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Abstract: The invention in 1978 of the first practical asymmetric cryptosystem known as RSA was
a breakthrough within the long history of secret communications. Since its inception, the RSA
cryptosystem has become embedded in millions of digital applications with the objectives of ensuring
confidentiality, integrity, authenticity, and disallowing repudiation. However, the generation of
the RSA modulus, N = pq which requires p and q to be random primes, may accidentally entail
the choice of a special type of prime called a near-square prime. This structure of N may be used
unknowingly en masse in real-world applications since no current cryptographic implementation
prevents its generation. In this study, we show that use of this type of prime will potentially lead
to total destruction of RSA. We present three cases of near-square primes used as RSA primes,
set in the form of (i) N = pq = (am − ra)(bm − rb); (ii) N = pq = (am + ra)(bm − rb); and (iii)
N = pq = (am − ra)(bm + rb). Although (ii) and (iii) are quite similar, p and q must be within
the same size range of n-bits, which results in different conditions for both cases. We formulate
attacks using three different algorithms to better understand their feasibility. We also provide an
efficient countermeasure that it is recommended is adopted by current cryptographic libraries with
RSA implementation.

Keywords: public-key cryptography; RSA encryption scheme; RSA primes; cryptanalysis;
near-square prime

1. Introduction

The famous Rivest—Shamir—Adleman (RSA) public-key cryptosystem is the de
facto standard utilized in global technologies as a powerful encryption and decryption
mechanism. It was introduced in 1978 by Rivest, Shamir, and Adleman as the first working
public-key encryption scheme [1]. It has been included in many cryptographic standards
and libraries due to its practicality and simplicity. Its key generation algorithm computes
two distinct n-bit primes, p and q, called RSA primes. These primes are the first two private
keys of RSA which form N = pq, called the RSA modulus. The modulus N is the first RSA
public key and each N has its corresponding φ(N) that is derived from Euler’s phi function.
Specifically, φ(N) = (p− 1)(q− 1); this value is also kept as the RSA private key. The
second public key, e (also called the public exponent) is chosen such that gcd(φ(N), e) = 1.
Each e has its corresponding private exponent, d where ed ≡ 1 (mod φ(N)). Thus, the
RSA public keys are given by the pair (N, e), while the RSA private keys are represented
by the tuple (p, q, φ(N), d).

Since its introduction, RSA has been successfully retained for forty years for its defence
against various attacks [2]. The security of the RSA cryptosystem relies on the hardness of
solving the following problems: Firstly the integer factorization problem (IFP), entrenched
in the modulus N = pq. Secondly, the hardness of solving the key equation ed− φ(N)k = 1
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and, finally, the eth root problem in the encryption function. Constant cryptanalysis
or ‘attacks’ on these three problems is crucial to maintain the security of RSA at the
highest level [3]. This crucial need for information security has led to the rise of various
cryptographic algorithms to implement security in different dimensions and for numerous
purposes [4].

Before RSA was introduced, prior results had shown that p− 1 and q− 1 that have
small factors cause p · q to be vulnerable when factored in polynomial time using the
Pollard p− 1 algorithm [5]. Pollard’s p− 1 algorithm is exceptionally efficient whenever
all prime factors of p− 1 and q− 1 are small [6]. In addition, a technique known as an
estimated prime factor (EPF) was improved by Tahir et. al [7] to solve N generated from
balanced or unbalanced primes p and q. Furthermore, Pollard [8] showed that N with a
small size is easily factored since the complexity of the factorization algorithm depends on
the size of

√
N. Subsequently, research undertaken by many others [9–11] extended this

complexity using the number field sieve method, which has dominated efforts to factor
the RSA modulus ever since. In 2021, N with 829 bits was successfully factored using this
method [12]. Later simulations demonstrated that the 2048-bit RSA modulus can only be
factored by a quantum computer with 13 436 qubits within 177 days [13].

The development of quantum computers with effective factoring implementation is
unlikely to be realized for many years. Thus, it can be assumed that RSA can still be used
securely. However, in this investigation, we show that certain unexplored structures of p
and q cause N = pq to be factored without the aid of quantum computation in polynomial
time. Specifically, if p and q are near-square primes, then N will be vulnerable. The general
definition of a near-square prime is given in the following definition.

Definition 1. Let a be any integer and m be a power of 2. If p = am ± ra is a prime number where
ra is a countable integer (for example, ra < 100), then we define p as a near-square prime.

Prior to this work, factoring of near-square primes was only discussed using a theo-
retical sieve approach [14] and never in cryptographic settings. However, our previous
investigations [15,16] showed that such primes can become vulnerable points in the RSA
cryptosystem. Furthermore, the abundance of such primes due to the common size used
for RSA primes in standard cryptographic libraries highlights the importance of defin-
ing near-square primes with a description that fits RSA in practice. We define below the
particular notion of a near-square prime used in all of our attacks.

Definition 2. Let a be any integer and m be a power of 2. If p = am ± ra is a prime number where
ra is a ‘sufficiently small’ integer, then we define p as an ra-near-square prime.

In practical circumstances, the term ‘sufficiently small’ used in Definition 2 refers to
the size of integers that are computationally feasible to be performed via an exhaustive
search method in the future. For this, readers are advised to refer to the latest standard key
size published by the National Institute of Standards and Technology (NIST) [17].

