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Abstract: In this paper, a two-step iteration method was established which can be viewed as a
generalisation of the existing modulus-based methods for vertical linear complementarity problems.
The convergence analysis of the proposed method is presented, which can enlarge the convergence
domain of the parameter matrix compared to the recent results. Numerical examples show that
the proposed method is efficient with the two-step technique and confirm the improvement of the
theoretical results.
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1. Introduction

As a generalisation of a linear complementarity problem (LCP) [1], the vertical linear
complementarity problem (VLCP) has wide applications in many fields of science and
technology, such as control theory, nonlinear networks and economics; see [2–7] for details.
Let A1, . . . , A` ∈ Rn×n and q1, . . . , q` ∈ Rn, where ` is a positive integer. The VLCP` seeks
to find z, w1, . . . , w` ∈ Rn to satisfy

wi = Aiz + qi, i = 1, . . . , `, with min{z, w1, . . . , w`} = 0, (1)

where the minimum operation is taken component-wise, which implies that all the involved
vectors are non-negative and at least one entry of the ith (i = 1, 2, . . . , n) component is zero.
Note that the VLCP1 is exactly the LCP.

Recently, for solving the VLCP, a modulus-based formulation was introduced by
Mezzadi in [8], which can result in a class of modulus-based matrix splitting (MMS)
iteration methods, shown to be more efficient than smooth Newton method [9]. The kind of
modulus-based methods can be viewed as the generalisation of the one for solving LCP [10].
For other existing methods of solving the VLCP, one can refer to the recent studies [8,11,12]
and the references therein. The MMS methods have been successfully used to solve many
kinds of complementarity problems due to the high efficiency in solving linear modulus
equations in each iteration. There were also many accelerated techniques, such as double
splitting [13], precondition [14], two-step splitting [15–18], and relaxation [19] to improve
the convergence rate of MMS methods in recent works.

In this work, we focus on applying the two-step splitting technique to the equivalent
modulus equation of the VLCP. The advantage of the two-step splitting is to make full use
of the information of the system matrix in each iteration. Such a technique was successfully
used in the LCP [15,16], nonlinear complementarity problem [17], and horizontal LCP [18].
Numerical results showed that the computation time could be saved significantly by the
two-step technique comparing to the original iteration method. Hence, we aim to construct
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the two-step modulus-based matrix splitting (TMMS) iteration for the VLCP, which will
be done in Section 2. The convergence theorems of the proposed method will be given in
Section 3, and shown to improve the existing ones of the MMS method. By numerical tests
in the Section 4, the efficiency of the proposed method is presented. Concluding remarks
are given in Section 5.

Some necessary notations, definitions and known results are given first. Let
e = (1, 1, . . . , 1)T ∈ Rn. Let A = (aij) ∈ Rn×n and A = DA − CA = DA − LA − UA,
where DA,−CA,−LA and −UA denote the diagonal, nondiagonal, strictly lower triangle
and strictly upper triangle parts of A, respectively. By ρ(A), we denote the spectral radius
of A. For A = (aij) ∈ Rn×n, A > (≥)0 means that aij > (≥)0 for all i, j. For two matrices
A = (aij), B = (bij) ∈ Rm×n the order A ≥ (>)B means aij ≥ (>)bij for any i and j.
By |A|, we denote |A| = (|aij|) and the comparison matrix of A is 〈A〉 = (〈aij〉), where
〈aij〉 = |aij| if i = j and 〈aij〉 = −|aij| if i 6= j. A is called a Z-matrix if aij ≤ 0 for any i 6= j,
a nonsingular M-matrix if it is a nonsingular Z-matrix with A−1 ≥ 0, an H-matrix if 〈A〉 is
a nonsingular M-matrix, a strictly diagonal dominant (s.d.d.) matrix if |aii| > ∑

j 6=i
|aij| for

all 1 ≤ i ≤ n (e.g., see [20]), and an H+-matrix if A is an H-matrix with aii > 0 for every i
(e.g., see [21]). A = M− N is called an H-splitting if 〈M〉 − |N| is a nonsingular M-matrix
(e.g., see [22]). It is known that the VLCP has a unique solution if the row-representative
matrices {A1, A2, . . . , A`} satisfy rowW-property; see [7]. In the following discussion, we
always assume that both the system matrices of the VLCP and their row-representative
matrices are H+-matrices, which is a sufficient condition of the rowW-property, including
many typical situations where the solution is unique; see [7,8].

