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Abstract: The grey wolf optimization (GWO) algorithm is widely utilized in many global optimization
applications. In this paper, a dynamic opposite learning-assisted grey wolf optimizer (DOLGWO)
was proposed to improve the search ability. Herein, a dynamic opposite learning (DOL) strategy
is adopted, which has an asymmetric search space and can adjust with a random opposite point to
enhance the exploitation and exploration capabilities. To validate the performance of DOLGWO
algorithm, 23 benchmark functions from CEC2014 were adopted in the numerical experiments. A
total of 10 popular algorithms, including GWO, TLBO, PIO, Jaya, CFPSO, CFWPSO, ETLBO, CTLBO,
NTLBO and DOLJaya were used to make comparisons with DOLGWO algorithm. Results indicate
that the new model has strong robustness and adaptability, and has the significant advantage of
converging to the global optimum, which demonstrates that the DOL strategy greatly improves the
performance of original GWO algorithm.

Keywords: grey wolf optimization; dynamic-opposite learning; global optimization

1. Introduction

Optimization algorithms have attracted a lot of attention in the fields of both science
and engineering, due to their ability to solve global optimization problems. With the
development of computing technology, many intelligent optimization algorithms have
been proposed and applied to practical problems. Among these algorithms, meta-heuristic
algorithms (MAs) are suitable for practical problems with nonlinear characteristics. Gener-
ally, the MAs consist of the evolutionary algorithm (EA), tabu search algorithm, simulated
annealing algorithm (SA) and swarm intelligence algorithm (SI). Holland proposed the
genetic algorithm (GA) in 1992 [1], which is optimized by evolving an initial random
solution in evolution. The novel individual is created by the combination and mutation of
the former generation. Due to the participation of best individuals in generating new ones,
they are more likely to be superior than in the previous solution. Similarly, the Differential
Evolution (DE) algorithm is the most representative one among the EAs, which approaches
the optimum by combing the competition and cooperation of individuals with the popula-
tion [2,3]. DE algorithm was proposed by Storn in 1996 for solving Chebyshev inequality.
It is popular for improving other algorithms. Simulated annealing (SA) was proposed
by Klikpatrick in 1982, who applied the solid annealing method to solve combinatorial
optimization problems [4]. During the period of heating, the Brownian motion of the
internal particles increases until the solid turns into liquid. Then, the Brownian motion
is weakened by annealing and finally reaches a stable state. Meanwhile, a set of effective
cooling schedules are adapted to search the optimum.

In addition to the popular meta-heuristic algorithm, many popular methods have also
been proposed. In 2011, a population-based MA method named teaching–learning-based
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optimization (TLBO) was proposed by Rao et al. [5]. TLBO algorithm simulated the teach-
ing and learning processes, which aims to improve the students’ performance. Compared
with other algorithms, TLBO has been applied to many problems for its superior capabil-
ities of exploration and exploitation. As a novel heuristic method, Rao et al. proposed
Jaya algorithm, which is capable of solving constrained and unconstrained optimization
problems [6]. Inspired by birds’ foraging behavior, particle swarm optimization (PSO)
was developed by Kennedy and Eberhart in 1995 [7]. By simulating the birds’ behavior,
the PSO algorithm assumes the birds as the particles, which also provides a potential
solution. By updating the position and speed of particles, the PSO algorithm will converge
to the best solution. With the advantages of less parameters, high accuracy, outstanding
capability of exploration and exploitation, the PSO has been adapted to many engineering
problems. In 2005, Karaboga proposed the Artificial Bee Colony (ABC) algorithm to tackle
multi-variable functions. Different colonies gather honey in groups, some search for honey
and share messages, some follow the messages and others find new honey. This swarm
intelligence-based algorithm can easily find out the optimum through information sharing
mechanism [8]. Dorigo et al. proposed the ant colony optimization (ACO) algorithm,
which was inspired by ants’ social behaviors [9]. In hunting, ants will leave pheromones
in order to indicate the presence of food, which will be subsequently decreased along
with the movement of ants. Then, the ant colony can follow the concentration gradient of
pheromones to approach the food [10]. In that case, the high concentration of pheromones
can make the ant colony more likely to follow. In other words, the optimum can be found
with the increase in concentration.