1.1. Motivation for this Paper

Since RSA is still a leading public-key cryptosystem used in digital applications, its
security level must be maintained at the highest level. However, it has been found that
there are weak primes that are unknowingly used as RSA primes. These weak primes are
in the form of near-square primes as defined in Definition 1.

The authors of [15] showed that the number of near-square primes falling under
Definition 2 is asymptotic to

π(
√

s) ∼

⌊
2

n
2

(
1− 2−

1
2

)⌋
2

 Nγ

log (s)
+

Nγ

log
(√

s +
⌊

2
n
2

(
1− 2−

1
2

)⌋)2

. (1)
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Based on Equation (1), s is the smallest squared number with n-bit size, and Nγ is
the higher value of two near-square primes, ra and rb. In terms of RSA-2048, then there
are approximately 7.0265× 10153 near-square primes with 1024-bits [15]. Based on this
vast amount of near-square primes, this paper intends to emphasize the importance of
not selecting near-square primes as RSA primes in the current implementation of the RSA
key generation algorithm since there is the possibility they are being used unknowingly in
digital applications using RSA today. This is because no current cryptographic standards
have imposed any conditions to prevent appointing near-square primes as RSA primes.
From the results provided in this paper, we hope that this practice may be amended in the
near future to maintain the security of RSA.

1.2. Contribution of This Paper

The results presented in this paper represent a continuation of previous research
in [15,16] which exposed the vulnerabilities of using N = p = (am + ra)(bm + rb) as the
RSA modulus. The main aim of this paper is to cryptanalyze (or attack) three other distinct
forms of the RSA modulus with near-square prime factors. Specifically, in the first attack,
the RSA primes are set to be in the form of N = pq = (am − ra)(bm − rb). In the second
attack, the RSA primes have the form of N = pq = (am + ra)(bm − rb), while in the third
attack, the prime factors are considered to be in the form N = pq = (am − ra)(bm + rb). As
a result, we show that near-square primes should not be used as RSA primes since they
enable N to be factored using the quadratic root method which can feasibly computed by
any adversary.

A summary of the structures of near-square primes computed to be N covered in our
previous work [16] and in this section is shown in Figure 1.

(a) (b)

(c) (d)
Figure 1. Distinct structures of near-square prime factors are covered in [16] and Section 3 of this
paper. This means that we have enclosed all the remaining cases left for using near-square primes
as RSA primes. (a) The case when N = pq = (am + ra)(bm + rb) is presented in [16]. (b) The
case when N = pq = (am − ra)(bm − rb) is presented in Section 3.1. (c) The case when N = pq =

(am + ra)(bm − rb) is presented in Section 3.2. (d) The case when N = pq = (am − ra)(bm + rb) is
presented in Section 3.3.
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1.3. Organization of the Paper

The paper is organized as follows: In Section 2, we discuss some previous related
studies that how how the structures and conditions imposed on the RSA primes can lead
to a total break. Section 3 highlights and compiles three new attacks to factor the RSA
modulus N. We show that there are some types of RSA primes that can feasibly lead to
a total break of RSA. Additionally, we provide three algorithms to perform the newly
proposed attacks. In Section 4, we propose a countermeasure against all the proposed
attacks. Our proposed countermeasure is straightforward and can be easily implemented in
RSA key generation standard practices. In Section 5, we provide a comparative analysis of
attacks that focus on the structure of RSA primes in order to factor N. Finally, we conclude
the paper and provide suggestions for future work in Section 6.

2. Related Work

In this section, we review some of the past attacks against RSA that exploit the
structures of the primes as the source of the vulnerabilities so that N can be factored in
polynomial time.

One of the earliest such papers was presented even before RSA was established.The
authors of [5] showed that a composite number can be factored easily if the value preceding
one of its prime factors comprises negligibly small primes e.g., 2, 3, 11, 17, . . .. This work
showed that there exists a condition on a prime that causes the composite number it formed
to be easily factored. The algorithm from this condition is called a specific factorization
algorithm, i.e., an algorithm that can factor a composite number with the specific condition.

Apart from the specific-purpose factorization algorithm, there are also algorithms
designed for any composite number without specific structures. This kind of algorithm
is called a general-purpose factorization algorithm. It is of note that the running time
of a general-purpose factorization algorithm depends solely on the size of a composite
number N. Among the popular factoring algorithms belonging to this category are the
quadratic sieve (QS) and general number field sieve (GNFS). In practice, the QS algorithm
has proven to be simpler than the GNFS algorithm and is fastest for integers below 100
decimal digits, but no better than the GNFS algorithm for integers with 110–120 digits [4].
It was first introduced by [9] and called the quadratic sieve algorithm. It is regarded as the
fastest factoring algorithm for 50–100 bit integers. The authors of Lenstra et al. [11] then
introduced a more general approach called the number field sieve factorization algorithm;
this algorithm has since been able to factor RSA numbers up to 829 bits [12]. However,
since its complexity is sub-exponential, the size of integers remains a significant hurdle for
it to break the RSA modulus with 2048 bits efficiently.

In De Weger’s result [18], it was then shown that the prime difference of p and q in
RSA can influence the result shown previously by [19]. Specifically, if |p− q| < N1/4 then
the adversary only requires d < N to factor N using a lattice-based attack. This work also
showed the relation between the prime difference and the early work on small decryption
exponents introduced by [20].

