the theoretical false positive probability and the simulated false
positive probability is shown in Figure 16. From the figure it is clear that the simulation
results match the theoretical results exactly. It is also clear from the figure that when the
load of the Bloom filter increased, the false positive probability also increased.
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It is evident from the results that there is a substantial improvement in the FPP
compared to the CBBF. The improvement is achieved due to the randomness produced by
the prime size partitions. The difference in FPP between the SBF and OHBB filter is very
much less. The hash function k is chosen as 3 for the FPP 0.1 and for the lesser FPP the hash
functions are fixed as 5. The number of partitions were fixed to five in each memory block
for the lower FPP such as FPP = 0.01, 0.001, 0.0001 which exhibited the better result. The
insertion and membership query results were taken for the four FPP values to check the
performance of the different load values. For image processing applications [34], the speed
and the memory of the Bloom filter is the design constraint and hence FPP is fixed as 0.1
whereas for gene applications, the FPP is fixed as 0.001, and for the networking applications
the FPP is fixed as very less than 0.0001. To meet the requirements of all applications,
the efficient Bloom filter variant has been designed. The proposed work paves a way to
the researchers to choose appropriate hash function and the bloom filter variant for their
application requirements.
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5. Conclusions

In this paper, a new variant of the Bloom filter OHBB was proposed, implemented
and evaluated. The number of memory access has been reduced by the CBBF where each
block size was same as the cache size. The block-based Bloom filter used fewer hash
functions to achieve improvement in the speed at the cost of increase in the false positive
probability. The false positive probability is reduced by the proposed OHBB filter where
the blocks were partitioned, and each partition size is chosen as the prime number. The
requirement of number of hash function is reduced to one. The proposed OHBB filter was
validated with the random strings dataset, simulated and real K-mers dataset. The OHBB
filter achieved good performance in terms of the insertion speed and membership query
speed. The proposed OHBB filter with FPP 0.1 would be suitable for image processing
applications and the OHBB filter with FPP 0.0001 would be suitable for the network and
the genome assembly applications. Though there was a trade-off between the false positive
probability and speed, the performance of the OHBB filter had been relatively between the
performances of CBBF and the SBF. This can be further improved by parallelizing the hash
functions and the insertion and membership query process in the multicore and distributed
environment.
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Appendix A

In DNA Sequencing, the K-mers were generated from the DNA reads. The generated
K-mers were stored in the Bloom filter for querying and for the error correction. The gene
sequences of Faragaria vesca (Wild strawberry) species were extracted from the database
(ftp://ftp.ddbj.nig.ac.jp/ddbj_database accessed on 19 August 2022) and implemented in
the proposed method. The input files are Fastq formatted files. There are 176,443 reads in
the input file with an average read length of 341 DNA bases. The input DNA reads are split
into K-mers of different length (50, 100, 150) and loaded into Bloom filter. The time taken
for inserting the K-mers into the Bloom filter with different hash values was recorded. The
query file is taken from the same species which contains 1,097,310 reads of average length

ftp://ftp.ddbj.nig.ac.jp/ddbj_database
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339. The reads from the query file is split into K-mers and queried in the Bloom filter. The
time taken for insertion and querying the K-mers is shown in Table A1.

Table A1. The insertion and querying time comparison of real time gene data in SBF and the proposed
filter.

K-mer
Length

Total
K-mers Hash

Insertion Time Total
K-mers Hash

Querying Time
SBF OHBB SBF OHBB

50 29,200,531
1 0.778 0.7053

180,681,518
1 5.0857 4.8683

3 0.9916 0.7996 3 5.7096 5.289
5 1.2775 0.879 5 6.2855 5.5624

100 24,200,581
1 0.7741 0.6879

149,508,218
1 4.7607 4.4094

3 0.9728 0.7949 3 5.2385 4.6978
5 1.2089 0.8547 5 5.6906 4.9555

150 19,200,631
1 0.7468 0.6538

118,334,918
1 4.4184 3.9571

3 0.9028 0.7347 3 4.7343 4.181
5 1.0865 0.7858 5 5.0549 4.3824
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