2. New Method

First, we introduce the MMS method for solving VLCP`.
Let Ai = Fi − Gi (i = 1, 2, . . . , `) be ` splittings of Ai, Ω be a diagonal matrix with

positive diagonal entries and γ be a positive constant. Then, with

z = 1
γ (|x1|+ x1),

wj =
j

∑
i=1

Ω
γ (|xi| − xi) +

Ω
γ (|xj+1|+ xj+1), j = 1, 2, . . . , `− 1,

w` =
`
∑

i=1

Ω
γ (|xi| − xi),

(2)

VLCP` can be equivalently transformed into a system of fixed-point equations

(2`−1Ω +
`−1
∑

i=1
2`−i−1Fi + F`)x1 = (

`−1
∑

i=1
2`−i−1Gi + G`)x1 + (2`−1Ω−

`−1
∑

i=1
2`−i−1 Ai

−A`)|x1|+ Ω
`
∑

i=2
2`−i+1|xi| − γ(

`−1
∑

i=1
2`−i−1qi + q`),

xj = 1
2 Ω−1[(Aj−1 − Aj)(|x1|+ x1) + γ(|xj+1|+ xj+1)
+γqj−1 − γqj

]
, j = 2, 3, . . . , `− 1,

x` = 1
2 Ω−1[(A`−1 − A`)(|x1|+ x1) + γq`−1 − γq`

]
,

(3)

see [8] for more details. Based on (2) and (3), the MMS method is presented as follows:

Method 1 ([8]). MMS method for VLCP`

Let Ai = Fi − Gi(i = 1, 2, . . . , `) be ` splittings of Ai ∈ Rn×n, Ω ∈ Rn×n be a diagonal matrix
with positive diagonal entries and γ be a positive constant. Given x(0)1 ∈ Rn, for k = 0, 1, 2, . . .,

compute x(k)2 , . . . , x(k)` by
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x(k)` = 1

2 Ω−1[(A`−1 − A`)(|x
(k)
1 |+ x(k)1 ) + γq`−1 − γq`

]
,

x(k)j = 1
2 Ω−1[(Aj−1 − Aj)(|x

(k)
1 |+ x(k)1 ) + γ(|x(k)j+1|+ x(k)j+1) + γqj−1 − γqj

]
,

j = `− 1, `− 2, . . . , 2.

(4)

and compute x(k+1)
1 ∈ Rn by

(2`−1Ω +
`−1

∑
i=1

2`−i−1Fi + F`)x(k+1)
1

= (
`−1

∑
i=1

2`−i−1Gi + G`)x(k)1 + (2`−1Ω−
`−1

∑
i=1

2`−i−1 Ai − A`)|x
(k)
1 |

+Ω
`

∑
i=2

2`−i+1|x(k)i | − γ(
`−1

∑
i=1

2`−i−1qi + q`).

Then, set

z(k+1) = 1
γ (|x

(k+1)
1 |+ x(k+1)

1 ),

w(k+1)
j =

j
∑

i=1

Ω
γ (|x

(k+1)
i | − x(k+1)

i ) + Ω
γ (|x

(k+1)
j+1 |+ x(k+1)

j+1 ), j = 1, 2, . . . , `− 1,

w(k+1)
` =

`
∑

i=1

Ω
γ (|x

(k+1)
i | − x(k+1)

i ),

(5)

until the iteration is convergent.

In order to make full use of the information in the system matrices, by the two-step
matrix splitting technique, we construct the two-step modulus-based matrix splitting
(TMMS) iteration method as follows:

Method 2. TMMS method for VLCP`

Let Ω ∈ Rn×n be a diagonal matrix with positive diagonal entries, γ be a positive constant, and
Ai = F(t)

i − G(t)
i (t = 1, 2) be two splittings of Ai (i = 1, 2, . . . , `). Given an initial vector

x(0)1 ∈ Rn, for k = 0, 1, 2, . . ., compute x(k+1)
1 ∈ Rn by

(2`−1Ω +
`−1
∑

i=1
2`−i−1F(1)

i + F(1)
` )x(k+

1
2 )

1 = (
`−1
∑

i=1
2`−i−1G(1)

i + G(1)
` )x(k)1 + (2`−1Ω

−
`−1
∑

i=1
2`−i−1 Ai − A`)|x

(k)
1 |+ Ω

`
∑

i=2
2`−i+1|x(k)i |

−γ(
`−1
∑

i=1
2`−i−1qi + q`),

(2`−1Ω +
`−1
∑

i=1
2`−i−1F(2)

i + F(2)
` )x(k+1)

1 = (
`−1
∑

i=1
2`−i−1G(2)

i + G(2)
` )x(k+

1
2 )

1 + (2`−1Ω

−
`−1
∑

i=1
2`−i−1 Ai − A`)|x

(k+ 1
2 )

1 |+ Ω
`
∑

i=2
2`−i+1|x(k+

1
2 )

i |

−γ(
`−1
∑

i=1
2`−i−1qi + q`),

(6)

where x(k)2 , . . . , x(k)` are computed by (4). Then, set the same sequences as (5) until the iteration is
convergent.
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Clearly, if we take F(1)
i − G(1)

i = F(2)
i − G(2)

i , Method 2 reduces to Method 1. For the
simplest case, when ` = 2, by (4), the main iteration (6) reduces to

(2Ω + F(1)
1 + F(1)

2 )x(k+
1
2 )

1 = (G(1)
1 + G(1)

2 )x(k)1 + (2Ω− A1 − A2)|x
(k)
1 |

+|(A1 − A2)(|x
(k)
1 |+ x(k)1 ) + γq1 − γq2|

−γ(q1 + q2),

(2Ω + F(2)
1 + F(2)

2 )x(k+1)
1 = (G(2)

1 + G(2)
2 )x(k+

1
2 )

1 + (2Ω− A1 − A2)|x
(k+ 1

2 )
1 |

+|(A1 − A2)(|x
(k+ 1

2 )
1 |+ x(k+

1
2 )