The GWO algorithm was proposed by Seyedali et al. in 2014, inspired by the coopera-
tive hunting of grey wolves’ hierarchy [11]. At the very beginning, the GWO algorithm
will generate initial wolves in a particular domain. Similarly, each wolf presents a solution
which will be evaluated by the algorithm in each generation [12]. In that case, the three best
solutions will be chosen as the leaders of the wolves to guide others in approaching the
prey. In the optimization process, the prey represents the real solution, while the nearest
wolf is the global optimum. These SI algorithms provide new methods to data exploration
in both engineering and science [13–18]. Compared with other algorithms, GWO has a
simple structure and high convergence speed. However, it also has disadvantages. For
example, it can easily fall into local optimum. Therefore, many improved GWO algorithms
have been proposed [19–25].

Li et al. proposed a new method combining improved grey wolf optimization (IGWO)
and kernel extreme learning machine (KELM). This method combines the genetic algorithm
(GA) and grey wolf optimization to generate discrete populations, and then obtain the
optimal solution through KELM [26]. Long et al. introduced a MAL-IGWO algorithm,
which integrates both the searching capability of improved grey wolf optimization (IGWO)
and the capability of modified augmented Lagrangian (MAL) in solving constrained
problems [27]. Gao et al. represented an improved grey wolf optimization algorithm
(VW-GWO) based on variable weights, in which the searching process obeys the social
hierarchy at the same time [28].

To enhance the performance of algorithm, learning strategies were also adopted to the
algorithms. For instance, the opposition-based learning (OBL) strategy is widely accepted
for its superior convergence ability. The OBL operates by generating numbers in an
opposite interval. Moreover, some variants of OBL have been also proposed. For instance,
a quasi-opposite number is applied to broaden the domain which is named original idea of
quasi-opposite-based learning (QOBL). Moreover, a quasi-reflection based learning (QRBL)
strategy is adopted by introducing a quasi-reflection number in the interval of the current
position and the center position.

Besides the above GWO algorithm variants, an improved GWO based on a dynamic
opposite learning strategy is introduced in this paper. It is named as dynamic opposite
learning-assisted grey wolf optimizer (DOLGWO). In the first section, the background of
optimization algorithms is introduced; then the GWO algorithm and dynamic opposite
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learning strategy are shown in the second section; the DOLGWO algorithm is given in the
third section; in the fourth section all nine algorithms are compared to prove the superior
performance of DOLGWO; and the conclusion is made in the fifth section at last.

2. Algorithm Preliminaries
2.1. GWO Algorithm

As a type of population-based meta-heuristics, Swarm Intelligence (SI) algorithms were
originated from natural animals, such as colonies, ants. PSO, ACO and many other popular
SI algorithms are widely applied in real world. Among these algorithms, the grey wolf
optimization algorithm is a superior method to tackle numerical problems. In [29], GWO
algorithm is compared with BBO, LI, HM, CS, ABC, ABCNN, QP and GAMS. The results
show that the GWO algorithm is able to provide very competitive results compared to
these well-known meta-heuristics. In [30], empirical studies are conducted to compare GWO
algorithm with different metaheuristics such as LSHADE, TLBO and EBO with CMAR, NDHS,
BA, CLPSO, EAD, RPSO, CDE, NCDE and LIPS. Experimental results show that the GWO
algorithm performs better than the other algorithms on most benchmarks and engineering
problems. In [31], the GWO algorithm is compared to GA, PSOGSA and gradient-based
algorithm. Results from both synthetic and real data demonstrate that GWO algorithm can
show a good balance between exploration and exploitation. In [11], the GWO algorithm
provided highly competitive results compared to well-known heuristics such as PSO, GSA,
DE, EP and ES. Due to its accuracy calculation and the smaller population assigned in global
and local searching procedures, the GWO algorithm converges faster and even easier than
others [32–34].