A further assumption commonly applied when attacking RSA is that the adversary is
able to know certain bits of RSA private keys beforehand. For example, Ernst et al. [21]
showed that, by knowing certain bits of the RSA private key exponent, d, the adversary
can factor N in polynomial time. Later, Sarkar and Maitra [22] extended this attack by
combining this assumption with an additional assumption that, if certain bits of p and/or
q are also known, then the result by [21] can be extended to a more generalized form.
However, the attack depends solely on the capabilities of the adversary to collect the secret
bits, either from the side-channel method or through faulty coding from implementation.

However, in 2019, Abd Ghafar et al. [16] studied the impact of using near-square
RSA primes which yield factorization of the RSA modulus N. Note that, the objective
of the work in [16] was to factor an RSA modulus with near-square prime factors, i.e.,
N = pq = (am + ra)(bm + rb), such that p = am + ra and q = bm + rb. This shows the
importance of work exploring extended conditions of the near-square primes. Application
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of this research shows that an adversary can also conduct a partial key exposure attack—
similar to assumptions made by [21,22]—on the LSBs of primes that satisfy both given
conditions [23].

Useful Lemmas

Next, we present some previous findings from [16] that are used as in our result. In
Lemma 1, the aim is to show the integer and decimal forms of the equality of

√
am + r.

Lemma 1 ([16]). Suppose a, r are positive integers and m ≥ 2 is a power of 2. If
√

am + r =
a

m
2 + ε, then ε < r

2a
m
2

.

Proof. Refer to Lemma 3.1 of [16].

Subsequently, the lower bound and upper bound of N1/2− (ab)m/2 can be determined
as shown in Lemma 2.

Lemma 2 ([16]). Suppose a, b, ra, rb are positive integers and m ≥ 2 is an even integer satisfying
a < b < (2am + ra)

1
m . Let N = (am + ra)(bm + rb) where ra ≤ rb < Nγ. If ra < 2am/2 and

rb < 2bm/2, then
(rarb)

1/2 < N1/2 − (ab)m/2 <
rb
2
+ 2

m
2 −1ra + 1.

Proof. Refer to Lemma 3.2 of [16].

Then, the following Theorem 1 to find the factorization of the RSA modulus N = pq is
proposed upon determining the lower bound and upper bound of N1/2 − (ab)m/2.

Theorem 1 ([16]). Suppose a, b, ra, rb are positive integers and m ≥ 2 is an even integer with
a < b < (2am + ra)

1
m . Suppose N = (am + ra)(bm + rb) is a valid RSA modulus. Let ra < 2am/2

and rb < 2bm/2 where max{ra, rb} = Nγ. If Nγ is sufficiently small, then the factorization of N
can be performed in polynomial time.

Proof. Refer to Theorem 3.1 of [16].

3. Attacks on Near-Square RSA Primes

This section presents our newly proposed attacks to factor the RSA modulus N.
Following the direction of our previous investigations, we propose new results regarding
the near-square RSA primes which yield the factorization of N in polynomial time. In
the following subsections, we describe three new attacks to factor the RSA modulus N
with distinct structures of near-square prime factors. Specifically, the attacks are structured
as follows:

• Attack I: When the prime factors have the form N = pq = (am − ra)(bm − rb)
• Attack II: When the prime factors have the form N = pq = (am + ra)(bm − rb)
• Attack III: When the prime factors have the form N = pq = (am − ra)(bm + rb)

3.1. Attack I: N = pq = (am − ra)(bm − rb)

The objective of Attack I is to factor an RSA modulus with near-square prime factors,
i.e., N = pq = (am − ra)(bm − rb) where p = am − ra and q = bm − rb. First, we need to
show the equality of

√
am − r to its integer and decimal forms as follows.

Lemma 3. Suppose a, r are positive integers where m ≥ 2 is a power of 2. If
√

am − r = am/2 − ε,
then ε < r

2am/2 .
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Proof. Suppose
√

am − r is an integer where a is a positive integer. Then

√
am − r <

√
am +

r2

4am − r =
√(

am/2 − r
2

a−m/2
)2

= am/2 − r
2

a−m/2.

Since
√

am − r = am/2 − ε, then ε < r
2 a−m/2.

Based on the result obtained in Lemma 3, we proceed to determine the upper and
lower bounds of (ab)m/2 − N1/2 in the next Lemma 4.

Lemma 4. Suppose a, b, ra, rb are positive integers and m ≥ 2 is a power of 2 such that a <

b < (2am + ra)
1
m . Let N = (am − ra)(bm − rb) where max{ra, rb} = Nγ. If ra < 2am/2 and

rb < 2bm/2, then
(rarb)

1/2 < (ab)m/2 − N1/2 <
rb
2
+ 2

m
2 −1ra − 1.

Proof. We need to satisfy the following statement to prove the lower bound:

amrb + bmra > 2(ab)m/2(rarb)
1/2 =⇒ −(amrb + bmra) < −2(ab)m/2(rarb)

1/2.

Observe that (
am/2r1/2

b − bm/2r1/2
a
)2

= amrb + bmra − 2(ab)m/2(rarb)
1/2.

Since
(
am/2r1/2

b − bm/2r1/2
a
)2 will always be a positive integer, this implies

amrb + bmra > 2(ab)m/2(rarb)
1/2.