1 ) + γq1 − γq2|
−γ(q1 + q2),

(7)

Moreover, by specifically choosing the matrix splittings of the system matrices, one
can obtain some TMMS relaxation methods. For i = 1, 2, . . . , `, taking{

F(1)
i = 1

α (D(1)
Ai
− βL(1)

Ai
), G(1)

i = F(1)
i − Ai,

F(2)
i = 1

α (D(2)
Ai
− βU(2)

Ai
), G(2)

i = F(2)
i − Ai,

(8)

we can obtain the two-step modulus-based accelerated overrelaxation (TMAOR) iteration
method. Taking (α, β) = (α, α), (α, β) = (1, 1) and (α, β) = (1, 0), the TMAOR reduces to
the two-step modulus-based successive overrelaxation (TMSOR), Gauss–Seidel (TMMGS)
and Jacobi (TMJ) iteration methods, respectively.

3. Convergence Analysis

Lemma 3 ([20]). Assume that A is a Z-matrix. Then, the following three statements are equivalent:

(1) A is a nonsingular M-matrix;
(2) There exists a diagonal matrix D with positive diagonal entries, such that AD is an s.d.d.

matrix with positive diagonal entries.
(3) If A = F− G satisfy F−1 ≥ 0 and G ≥ 0, then ρ(F−1G) < 1.

Lemma 4 ([23]). Let A be an H-matrix. Then |A−1| ≤ 〈A〉−1.

Lemma 5 ([24]). Let B ∈ Rn×n be an s.d.d. matrix. Then, ∀C ∈ Rn×n,

||B−1C||∞ ≤ max
1≤i≤n

(|C|e)i
(〈B〉e)i

.

We first give the convergence result for ` = 2.

Theorem 6. Let A1, A2 and all their row-representative matrices be H+-matrices. Let Ai =

F(t)
i − G(t)

i (t = 1, 2) be two splittings of Ai (i = 1, 2). Assume that:

(I) For t = 1, 2, A1 = F(t)
1 −G(t)

1 is a splitting of A1 satisfying D
F(t)

1
> 0, and A2 = F(t)

2 −G(t)
2

is an H-splitting of A2;
(II) For t = 1, 2, 〈F(t)

1 〉 ≥ 〈F
(t)
2 〉 and |G(t)

2 | ≥ |G
(t)
1 |;

(III) There exists a positive diagonal matrix T with positive diagonal entries such that both

(〈F(1)
2 〉 − |G

(1)
2 |)T and (〈F(2)

2 〉 − |G
(2)
2 |)T are s.d.d. matrices;

(IV)

ΩTe > max
t=1,2

{[1
2
(D

F(t)
1

+ D
F(t)

2
)− (〈F(t)

2 〉 − |G
(t)
2 |)

]
Te
}

. (9)

Then, Method 2 converges to the solution of the VLCP2.
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Proof. For t = 1, 2, by Assumptions (II) and (III), we have

〈2Ω + F(t)
1 + F(t)

2 〉Te

> 〈F(t)
1 + F(t)

2 〉Te

≥ (〈F(t)
1 〉+ 〈F

(t)
2 〉)Te

≥ 2〈F(t)
2 〉Te

≥ (2〈F(t)
2 〉 − |G

(t)
2 |)Te

> 0.

Therefore, 〈2Ω + F(t)
1 + F(t)

2 〉T is an s.d.d matrix, which implies that 2Ω + F(t)
1 + F(t)

2 is an
H-matrix. Then, by Lemma 4, we have the error at iteration k + 1:

Let x∗1 be the solution of (3). By the first equation of (7), we can obtain the error at the
iteration (k + 1):

(2Ω + F(1)
1 + F(1)

2 )(x(k+
1
2 )

1 − x∗1) = (G(1)
1 + G(1)

2 )(x(k)1 − x∗1) + (2Ω− A1 − A2)

×(|x(k)1 | − |x∗1 |) + |(A1 − A2)(|x
(k)
1 |+ x(k)1 )

+γq1 − γq2| − |(A1 − A2)(|x∗1 |+ x∗1)
+γq1 − γq2|,

(2Ω + F(2)
1 + F(2)

2 )(x(k+1)
1 − x∗1) = (G(2)

1 + G(2)
2 )(x(k+

1
2 )

1 − x∗1) + (2Ω− A1 − A2)

×(|x(k+
1
2 )

1 | − |x∗1 |) + |(A1 − A2)(|x
(k+ 1

2 )
1 |+ x(k+

1
2 )

1 )
+γq1 − γq2| − |(A1 − A2)(|x∗1 |+ x∗1)
+γq1 − γq2|,

Then, by Lemma 4, we obtain

|x(k+1)
1 − x∗1 | ≤ P (2)P (1)|x(k)1 − x∗1 |, (10)

where 
P (t) = F (t)−1G(t),
F (t) = 〈2Ω + F(t)

1 + F(t)
2 〉,

G(t) = |G(t)
1 + G(t)

2 |+ |2Ω− A1 − A2|+ 2|A1 − A2|.