GWO algorithm was inspired by the behaviors and the social hierarchy of the wolves.
According to wolves’ social hierarchy, there are four groups which are α,β,δ and ω respec-
tively, as shown in Figure 1. The α is the fittest solution which can guide others to go
towards the right direction, β and δ are the second and third best solution respectively.
Moreover, the ω is the basement, which provides a large amount of population to support
the whole pack.

Figure 1. Principle of GWO algorithm.

When searching a prey, the iteration begins (t = 1) and three coefficients A, C and D
are introduced to describe the encircling model, as follows:

D = C · XP(t)− X(t) (1)

X(t + 1) = Xp(t)− A · D (2)

A = 2a · r1 − a (3)

C = 2r2 (4)

a = 2(1− t
tmax

) (5)
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where t indicates the current iteration; X(t) is the position vector of the wolf; Xp(t) is the
position of the prey; A is the rand vector; C is the adaptive vector; D is the distance vector
between the prey and wolf; r1 and r2 are both rand vectors in [0,1]; a is the convergence
factor which goes down linearly from 2 to 0.

The hunting process is shown as follows:

D∂ = C1 · X∂(t)− X (6)

Dβ = C2 · Xβ(t)− X (7)

Dδ = C3 · Xδ(t)− X (8)

X(1) = X∂(t)− A1 · D∂ (9)

X(2) = Xβ(t)− A2 · Dβ (10)

X(3) = Xδ(t)− A3 · Dδ (11)

X(t + 1) =
(X1 + X2 + X3)

3
(12)

Generally, when |A| < 1 ω wolves will move away from the prey and explore wider
space for a global optimal value. On contrary, when |A| > 1 ω wolves will move closer to
the prey which means local dominants in optimization.

2.2. Opposition-Based Learning (OBL)

The optimization algorithms aim to generate solutions, optimize estimated solutions
and search for more solutions in the domain. When solving a complex problem, the ex-
isting solutions cannot meet the requirements. In that case, many learning strategies are
created to enhance the performance of optimization algorithms. Among these learning
strategies, the opposition-based learning (OBL) strategy is widely accepted for its superior
convergence ability. The definition of OBL is introduced as follows:

The OBL consists of X ∈ R which is a real number in a certain interval: X ∈ [a, b] .
In addition, the opposite number XO is generated.

XO = a + b− X (13)

when it comes to a multi-dimentional situation, the definition is showed as follows:
Assuming that X = (X1, X2, .., XD) is a point in D dimensional coordinates with

X1, X2, .., XD ∈ R in the interval of [aj, bj]. With the changing of iteration, aj, bj are the
corresponding low and high boundaries of the population, respectively. Meanwhile,
the multi-dimensional opposite point is defined as:

XO
j = aj + bj − Xj (14)

although the OBL strategy improve the searching ability of algorithm, it still has some
disadvantages, such as premature. To improve the performance of OBL, some variants of
OBL have been proposed. For instance, a quasi-opposite number is applied to broaden
the domain which is named original idea of quasi-opposite based learning (QOBL) [34].
Meanwhile, a quasi-reflection-based learning (QRBL) strategy is adopted by introducing a
quasi-reflection number in the interval of the current position and the center position [35].

2.3. Dynamic Opposite Learning Phase

Besides the above variants of OBL, a new learning strategy named dynamic opposite
learning operator (DOL) is adopted in this paper. The DOL strategy was first proposed by
Xu et al. to improve the performance of TLBO algorithm in [36]. The DOL is introduced
to keep the algorithm away from prematurity when meeting complicated problems [37].
Moreover, the DOL learning strategy is a new variant of opposition-based learning (OBL)
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strategy, which helps the population learn from the opposite points in an asymmetric and
dynamic search space [33,38].