Then √
(am − ra)(bm − rb) =

√
(ab)m − amrb − bmra + rarb

=
√
(ab)m − (amrb + bmra) + rarb

<
√
(ab)m − 2(ab)m/2(rarb)1/2 + rarb

=
√
[(ab)m/2 − (rarb)1/2]2

= (ab)m/2 − (rarb)
1/2.

Thus,
√
(am − ra)(bm − rb)− (ab)m/2 = N1/2 − (ab)m/2 < −(rarb)

1/2 or can be written as
(ab)m/2 − N1/2 > (rarb)

1/2.
Now, the task is to prove the upper bound. Observe that

√
am − ra = am/2 − ε1 and√

bm − rb = bm/2 − ε2. Then, based on Lemma 3,

N1/2 =
√
(am − ra)(bm − rb)

=
√

am − ra
√

bm − rb

= (am/2 − ε1)(bm/2 − ε2)

= (ab)m/2 − am/2ε2 − bm/2ε1 + ε1ε2

> (ab)m/2 −
(

am/2 rb

2bm/2 + bm/2 ra

2am/2

)
+

ra

2am/2
rb

2bm/2 . (2)

If ra < 2am/2 and rb < 2bm/2, then

ra

2am/2 ·
rb

2bm/2 =
rarb

4(ab)m/2 <
4(ab)m/2

4(ab)m/2 = 1. (3)
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If a < b < (2am + ra)1/m, then (2) becomes

N1/2 − (ab)m/2 > −
(

am/2 rb

2bm/2 + bm/2 ra

2am/2

)
+ 1

= −
(( a

b
)m/2 rb

2
+
( b

a
)m/2 ra

2

)
+ 1

> −
(
(1)m/2 rb

2
+ (2)m/2 ra

2
)
+ 1

= − rb
2
− 2

m
2 −1ra + 1,

or can be written as (ab)m/2 − N1/2 < rb
2 + 2

m
2 −1ra − 1.

Thus, the bounds are written as (rarb)
1/2 < (ab)m/2 − N1/2 < rb

2 + 2
m
2 −1ra − 1.

Next, we propose the following theorem to show that the modulus N = pq can be
factored in polynomial time upon obtaining the upper and lower bounds of (ab)m/2− N1/2

in Lemma 4.

Theorem 2. Suppose a, b, ra, rb are positive integers and m ≥ 2 is a power of 2 with a < b <

(2am + ra)
1
m . Let N = (am − ra)(bm − rb) be a valid RSA modulus. Let ra < 2am/2 and

rb < 2bm/2 where max{ra, rb} = Nγ. If Nγ is sufficiently small, then N can be factored in
polynomial time.

Proof. Observe that from Lemma 4, we have

(rarb)
1/2 < (ab)m/2 − N1/2 <

rb
2
+ 2

m
2 −1ra − 1. (4)

Thus, (4) can also be rewritten as

N1/2 + (rarb)
1/2 < (ab)m/2 < N1/2 +

rb
2
+ 2

m
2 −1ra − 1. (5)

Assume that ra and rb are known since max{ra, rb} = Nγ is sufficiently small. Then, the
difference between the lower and upper bounds of (5) is given by

N1/2 +
rb
2
+ 2

m
2 −1ra − 1− N1/2 − (rarb)

1/2

< Nγ
(
2

m
2 −1 +

1
2
)
− [(min{ra, rb})2]1/2 − 1

= Nγ
(2m/2 + 1

2
)
−min{ra, rb} − 1; (6)

which shows the maximum number of integers to find (ab)m/2. If Nγ is sufficiently small,
then we can find (ab)m/2 in polynomial time.

Note that (ab)m can be found by computing
(
(ab)m/2)2. Then, we can observe that

rarb − N ≡ rarb − [(am − ra)(bm − rb)]

≡ rarb − (ab)m + amrb + bmra − rarb

≡ −(ab)m + amrb + bmra since − (ab)m (mod(ab)m) ≡ 0

≡ amrb + bmra (mod(ab)m).

From ra < 2am/2 and rb < 2bm/2, then

amrb + bmra < (ab)m.
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Here, the value of (amrb + bmra) can be computed without modular reduction. Considering
the values of amrb + bmra, ra, rb, and (ab)m are already known, p and q can be obtained by
finding the solutions of the following quadratic equation:

X2 − (amrb + bmra)X + ((ab)mrarb).

We have determined that X1 = amrb and X2 = bmra. Since ra and rb are known, we
can obtain

am =
X1

rb
and bm =

X2

ra
.

Thus, the modulus N can be factored by computing

N
bm − rb

= am − ra.

This terminates the proof.

The following Algorithm 1 demonstrates the factorization of N = pq via Theorem 2.
The algorithm is as follows:

Algorithm 1 Factoring N = pq = (am − ra)(bm − rb) via Theorem 2.

Require: N, ra, rb, m
Ensure: p, q

1: Set i = N1/2 + (rarb)
1/2.

2: while i < N1/2 + rb
2 + 2

m
2 −1ra − 1 do

3: Set σ =
(

i−
[√

N
])2

4: Calculate z ≡ rarb − N (mod σ)
5: Solve x2 − zx + σrarb = 0
6: if N

x1
rb
+ra

or N
x2
ra +rb

6= integer then

7: i ++
8: else Compute p = x1

rb
+ ra and q = x2

ra
+ rb.