By Lemma 5, we have

||T−1P (t)T||∞ = ||T−1F (t)−1
G(t)T||∞ = ||(F (t)T)−1(G(t)T)||∞ ≤ max

1≤i≤n

(G(t)Te)i

(F (t)Te)i
. (11)

Still considering assumption (II), we can obtain
|G(t)

1 + G(t)
2 |+ |G

(t)
1 − G(t)

2 | = 2|G(t)
2 |,

|C
F(t)

1
+ C

F(t)
2
|+ |C

F(t)
1
− C

F(t)
2
| = 2|C

F(t)
2
|,

|D
F(t)

1
− D

F(t)
2
| = D

F(t)
1
− D

F(t)
2

.
(12)
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Then, we have

F (t)Te− G(t)Te

=
(
〈2Ω + F(t)

1 + F(t)
2 〉 − |G

(t)
1 + G(t)

2 | − |2Ω− A1 − A2| − 2|A1 − A2|
)
Te

=
[
2Ω + D

F(t)
1

+ D
F(t)

2
− |C

F(t)
1

+ C
F(t)

2
| − |G(t)

1 + G(t)
2 |

−|2Ω− D
F(t)

1
− D

F(t)
2
− C

F(t)
1
− C

F(t)
2

+ G(t)
1 + G(t)

2 |

−2|D
F(t)

1
+ C

F(t)
1
− G(t)

1 − (D
F(t)

2
+ C

F(t)
2
− G(t)

2 )|
]
Te

≥
(
2Ω + D

F(t)
1

+ D
F(t)

2
− |C

F(t)
1

+ C
F(t)

2
| − |G(t)

1 + G(t)
2 |

−|2Ω− D
F(t)

1
− D

F(t)
2
| − |C

F(t)
1

+ C
F(t)

2
|+ 2|G(t)

1 + G(t)
2 |

−2|D
F(t)

1
− D

F(t)
2
| − 2|C

F(t)
1
− C

F(t)
2
| − 2|G(t)

1 − G(t)
2 |
)
Te

=
(
2Ω + 3D

F(t)
2
− D

F(t)
1
− |2Ω− D

F(t)
1
− D

F(t)
2
|

−2|G(t)
1 + G(t)

2 | − 2|G(t)
1 − G(t)

2 | − 2|C
F(t)

1
+ C

F(t)
2
| − 2|C

F(t)
1
− C

F(t)
2
|
)
Te

=
(
2Ω + 3D

F(t)
2
− D

F(t)
1
− |2Ω− D

F(t)
1
− D

F(t)
2
| − 4|G(t)

2 | − 4|C
F(t)

2
|
)
Te, (13)

where the last two equalities hold by (12).
When

Ω ≥ 1
2
(D

F(t)
1

+ D
F(t)

2
),

by (13), we have

F (t)Te− G(t)Te

≥
[
2Ω + 3D

F(t)
2
− D

F(t)
1
− (2Ω− D

F(t)
1
− D

F(t)
2
)− 4|G(t)

2 | − 4|C
F(t)

2
|
]
Te

=
(
4D

F(t)
2
− 4|G(t)

2 | − 4|C
F(t)

2
|
)
Te

= 4(〈F(t)
2 〉 − |G

(t)
2 |)Te > 0. (14)

When[1
2
(D

F(t)
1

+ D
F(t)

2
)− (〈F(t)

2 〉 − |G
(t)
2 |)

]
Te < ΩTe <

1
2
(D

F(t)
1

+ D
F(t)

2
)Te,

by (13), we have

F (t)Te− G(t)Te

≥
[
2Ω + 3D

F(t)
2
− D

F(t)
1
− (D

F(t)
1

+ D
F(t)

2
− 2Ω)− 4|G(t)

2 | − 4|C
F(t)

2
|
]
Te

=
(
4Ω + 2D

F(t)
2
− 2D

F(t)
1
− 4|G(t)

2 | − 4|C
F(t)

2 |

)
Te

= 4
[
Ω− 1

2
(D

F(t)
1

+ D
F(t)

2
) + 〈F(t)

2 〉 − |G
(t)
2 |
]
Te > 0. (15)

Combining (14) and (15), we have F (t)Te− G(t)Te > 0 provided that the assumption

(IV) holds. Then, by (11), we have ||T−1F (t)−1G(t)T||∞ < 1. Then, we have the next
inequality:

||ρ(P (2)P (1))|| ≤ ||T−1P (2)P (1)T||∞ ≤ ||T−1P (2)T||∞||T−1P (1)T||∞ < 1,
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which implies that lim
k→+∞

x(k)1 = x∗1 by (10), ending the proof.

Remark 7. By the proof of Theorem 6, (II) is relevant in the derivation of the first chain of
inequalities. A simple example can be given to make readers understand it easily. Let

A1 =


4 −1
−1 4

4 −1
−1 4

 and A2 =


4 −1 −1
−1 4 −1
−1 4 −1

−1 −1 4

.