In the initialization step, X ∈ [a, b] were defined as the initial population. Moreover,
XO is generated in the opposite domain. In order to enlarge the searching space, XRO

(XRO = rand ·XO, rand ∈ [0, 1]) is introduced to replace XO to change the former symmetric
searching space into a dynamic asymmetric domain. In that case, the optimizer is able to
enlarge the searching space, which can avoid the prematurity. Therefore, a weighting factor
w is introduced to improve the ability to overcome local optima. The mathematical model
is shown as follows:

XDO = X + w · r2 · (r1 · XO−X) (15)

where r2 is a random parameter, r2 ∈ [0, 1]. Confronted with a multi-dimension objective,
it shows as follows:

XDO
j = Xj + w · r2 ·

(
r1 · XO

j − Xj

)
(16)

where X = (X1, X2, ..., XD) ∈ [aj, bj] is the individuals in a D-dimensional space; The aj

and bj are the boundaries of Xj. XDO
j is the jth dimension’s dynamic opposite point.

The population will be updated with iteration. If the fitness values were better, X
will be replaced by XDO . On contrary, the X will be retained and recorded in the new
population. The new fitness value should be in the range of [aj, bj], or it will be reset as a
random in the domain.

3. DOL-Based GWO Optimization Algorithm

In this section, a novel DOL-based GWO algorithm is proposed, and both the learning
strategy and algorithm steps are represented. The DOL strategy is separated into two parts:
one is population and parameter initialization, the other is generating new solutions by
updating operations. To update the population, a jumping rate (Jr) is adopted in DOL,
while weighting factor w is a positive factor that aims to balance the exploration and
exploitation capability. As long as the selection probability is smaller than Jr, the DOL
operation process can be implemented as follows:

Pij
DO = Pij + w · rand1 · [rand2 · (aj + bj − Pij)− Pij] (17)

where a random value Pij is generated as the initial population; PDO
ij is the population

generated by DOL strategy; Np is the population size; i is the ith solution; j presents the jth
dimension; rand1 and rand2 are two random parameters in [0,1]; weighting factor w is set
as 8; jumping rate is set as 0.3.

With the updating of population, the boundaries are changed in the same way,

aj = min(Pij), bj = max(Pij) (18)

The individuals are selected in the range of [aj, bj] which is composed by Pij and PDO
ij .

DOLGWO Algorithm Steps

In this section, a new variant of GWO algorithm is introduced which is named as
DOLGWO algorithm, as illustrated in Algorithm 1. The flowchart visualization of the
algorithm is also shown in Figure 2.
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Algorithm 1 The DOLGWO Algorithm

Randomly generate an initial population P and Alpha, Beta, Delta position;
while G ≤maximal evolutionary iteration do

for i = 1; i ≤ Np; i ++ do
Generate “fitness” value to evaluate all learners by the fitness function f(.)

end for
for i = 1; i ≤ Np; i ++ do

Check boundaries
if fitness< Alpha score then

Update Alpha’s position and score
end if
if fitness(i)> Alpha_score && fitness(i)< Beta_score then

Update Beta’s position and score
end if
if fitness(i)>Alpha_score && fitness(i)>Beta_score && fitness(i)<Delta_score then

Update Delta’s position and score
end if

end for
for i = 1; i ≤ Np; i ++ do

for j = 1; j ≤ D; j ++ do
Update the population P

end for
end for
if rand< Jr then

for i = 1; i ≤ Np; i ++ do
r1i = rand(0, 1), r2i = rand(0, 1);
for j = 1; j ≤ D; j ++ do

aj = min(Pij), bj = max(Pij);
Pij

DO = Pij + w · rli · [r2i · (aj + bj − Pij)− Pij]
Check boundaries

end for
end for
for j = 1: Np do

Evaluate the fitness values of the new individuals fitnessDO;
end for
for i = 1; i ≤ Np; i ++ do

if fitnessDO(i)< fitness(i) then
Update Population P

end if
end for
Sort the fitness value;
if fitnessDO< Alpha score then

Update alpha position
end if

end if
Update the P, and the fitness value is assigned to best score;
G++

end while
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Figure 2. The flowchart of DOLGWO.