9: end if
10: end while
11: Output p and q

3.1.1. The Complexity of Attack I

Observe that the most expensive operation in Algorithm 1 is the modular reduction
of calculating z ≡ rarb − N (mod σ). From [24], we know that the classical modular
reduction of modulo σ works at O(2 log2 σ). Since σ is the potential value of (ab)m/2, the
maximum integers to find it are less than Nγ

( 2m/2+1
2

)
, as shown in Equation (6). Based

on this computation, we have the complexity of Attack I presented in Algorithm 2 to be
O(2 log2 Nγ

( 2m/2+1
2

)
). As we assume Nγ to be sufficiently small, the attack can also feasibly

be computed.
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Algorithm 2 Factoring N = pq = (am + ra)(bm − rb) via Theorem 3.

Require: N, ra, rb, m
Ensure: p, q

1: Set i = N1/2 − (rarb)
1/2.

2: while i < N1/2 + rb−ra
2 + 1 do

3: if i < N1/2 then
4: Set σ =

([√
N
]
− i
)2

5: else Set σ =
(

i−
[√

N
])2

6: end if
7: Calculate z ≡ N + rarb (mod σ)
8: Solve x2 − zx + σrarb = 0
9: if N

x1
rb
+ra

or N
x2
ra +rb

6= integer then

10: i ++
11: else Compute p = x1

rb
+ ra and q = x2

ra
+ rb.

12: end if
13: end while
14: Output p and q

3.2. Attack II: N = pq = (am + ra)(bm − rb)

The objective of Attack II is to factor an RSA modulus with near-square prime factors,
i.e., N = pq = (am + ra)(bm − rb). First, we introduce Lemma 5 that will aid our attack
later. It will be used not only in the second attack, but also in the following Attack III.

Lemma 5. Suppose a, b, ra, rb are positive integers and m ≥ 2 is a power of 2 such that a < b <

(2am + ra)
1
m . If ra << 2am/2 and rb << 2bm/2, then

amrb + 2(ab)m/2(rarb)
1/2 > bmra.

Proof. If rb > ra then

amrb + 2(ab)m/2(rarb)
1/2

bmra
>

amra + 2amra

bmra

=
3amra

bmra
=

3am

bm

> 3
am

2am + ra
≈ 3

(
1
2

)
> 1. (7)

Since ra is negligible in (7) because ra << 2am/2. This shows that

amrb + 2(ab)m/2(rarb)
1/2 > bmra

when rb > ra. Now, if ra > rb, then

amrb + 2(ab)m/2(rarb)
1/2

bmra
>

amrb + 2amrb
bmra

=
3amrb
bmra

. (8)
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Since ra and rb are negligible in (8) because ra << 2am/2 and rb << 2bm/2, then

amrb + 2(ab)m/2(rarb)
1/2

bmra
>

3am

bm

> 3
am

2am + ra
≈ 3

(
1
2

)
> 1.

This shows that
amrb + 2(ab)m/2(rarb)

1/2 > bmra

when ra > rb. This completes the proof.

Based on the result obtained in Lemma 5, we continue to determine the upper bound
and lower bound of N1/2 − (ab)m/2 as shown in Lemma 6.

Lemma 6. Suppose a, b, ra, rb are positive integers and m ≥ 2 is a power of 2 such that a < b <

(2am + ra)
1
m . Let N = (am + ra)(bm − rb). If ra << 2am/2 and rb << 2bm/2, then

ra − rb
2
− 1 < N1/2 − (ab)m/2 < (rarb)

1/2.

Proof. By using the result in Lemma 5, we have

(
am/2r1/2

b + bm/2r1/2
a
)2

= amrb + bmra + 2(ab)m/2(rarb)
1/2

> bmra + bmra = 2bmra.

Since
(
am/2r1/2

b + bm/2r1/2
a
)2 is always a positive number, it follows that

amrb + bmra + 2(ab)m/2(rarb)
1/2 − 2bmra > 0

amrb − bmra > −2(ab)m/2(rarb)
1/2 (9)

or can be written as
−(amrb − bmra) < 2(ab)m/2(rarb)

1/2.

Then, √
(am + ra)(bm − rb) =

√
(ab)m − amrb + bmra − rarb

=
√
(ab)m − (amrb − bmra)− rarb

<
√
(ab)m + 2(ab)m/2(rarb)1/2 − rarb

=

√(
(ab)m/2 + (rarb)1/2

)2 − 2rarb

<

√(
(ab)m/2 + (rarb)1/2

)2

= (ab)m/2 + (rarb)
1/2.

Thus, the upper bound can be rewritten as√
(am + ra)(bm − rb)− (ab)m/2 = N1/2 − (ab)m/2 < (rarb)

1/2.
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Now, we want to prove the lower bound. Based on Lemmas 1 and 3, observe that√
am + ra = am/2 + ε1 and

√
bm − rb = bm/2 − ε2. Then,

N1/2 =
√
(am + ra)(bm − rb)

=
√

am + ra
√

bm − rb

= (am/2 + ε1)(bm/2 − ε2)

= (ab)m/2 − am/2ε2 + bm/2ε1 − ε1ε2

> (ab)m/2 − am/2 rb

2bm/2 + am/2 ra

2am/2 −
ra

2am/2
rb

2bm/2

= (ab)m/2 −
(

am/2 rb

2bm/2 − am/2 ra

2am/2

)
− ra

2am/2
rb

2bm/2 .