Consider the two-step SOR splitting, where

F(1)
1 =


4
α
−1 4

α
4
α
−1 4

α

, G(1)
1 =


4
α − 4 1

4
α − 4

4
α − 4 1

4
α − 4

,

F(2)
1 =


4
α −1

4
α

4
α −1

4
α

, G(2)
1 =


4
α − 4

1 4
α − 4

4
α − 4

1 4
α − 4

,

F(1)
2 =


4
α
−1 4

α
−1 4

α
−1 −1 4

α

, G(1)
2 =


4
α − 4 1 1

4
α − 4 1

4
α − 4 1

4
α − 4

,

F(2)
2 =


4
α −1 −1

4
α −1

4
α −1

4
α

, G(2)
2 =


4
α − 4

1 4
α − 4

1 4
α − 4

1 1 4
α − 4

.

Clearly, for the matrices presented above, (II) is satisfied. Moreover, by simple computation, one can
easily determine that 〈A1〉 ≥ 〈A2〉 with two-step AOR splittings is a sufficient condition of (II).

Remark 8. If we take F(1)
i − G(1)

i = F(2)
i − G(2)

i , all the assumptions in Theorem 6 can reduce
to those in Theorem 4.1 of [8]. Clearly, (IV) is weaker than the corresponding one in Theorem 4.1
of [8], where Ω was assumed to satisfy Ω ≥ 1

2 (DF1 + DF2). On the other hand, 2Ω + F(t)
1 + F(t)

2
is proved to be an H-matrix in Theorem 6, not set to be an assumption as that in [8].

Remark 9. In view of the assumptions in Theorem 6, Assumption (III) seems to be a special one.
In fact, for some special cases, the matrix T given in the Assumption (III) can be computed. Taking
the TMAOR method where the matrix splittings are given by (8), for example, we have

〈F(1)
2 〉 − |G

(1)
2 | = 〈F

(2)
2 〉 − |G

(2)
2 | =

1− |1− α|
α

DA2 − |CA2 |.

Since A2 is an H+-matrix, by Lemma 3, we have ρ(D−1
A2
|CA2 |) < 1. By simple computation, if

0 < β ≤ α < 2
1+ρ(D−1

A2
|CA2 |)

, we can obtain 1−|1−α|
α DA2 − |CA2 | is an M-matrix. Then, letting

T = diag
[(1− |1− α|

α
DA2 − |CA2 |

)−1e
]
, (16)

Assumption (III) of Theorem 6 can be satisfied.
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By the similar proof technique, we can obtain the convergence theorem for
VLCP`(` ≥ 3). We then first show the idea of the proof when ` = 3.

First, by (6) and the first equation of (3), we can determine the error at the iteration
(k + 1):

|x(k+
1
2 )

1 − x∗1 | ≤ |4Ω + 2F(1)
1 + F(1)

2 + F(1)
3 |−1(|2G(1)

1 + G(1)
2 + G(1)

3 |
+|4Ω− 2A1 − A2 − A3|+ 2|2A1 − A2 − A3|+ 4|A2 − A3|

)
×|x(k)1 − x∗1 |,

|x(k+1)
1 − x∗1 | ≤ |4Ω + 2F(2)

1 + F(2)
2 + F(2)

3 |−1(|2G(2)
1 + G(2)

2 + G(2)
3 |

+|4Ω− 2A1 − A2 − A3|+ 2|2A1 − A2 − A3|+ 4|A2 − A3|
)

×|x(k+
1
2 )

1 − x∗1 |,

If there exists a diagonal matrix T with positive diagonal entries such that
(〈F(t)

3 〉 − |G
(t)
3 |)T, t = 1, 2, are s.d.d. matrices, we obtain

|x(k+1)
1 − x∗1 | ≤ P (2)P (1)|x(k)1 − x∗1 |,

where 
P (t) = F (t)−1G(t),
F (t) = 〈4Ω + 2F(t)

1 + F(t)
2 + F(t)

3 〉,
G(t) = |2G(t)

1 + G(t)
2 + G(t)

3 |+ |4Ω− 2A1 − A2 − A3|+ 4|A2 − A3|.

If 2〈F(t)
1 〉 ≥ 〈F

(t)
2 + F(t)

3 〉, 〈F
(t)
2 〉 ≥ 〈F

(t)
3 〉, 2|G(t)

1 | ≤ |G
(t)
2 + G(t)

3 |, and |G(t)
2 | ≤ |G

(t)
3 | hold,

we can also have that 〈4Ω + 2F(t)
1 + F(t)

2 + F(t)
3 〉T is an s.d.d. matrix and

||T−1F (t)−1
G(t)T||∞ ≤ max

1≤i≤n

(G(t)Te)i

(F (t)Te)i
.

Similarly to (13), we can obtain

F (t)Te− G(t)Te

≥
(
4Ω− 2D

F(t)
1
− D

F(t)
2

+ 7D
F(t)

3
− |4Ω− 2D

F(t)
1
− D

F(t)
2
− D

F(t)
3
| − 8|G(t)

3 | − 8|C
F(t)

3
|
)
Te.