4. Experiment and Discussion
4.1. Benchmark Function

In this section, 23 different benchmark functions which contains unimodal problems,
multi-modal problems and hybrid problems are applied to test the performance of DOL-
GWO as shown in Table 1. In this paper, all the benchmark functions are provided by
CEC2014 test set and they are effective to verify its performance. Three unimodal functions
are adopted to test the DOLGWO’s exploitation since it has only one global optimal so-
lution and no local optimum in the searching domain. While multi-modal functions can
obtain plenty of local optimums, which means the exploration capability can be examined.
For closer inspection, both hybrid functions and composition functions are conducted to
examine its performance.

Table 1. Benchmark functions provided by CEC2014 test set.

Label Function Optimum Dims Character

F1 High Conditioned Elliptic 100 30 Unimodal
F2 Bent Cigar 200 30 Unimodal
F3 Discus 300 30 Unimodal
F4 Rosenbrock 400 30 Multimodal
F5 Ackley 500 30 Multimodal
F6 Weierstrass 600 30 Multimodal
F7 Griewank 700 30 Multimodal
F8 Rastrigin 800 30 Multimodal
F9 Rotated Rastrigin 900 30 Multimodal

F10 Schwefel 1000 30 Multimodal
F11 Rotated Schwefel 1100 30 Multimodal
F12 Katsuura 1200 30 Multimodal
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Table 1. Cont.

Label Function Optimum Dims Character

F13 HappyCat 1300 30 Multimodal
F14 HGBat 1400 30 Multimodal
F15 Expanded Griewank’s plus

Rosenbrock
1500 30 Multimodal

F16 Expanded Scaffer 1600 30 Multimodal
F17 HF1 1700 30 Hybrid
F18 HF2 1800 30 Hybrid
F19 HF3 1900 30 Hybrid
F20 HF4 2000 30 Hybrid
F21 HF5 2100 30 Hybrid
F22 HF6 2200 30 Hybrid
F23 CF1 2300 30 Composition

4.2. Parameter Settings

Numerical experiments include five different algorithms, consisting of the grey wolf
optimization algorithm (GWO), teaching learning optimization algorithm (TLBO), pigeon-
inspired optimization algorithm (PIO) and Jaya optimization algorithm. The parameter
settings are listed in Table 2 and they are explained in detail. In the PIO algorithm, the map
and compass factor R is set as 0.2; in the DOLGWO algorithm, the weighting factor w and
jumping rate Jr are set as 8 and 0.3.

The parameters’ settings are crucial to the algorithm’s performance, especially for DOL-
GWO. In that case, the sensitivity analysis of the parameters is implemented in this section.
As shown in Tables 3 and 4, test functions are selected for analysis. Where, F3 is unimodal
function, F6 is multi-modal function, F18 is hybrid function and F23 is composition function.
The mean and standard deviation of the results gained by DOLGWO are also recorded to
evaluate the performance in the Tables 3 and 4. When Jr = 0.3, DOLGWO performs better
than other settings in F3, F6 and F18 respectively. When w = 8, it shows predominant results
in F3, F6, F23. As a result, w = 8, Jr = 0.3 is the most suitable parameters setting.

Table 2. Parameter settings of optimization algorithms.

Parameters Value

Size of population 100
Total generation number for test functions 2500

Times conducting the experiment 3
Jr of DOLGWO 0.3
w of DOLGWO 8

Map and compass factor of PIO 0.2

Table 3. The sensitivity analysis of w.