= (ab)m/2 −
(

am/2 rb

2bm/2 −
ra

2

)
− ra

2am/2
rb

2bm/2 . (10)

From (3), we know that
ra

2am/2 ·
rb

2bm/2 < 1.

If a < b < (2am + ra)1/m, then (10) will become

N1/2 − (ab)m/2 > −
(

am/2 rb

2bm/2 −
ra

2

)
− 1

= −
(( a

b
)m/2 rb

2
− ra

2

)
− 1

> −
(
(1)m/2 rb

2
− ra

2
)
− 1

=
ra − rb

2
− 1.

Therefore, the bounds are written as

ra − rb
2
− 1 < N1/2 − (ab)m/2 < (rarb)

1/2.

This completes the proof.

Now, we propose the following theorem to show that the modulus N = pq can be
factored in polynomial time upon obtaining the bounds of N1/2 − (ab)m/2 in Lemma 6.

Theorem 3. Suppose a, b, ra, rb are positive integers and m ≥ 2 is a power of 2 satisfying a <

b < (2am + ra)
1
m . Let N = (am + ra)(bm − rb) be a valid RSA modulus. Let ra << 2am/2 and

rb << 2bm/2 where min{ra, rb}1.5 = Nγ. If 3
2 Nγ is sufficiently small, then N can be factored in

polynomial time.

Proof. As observed from Lemma 6, we have

ra − rb
2
− 1 < N1/2 − (ab)m/2 < (rarb)

1/2. (11)

Thus,

N1/2 − (rarb)
1/2 < (ab)m/2 < N1/2 +

rb − ra

2
+ 1. (12)
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Assume that max{ra, rb} = Nγ. Then, the difference between the upper bound and lower
bound of (12) is given by

N1/2 +
rb − ra

2
+ 1− N1/2 + (rarb)

1/2

<
rb − ra

2
+ (rarb)

1/2

<
|rb − ra|

2
+ Nγ

<
Nγ

2
+ Nγ =

3
2

Nγ; (13)

which represents the maximum number of integers to find (ab)m/2.
Since Nγ is sufficiently small then ra and rb can be found in polynomial time. Subsequently,
as 3

2 Nγ is sufficiently small, then (ab)m/2 can be obtained in polynomial time.

Note that (ab)m can be found by computing
(
(ab)m/2)2. Then, we can see that

N + rarb ≡ (am + ra)(bm − rb) + rarb

≡ (ab)m − amrb + bmra − rarb + rarb

≡ (ab)m − amrb + bmra since (ab)m (mod(ab)m) ≡ 0

≡ (bmra − amrb) (mod(ab)m).

Notice that ra << 2am/2 and rb << 2bm/2, hence, it yields

bmra − amrb < (ab)m.

Accordingly, we can compute bmra − amrb without modular reduction. Considering the
values of ra, rb, (ab)m and bmra − amrb are already known, p and q can be obtained by
finding the solutions of the following quadratic equation:

X2 + (bmra − amrb)X− ((ab)mrarb).

We find that X1 = amrb and X2 = −bmra. Since ra and rb are known, we can obtain

am =
X1

rb
and bm = −X2

ra
.

Thus, the modulus N can be factored by calculating

N
bm − rb

= am + ra.

This completes the proof.

As shown in Algorithm 2 is the factorization of N = pq via Theorem 3.

3.2.1. The Complexity of Attack II

Observe that the most expensive operation in Algorithm 2 is the modular reduction of
calculating z ≡ N + rarb (mod σ). Using the similar reference from Attack I, we know that
the classical modular reduction of modulo σ works at O(2 log2 σ). Since σ is the potential
value of (ab)m/2, the maximum integer to find it is 3

2 Nγ, as shown in Equation (13). Based
on this computation, we have the complexity of Attack II presented in Algorithm 2 to
be O(2 log2

3
2 Nγ). As we assume Nγ to be sufficiently small, the attack can also feasibly

be computed.
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3.3. Attack III: N = pq = (am − ra)(bm + rb)

The aim of Attack III presented in this section is to factor an RSA modulus with
near-square prime factors, i.e., N = pq = (am − ra)(bm + rb).

According to the result obtained in Lemma 5, we proceed to determine the lower
and upper bounds of N1/2 − (ab)m/2 for the case when the prime factors are in the forms
p = am − ra and q = bm + rb, respectively.

Lemma 7. Suppose a, b, ra, rb are positive integers and m ≥ 2 is a power of 2 such that
a < b < (2am − ra)

1
m . Let N = (am − ra)(bm + rb). If ra << 2am/2 and rb << 2bm/2,

then
−(1 +

√
2)(rarb)

1/2 < N1/2 − (ab)m/2 <
rb − ra

2
.

Proof. We refer to (9) to prove the lower bound. It states that

amrb − bmra > −2(ab)m/2(rarb)
1/2.

This inequality is true regardless of the structure of N since it discusses results obtained
from Lemma 5 and

(
am/2r1/2

b + bm/2r1/2
a
)2 in general.