Then, we can also distinguish two cases with respect to Ω, where

Ω ≥ 1
4
(2D

F(t)
1

+ D
F(t)

2
+ D

F(t)
3
)

and[1
4
(2D

F(t)
1

+ D
F(t)

2
+ D

F(t)
3
)− (〈F(t)

3 〉 − |G
(t)
3 |)

]
Te < ΩTe <

[1
4
(2D

F(t)
1

+ D
F(t)

2
+ D

F(t)
3
)
]
Te,

and obtain
F (t)Te− G(t)Te ≥ 8(〈F(t)

3 〉 − |G
(t)
3 |)Te > 0

and

F (t)Te− G(t)Te = 8
[
Ω− 1

4
(2D

F(t)
1

+ D
F(t)

2
+ D

F(t)
3
) + 〈F(t)

3 〉 − |G
(t)
3 |
]
Te > 0,

respectively.
In summary, we have the next result.
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Theorem 10. Let A1, A2, A3 and all their row-representative matrices be H+-matrices. Let Ai =

F(t)
i − G(t)

i (t = 1, 2) be two splittings of Ai (i = 1, 2, 3). Assume that:

(I) D
F(t)

1
> 0, D

F(t)
2

> 0, and A3 = F(t)
3 − G(t)

3 are an H-splitting of A3;

(II) 2〈F(t)
1 〉 ≥ 〈F

(t)
2 + F(t)

3 〉, 〈F
(t)
2 〉 ≥ 〈F

(t)
3 〉, 2|G(t)

1 | ≤ |G
(t)
2 + G(t)

3 |, and |G(t)
2 | ≤ |G

(t)
3 |;

(III) There exists a diagonal matrix T with positive diagonal entries such that (〈F(t)
3 〉 − |G

(t)
3 |)T, t =

1, 2, are s.d.d. matrices;
(IV) ΩTe ≥

[ 1
4 (2D

F(t)
1

+ D
F(t)

2
+ D

F(t)
3
)− (〈F(t)

3 〉 − |G
(t)
3 |)

]
Te.

Then, Method 2 converges to the solution of the VLCP3.

Furthermore, by deduction, for a general `, we can also show the main steps of
the proof.

In fact, the errors at the iteration (k + 1) are

|x(k+
1
2 )

1 − x∗1 | ≤ |2`−1Ω +
`−1
∑

i=1
2`−i−1F(1)

i + F(1)
` |
−1
(
|
`−1
∑

i=1
2`−i−1G(1)

i + G(1)
` |

+|2`−1Ω−
`−1
∑

i=1
2`−i−1 Ai − A`|

+2
[
|A`−1 − A`|+

`−2
∑

j=2
2`−j−1|2j−1 A`−j −

`−1
∑

s=`−j+1
2`−s−1 As − A`|

+|2`−2 A1 −
`−1
∑

s=2
2`−s−1 As − A`|

])
|x(k)1 − x∗1 |,

|x(k+1)
1 − x∗1 | ≤ |2`−1Ω +

`−1
∑

i=1
2`−i−1F(2)

i + F(2)
` |
−1
(
|
`−1
∑

i=1
2`−i−1G(2)

i + G(2)
` |

+|2`−1Ω−
`−1
∑

i=1
2`−i−1 Ai − A`|

+2
[
|A`−1 − A`|+

`−2
∑

j=2
2`−j−1|2j−1 A`−j −

`−1
∑

s=`−j+1
2`−s−1 As − A`|

+|2`−2 A1 −
`−1
∑

s=2
2`−s−1 As − A`|

])
|x(k+

1
2 )

1 − x∗1 |.

If there exists a diagonal matrix T with positive diagonal entries such that (〈F(t)
` 〉 −

|G(t)
` |)T, t = 1, 2, are s.d.d. matrices, we obtain

|x(k+1)
1 − x∗1 | ≤ P (2)P (1)|x(k)1 − x∗1 |,

where

P (t) = F (t)−1G(t),

F (t) = 〈2`−1Ω +
`−1
∑

i=1
2`−i−1F(t)

i + F(t)
` 〉,

G(t) = |
`−1
∑

i=1
2`−i−1G(1)

i + G(1)
` |+ |2

`−1Ω−
`−1
∑

i=1
2`−i−1 Ai − A`|

+2
[
|A`−1 − A`|+

`−2
∑

j=2
2`−j−1|2j−1 A`−j −

`−1
∑

s=`−j+1
2`−s−1 As − A`|

+|2`−2 A1 −
`−1
∑

s=2
2`−s−1 As − A`|

]
.

If  2`−j〈F(t)
j−1〉 ≥ 〈

`−1
∑
i=j

2`−i−1F(t)
i + F(t)

` 〉, (j = 2, 3, . . . , `− 1)

〈F(t)
`−1〉 ≥ 〈F

(t)
` 〉,

(17)
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and  2`−j|G(t)
j | ≤ |

`−1
∑
i=j

2`−i−1G(t)
i + G(t)

` |, (j = 2, 3, . . . , `− 1)

|G(t)
`−1| ≤ |G

(t)
` |;

(18)

hold, we can also have F (t)T as an s.d.d. matrix and

||T−1F (t)−1
G(t)T||∞ ≤ max

1≤i≤n

(G(t)Te)i

(F (t)Te)i
.

Similarly to (13), we can obtain

F (t)Te− G(t)Te

≥
[
2`−1Ω + (2` − 1)D

F(t)
`

−
`−1

∑
i=1

2`−i−1D
F(t)

i
− 2`|C

F(t)
`

| − 2`|G(t)
` |

−|2`−1Ω−
`−1

∑
i=1

2`−i−1D
F(t)

i
− D

F(t)
`

|
]

Te.