Then, observe √
(am − ra)(bm + rb) =

√
(ab)m + amrb − bmra − rarb

>
√
(ab)m − 2(ab)m/2(rarb)1/2 − rarb

=

√(
(ab)m/2 − (rarb)1/2

)2 − 2rarb

≥
√(

(ab)m/2 − (rarb)1/2
)2 −

√
2rarb

= (ab)m/2 − (rarb)
1/2 − (2rarb)

1/2

= (ab)m/2 − (1 +
√

2)(rarb)
1/2.

Thus, the lower bound is written as√
(am − ra)(bm + rb)− (ab)m/2 = N1/2 − (ab)m/2 > −(1 +

√
2)(rarb)

1/2.

Now, we want to prove the upper bound. Based on Lemmas 1 and 3, observe that√
am − ra = am/2 − ε1 and

√
bm + rb = bm/2 + ε2. Then,

N1/2 =
√
(am − ra)(bm + rb)

=
√

am − ra
√

bm + rb

= (am/2 − ε1)(bm/2 + ε2)

= (ab)m/2 + am/2ε2 − bm/2ε1 − ε1ε2

< (ab)m/2 + bm/2 rb

2bm/2 − bm/2 ra

2am/2 −
ra

2am/2
rb

2bm/2

= (ab)m/2 +
rb
2
− bm/2 ra

2am/2 −
ra

2am/2
rb

2bm/2 . (14)
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Then (14) will become

N1/2 − (ab)m/2 <
rb
2
− bm/2 ra

2am/2

=
rb
2
−
(

b
a

)m/2 ra

2

<
rb
2
− (1)m/2 ra

2

=
rb − ra

2
;

since a < b < (2am − ra)1/m. Therefore, the bounds are written as

−(1 +
√

2)(rarb)
1/2 < N1/2 − (ab)m/2 <

rb − ra

2
.

This terminates the proof.

Subsequently, we propose Theorem 4 to show that the modulus N = pq can be
factored in polynomial time upon obtaining the upper and lower bounds of N1/2− (ab)m/2

in Lemma 7.

Theorem 4. Suppose a, b, ra, rb are positive integers and m ≥ 2 is a power of 2 satisfying a <

b < (2am − ra)
1
m . Let N = (am − ra)(bm + rb) be a valid RSA modulus. Let ra << 2am/2

and rb << 2bm/2 where max{ra, rb} = Nγ. If (1 +
√

2)Nγ is sufficiently small, then N can be
factored in polynomial time.

Proof. As observed from Lemma 7, we have

− (1 +
√

2)(rarb)
1/2 < N1/2 − (ab)m/2 <

rb − ra

2
. (15)

Thus,

N1/2 +
ra − rb

2
< (ab)m/2 < N1/2 + (1 +

√
2)(rarb)

1/2. (16)

Assume that max{ra, rb} = Nγ. Then, the difference between the lower and upper bounds
of (16) is given by (

N1/2 + (1 +
√

2)(rarb)
1/2
)
−
(

N1/2 +
ra − rb

2

)
= (1 +

√
2)(rarb)

1/2 − ra − rb
2

< (1 +
√

2)Nγ; (17)

which represents the maximum number of integers required to find (ab)m/2.

Since Nγ is sufficiently small then ra and rb can be found in polynomial time. Subsequently,
as (1 +

√
2)Nγ is sufficiently small, then we can find (ab)m/2 in polynomial time.

As previously mentioned, (ab)m can be found by calculating
(
(ab)m/2)2. Then, we can see

that

N + rarb ≡ (am − ra)(bm + rb) + rarb

≡ (ab)m + amrb − bmra − rarb + rarb

≡ (ab)m + amrb − bmra since (ab)m (mod(ab)m) ≡ 0

≡ (amrb − bmra) (mod(ab)m).
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Observe that from ra << 2am/2 and rb << 2bm/2, then we can have

amrb − bmra < (ab)m.

Thus, the value of amrb − bmra can be computed without modular reduction. Considering
the values of ra, rb, (ab)m and bmra − amrb are already known, p and q can be obtained by
finding the solutions of the following quadratic equation:

X2 + (amrb − bmra)X− ((ab)mrarb).

We find that X1 = amrb and X2 = −bmra. Since ra and rb are known, we can obtain

am =
X1

rb
and bm = −X2

ra
.

Thus, the modulus N can be factored by calculating

N
bm + rb

= am − ra.

This completes the proof.

The Algorithm 3 to factor N = pq via Theorem 4 is as follows:

Algorithm 3 Factoring N = pq = (am + ra)(bm − rb) via Theorem 4.

Require: N, ra, rb, m
Ensure: p, q

1: Set i = N1/2 + ra−rb
2 .

2: while i < N1/2 + (1 +
√

2)(rarb)
1/2 do

3: if i < N1/2 then
4: Set σ =

([√
N
]
− i
)2

5: else Set σ =
(

i−
[√

N
])2

6: end if
7: Calculate z ≡ N + rarb (mod σ)
8: Solve x2 − zx + σrarb = 0
9: if N

x1
rb
+ra

or N
x2
ra +rb

6= integer then

10: i ++
11: else Compute p = x1

rb
+ ra and q = x2

ra
+ rb.