Then, we can also distinguish two cases with respect to Ω, where

Ω ≥ 21−`(
`−1

∑
i=1

2`−i−1D
F(t)

i
+ D

F(t)
`

)

and

[
21−`(

`−1

∑
i=1

2`−i−1D
F(t)

i
+ D

F(t)
`

)− (〈F(t)
` 〉 − |G

(t)
` |)

]
Te

< ΩTe < 21−`(
`−1

∑
i=1

2`−i−1D
F(t)

i
+ D

F(t)
`

)Te,

and obtain
F (t)Te− G(t)Te ≥ 2`(〈F(t)

` 〉 − |G
(t)
` |)Te > 0

and

F (t)Te− G(t)Te ≥
[
2`Ω− 2(

`−1

∑
i=1

2`−i−1D
F(t)

i
+ D

F(t)
`

) + 2`(〈F(t)
` 〉 − |G

(t)
` |)

]
Te > 0,

respectively. Finally, we have the next theorem.

Theorem 11. Let A1, A2, . . . , A` and all their row-representative matrices be H+-matrices. Let
Ai = F(t)

i − G(t)
i (t = 1, 2) be two splittings of Ai (i = 1, 2, . . . , `). Assume that:

(I) D
F(t)

i
> 0, i = 1, 2, . . . , `− 1, and A` = F(t)

` − G(t)
` are an H-splitting of A`;

(II) (17) and (18) are satisfied;

(III) There exists a diagonal matrix T with positive diagonal entries such that (〈F(t)
` 〉− |G

(t)
` |)T, t =

1, 2, are s.d.d. matrices;

(IV) ΩTe ≥
[
21−`(

`−1
∑

i=1
2`−i−1D

F(t)
i

+ D
F(t)
`

)− (〈F(t)
` 〉 − |G

(t)
` |)

]
Te.

Then, Method 2 converges to the solution of the VLCP`.

Same comments as in Remarks 8 and 9 can be given for Theorems 10 and 11.
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4. Numerical Examples

In this section, numerical examples are given to show the efficiency of the proposed
method.

Consider the two following examples similar to [8], where Examples 12 and 13 are of
the symmetry and asymmetry cases, respectively.

Example 12. Let n = m2. Consider the VLCP whose system matrices are given by

A1 =


S

S
. . .

S

+ In ∈ Rn×n, A2 =


S −Im

−Im S
. . .

. . . . . . −Im
−Im S

 ∈ Rn×n,

where

S =


4 −1

−1 4
. . .

. . . . . . −1
−1 4

 ∈ Rm×m.

Example 13. Let n = m2. Consider the VLCP whose system matrices are given by

A1 =


S

S
. . .

S

+ In ∈ Rn×n, A2 =


S −0.5Im

−1.5Im S
. . .

. . . . . . −0.5Im
−1.5Im S

 ∈ Rn×n,

where

S =


4 −0.5

−1.5 4
. . .

. . . . . . −0.5
−1.5 4

 ∈ Rm×m.

The numerical tests are performed on a computer, which has Intel(R) Core(TM) i7-9700
CPU 3.00 GHz with 8 GB memory. Denote the total computation time (in seconds) and the
iteration steps by T and IT, respectively. Let γ = 1, x(0)1 = e and the tolerance be 10−6. By
“SAVE”, we denote the per centum of total computation time saved by the TMSOR method
from the MSOR method, where

SAVE =
TMSOR − TTMSOR

TMSOR
× 100%.

The numerical results are presented in Tables 1–3, where the notations “MSORα”
and “TMSORα” denote the MSOR and TMSOR methods with relaxation parameter α,
respectively, and the parameter matrix Ω is chosen as

Ω =
τ

2
(DF1 + DF2),

τ = 0.8, 0.9, 1.0.
One can see that all methods are convergent for different dimensions. Since there

are two linear systems solved in each iteration of the TMMS method, most of the number
of iteration steps of the MMS method is nearly twice or a little less than twice as long as
that of the TMMS method in each comparison. Meanwhile, the TMMS method converges



Symmetry 2022, 14, 1882 12 of 14

faster than the MMS method except for a few cases. Specially, we can see that the CPU
time is saved larger than 20% for most cases. Therefore, the two-step technique works for
the improvement of the MMS method. On the other hand, one can see that the relaxation
parameter may affect the computation efficiencies of the MMS and TMMS.

Although there are some cases of Example 13 where the values of “SAVE” are small
or negative, the values of “SAVE” can be larger than 15% for the “optimal” relaxation
parameters of both two examples, set to bold. Nevertheless, by Tables 2 and 3, both the
MMS and TMMS methods are convergent for all cases when τ < 1, which confirms the
improvement of the proposed convergence theorem as Remark 8 commented. However,
the theoretical analysis of the relaxation parameter is still difficult even for the LCP. It may
be an interesting work in the future.

Table 1. Numerical results when τ = 1 (the “optimal” computation times of the MSOR and TMSOR
are set to bold for each dimension and each example).

Example Method m = 128 m = 256 m = 512
IT T SAV E IT T SAV E IT T SAV E

Example 12 MSOR0.9 48 0.1999 49 0.9145 51 5.1585
TMSOR0.9 24 0.1335 33% 25 0.6761 26% 26 4.0739 21%
MSOR1.0 41 0.1818 42 0.7773 44 4.3167
TMSOR1.0 21 0.1149 36% 21 0.5360 31% 22 3.0526 29%
MSOR1.1 35 0.1569 36 0.6566 38 3.9291
TMSOR1.1 18 0.1107 29% 20 0.5843 11% 19 2.7612 30%
MSOR1.2 52 0.2079 52 0.9520 54 5.5109
TMSOR1.2 26 0.1374 34% 29 0.7632 20% 28 4.0793 26%

Example 13 MSOR0.9 42 0.1792 36 0.6613 45 4.6083
TMSOR0.9 24 0.1321 26% 20 0.5607 15% 25 3.6112 22%
MSOR1.0 35 0.1539 30 0.5444 38 3.8549
TMSOR1.0 20 0.1317 14% 17 0.4273 22% 22 3.0377 21%
MSOR1.1 30 0.1417 25 0.4919 32 3.5243
TMSOR1.1 18 0.1070 24% 15 0.4131 16% 19 2.7911 21%
MSOR1.2 42 0.1899 29 0.5140 45 4.5890
TMSOR1.2 28 0.1828 4% 16 0.4884 5% 30 4.3746 5%

Table 2. Numerical results when τ = 0.9 (the “optimal” computation times of the MSOR and TMSOR
are set to bold for each dimension and each example).

Example Method m = 128 m = 256 m = 512
IT T SAV E IT T SAV E IT T SAV E

Example 12 MSOR0.9 44 0.1426 46 0.8142 47 4.6364
TMSOR0.9 22 0.1030 27% 23 0.6159 24% 24 3.2768 29%
MSOR1.0 38 0.1378 39 0.6936 40 3.9927
TMSOR1.0 19 0.0881 36% 20 0.5315 23% 20 2.8169 29%
MSOR1.1 42 0.1375 41 0.7498 44 4.4324
TMSOR1.1 22 0.0944 31% 24 0.6519 13% 23 3.3152 25%
MSOR1.2 78 0.2284 81 1.4617 79 8.0223
TMSOR1.2 37 0.1443 36% 41 1.1061 24% 40 5.7297 28%

Example 13 MSOR0.9 39 0.1391 33 0.5767 41 4.1800
TMSOR0.9 22 0.0981 29% 19 0.4896 15% 24 3.4328 17%
MSOR1.0 32 0.1116 27 0.4928 34 3.4535
TMSOR1.0 19 0.0897 19% 16 0.4133 16% 20 2.8645 17%
MSOR1.1 36 0.1236 25 0.4295 39 4.0004
TMSOR1.1 23 0.1098 11% 14 0.3647 15% 24 3.5276 11%
MSOR1.2 55 0.1740 35 0.6576 59 5.8532
TMSOR1.2 41 0.1664 4% 20 0.5234 20% 44 6.2346 -6%
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Table 3. Numerical results when τ = 0.8 (the “optimal” computation times of the MSOR and TMSOR
are set to bold for each dimension and each example).

Example Method m = 128 m = 256 m = 512
IT T SAV E IT T SAV E IT T SAV E

Example 12 MSOR0.9 41 0.1400 42 0.7212 44 4.645
TMSOR0.9 21 0.0977 30% 21 0.5731 21% 22 3.3496 28%
MSOR1.0 35 0.1218 36 0.6060 38 3.9238
TMSOR1.0 18 0.0853 29% 20 0.5141 15% 20 2.9174 26%
MSOR1.1 59 0.1803 59 0.9876 61 6.3516
TMSOR1.1 29 0.1177 35% 32 0.8357 15% 31 4.6185 27%
MSOR1.2 184 0.5213 192 3.3582 184 18.8629
TMSOR1.2 80 0.3141 40% 83 2.3453 30% 80 11.6375 38%

Example 13 MSOR0.9 35 0.1238 30 0.5136 38 3.9445
TMSOR0.9 20 0.0963 22% 17 0.4464 13% 22 3.2718 17%
MSOR1.0 31 0.1100 24 0.4548 33 3.3400
TMSOR1.0 19 0.0911 17% 15 0.3597 21% 20 2.9164 13%
MSOR1.1 46 0.1566 31 0.5378 49 4.9155
TMSOR1.1 32 0.1368 13% 17 0.4551 15% 34 5.0096 -2%
MSOR1.2 79 0.2616 46 0.8248 85 8.5703
TMSOR1.2 93 0.3573 -37% 28 0.7918 4% 93 13.7466 -60%

5. Concluding Remarks

The two-step splittings are successfully applied to the MMS iteration method for
solving the VLCP. The convergence analysis is given where the convergence domain of the
parameter matrix is larger than the existing one. Numerical results show that the proposed
method can improve the convergence rate of the MMS iteration method. In two recent
works [25,26], the modulus-based transformation was also used for tensor complementarity
problems (TCP). One can thus expect that some accelerated technique such as two-step
splittings can be also used for the TCP.
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