12: end if
13: end while
14: Output p and q

3.3.1. The Complexity of Attack III

Observe that the most expensive operation in Algorithm 3 is the modular reduction of
calculating z ≡ N + rarb (mod σ). Using the similar reference from Attack I, we know that
the classical modular reduction of modulo σ works at O(2 log2 σ). Since σ is the potential
value of (ab)m/2, the maximum integer to find it is (1 +

√
2)Nγ, as shown in Equation (17).

Based on this computation, we have the complexity of Attack III presented in Algorithm 3
to be O(2 log2(1 +

√
2)Nγ). As we assume Nγ to be sufficiently small, hence the attack is

also feasible to be computed.

4. Countermeasure of the Attacks

From Equations (4), (11), and (15), we observe that all attacks discussed previously
have a sufficiently small set of integers to find the actual value of (ab)m/2 . Since p and q
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discussed in the attacks are near-square primes, we can find the nearest squared integer of
both by computing ⌈

p1/2
⌋
=
⌈
(am ± ra)

1/2
⌋
= am/2

and ⌈
q1/2

⌋
=
⌈
(bm ± rb)

1/2
⌋
= bm/2

where ra and rb are fundamentally sufficiently small integers, and depend on the types of
attacks presented previously. This implies that the owner of the private keys can check the
distance between N and (ab)m/2 by computing

D =
∣∣∣N − (ab)m/2

∣∣∣ = ∣∣∣N − ⌈p1/2
⌋
·
⌈

q1/2
⌋∣∣∣.

If D is sufficiently small, we know that an adversary can find the values of (ab)m/2

in polynomial time, as shown in the previous sections. Thus, p and q must not be used as
the private keys and another set of RSA primes must be generated. This countermeasure
is efficient since it only requires minimal computations; hence, it can easily be adopted in
future implementations of RSA.

5. Comparative Analysis

This section provides a comparative analysis between attacks that focus on the struc-
ture of RSA primes in order to factor N. For this comparison, we choose five types of
attack, as discussed in Section 2: (a) specific-purpose factorization algorithm; (b) general-
purpose factorization algorithm; (c) small prime difference; (d) partial key exposure; and
(e) near-square primes, as shown in this research.

In most discussions of implementing RSA correctly (e.g., [25]), there are preventive
measures to avoid all of these attacks (except for (e)). Hence, we believe the analyses of these
attacks (except for (e)) have contributed to maintaining the security of RSA at its highest
level, which is our aim in this research. We compare the advantages and disadvantages of
these attacks with results presented in this research, as shown in Table 1.

Table 1. Comparison of type of attacks that focus on RSA primes to factor N.

Type of Attacks Advantage Disadvantage

Specific-purpose
factorization algorithm
[5]

Most algorithms can be
computed efficiently even

for large composite number

The prime factors must satisfy
specific conditions or structures

General-purpose
factorization algorithm
[9,11]

Able to factor a composite
number of any size

The complexity is sub-exponential
(inefficient) even in the best case

Small prime
difference
[18]

Able to factor N with full-sized
decryption exponent, d

RSA primes must satisfy
the condition |p− q| < N1/4

to conduct the attack
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Table 1. Cont.

Type of Attacks Advantage Disadvantage

Partial key
exposure
[21,22]

Flexible since it can be
combined with other exposed
bits of decryption exponent, d

Requires information of
certain bits in advance to

accomplish the attack

Near-square primes
[16], [Theorems 2–4]

Efficient even for large p and q
Requires both p and q

to satisfy conditions that
N = pq = (am ± ra)(bm ± rb)

and N = pq = (am ± ra)(bm ∓ rb)
for sufficiently small ra, rb

From the comparison in Table 1, we can see that our attack is efficient since its com-
plexity shown in Sections 3.1.1, 3.2.1 and 3.3.1 are all in polynomial time. However, the
structure of p and q must be in specific forms to conduct the attack although the number of
primes in these forms is large, as shown in Equation (1).

6. Conclusions and Future Work

We have successfully shown that the RSA modulus with near-square prime factors
would render the factorization of N in polynomial time. Specifically, we showed that such
primes can become vulnerable points in the RSA cryptosystem. This poses a danger to
the existing RSA implementation since there are potentially significant numbers of the
RSA modulus that unknowingly employ the structure used in digital applications today.
An RSA modulus with near-square prime factors, i.e., N = pq = (am ± ra)(bm ± rb) and
N = pq = (am ± ra)(bm ∓ rb) can be factored using the quadratic root method to solve
for the prime factors of N. In all of our attacks, it is necessary to examine the distance
between N and (ab)m/2 which is sufficiently small, i.e., Nγ, in order to find the factorization
of the RSA modulus N to be feasible in polynomial time. This poses a danger to the
digital applications using RSA today since many implementations ignore this value, and,
unknowingly, in some RSA key generation processes, the values are sufficiently small. To
avoid this catastrophe for many digital users, we have proposed a countermeasure that can
avoid the attacks which fits RSA in practice.

For future work, we suggest that further analysis should be carried out to find the
conditions that allow factorization of the RSA modulus when only one of the RSA primes
is a near-square prime. If such conditions exist, then we believe many current RSA keys are
weak since there is a high possibility to generate such an RSA modulus. This belief is based
on the current implementation of cryptographic libraries that is lenient on near-square
primes chosen as RSA primes. Thus, a mitigation plan is required to prevent the keys from
being exploited by real-world adversaries.
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