Weight Mean Std Best

F3 F6 F18 F23 F3 F6 F18 F23 Num

1 1.93× 106 −5.67× 102 3.90× 108 −1.90× 103 5.22× 107 4.93× 102 1.48× 109 1.81× 103 0
2 5.76× 107 5.71× 102 2.61× 109 −1.77× 103 5.76× 107 4.95× 102 2.12× 109 1.89× 103 0
3 3.19× 105 −5.67× 102 4.99× 108 −1.74× 103 2.65× 106 4.92× 102 1.94× 109 1.89× 103 0
4 5.89× 105 −5.70× 102 7.81× 108 −1.73× 103 7.77× 106 4.89× 102 2.06× 109 1.91× 103 0
5 1.11× 106 −5.66× 102 1.88× 109 −1.79× 103 1.50× 107 4.92× 102 2.57× 109 1.95× 103 0
6 2.42× 106 −5.65× 102 4.20× 108 −1.81× 103 4.20× 107 4.89× 102 1.82× 109 1.91× 103 0
7 2.55× 106 −5.66× 102 1.06× 109 −1.77× 103 4.00× 107 4.95× 102 2.05× 109 1.88× 103 0
8 1.42× 105 −5.44× 102 5.94× 108 −1.64× 103 1.23× 106 4.83× 102 1.98× 109 1.70× 103 3
9 6.59× 105 −5.64× 102 3.71× 108 −1.79× 103 9.71× 106 4.90× 102 1.35× 109 1.91× 103 1

10 3.55× 105 −5.68× 102 4.24× 108 −1.74× 103 7.07× 106 4.89× 102 1.75× 109 1.79× 103 0
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Moreover, the population number for all test is 100, while the FES is set as 100*2500.
All the experiments are implemented three times.

Table 4. The sensitivity analysis of Jr.

Jr Mean Std Best

F3 F6 F18 F23 F3 F6 F18 F23 Num

0.1 1.75× 105 −5.66× 102 4.52× 108 −1.75× 103 7.58× 105 4.90× 102 1.90× 109 1.89× 103 0
0.2 5.52× 105 −5.66× 102 1.75× 109 −1.86× 103 7.78× 106 4.91× 102 2.54× 109 1.91× 103 0
0.3 1.42× 105 −5.44× 102 3.64× 108 −1.64× 103 1.23× 106 4.83× 102 1.54× 109 1.70× 103 3
0.4 3.70× 105 −5.70× 102 3.70× 108 −1.78× 103 5.19× 106 4.90× 102 1.80× 109 1.89× 103 0
0.5 1.42× 106 −5.69× 102 1.09× 109 −1.73× 103 2.54× 107 4.90× 102 1.87× 109 1.94× 103 1
0.6 1.34× 106 −5.70× 102 4.69× 108 −1.60× 103 1.64× 107 4.91× 102 1.99× 109 1.97× 103 0
0.7 2.30× 106 −5.70× 102 3.76× 108 −1.74× 103 6.36× 107 4.90× 102 1.89× 109 1.91× 103 0
0.8 3.59× 105 −5.66× 102 6.30× 108 −1.77× 103 4.59× 106 4.97× 102 2.12× 109 1.98× 103 0
0.9 1.95× 105 −5.67× 102 5.64× 108 −1.90× 103 1.47× 106 4.93× 102 1.98× 109 1.94× 103 0
1 4.92× 105 −5.68× 102 4.38× 108 −1.89× 103 8.49× 106 4.90× 102 1.64× 109 1.83× 103 0

4.3. Unimodal/Multi-Modal Test Functions and Their Analysis

Table 5 shows the mean and standard deviation values of five algorithms on 16
unimodal/multi-modal functions. F1–F3 are unimodal functions. The results present that
DOLGWO performs better than other algorithms on all three unimodal functions. Further,
it can be concluded that the DOL strategy with expending search spaces are more likely to
reach the global optimum for its exploitation capability.

F4–F16 functions are multi-modal functions which are applied to verify the exploration
capability of DOLGWO. Compared with other algorithms, the results in Table 5 show that
DOLGWO performs well, especially on F5, F10, F11, F12 and F16 test functions.

Table 5. The mean and standard value of unimodal/multi-modal test functions.

Algorithms F1 F2 F3 F4

Mean Std Mean Std Mean Std Mean Std

DOLGWO 5.43× 108 5.07× 108 5.15× 1010 1.73× 1010 1.42× 105 1.23× 106 1.30× 104 8.98× 103

GWO 6.07× 108 3.74× 108 5.16× 1010 1.47× 1010 1.43× 105 1.17× 106 6.89× 103 6.03× 103

TLBO 6.17× 109 2.77× 109 1.49× 1011 7.65× 109 1.43× 105 2.46× 106 5.42× 104 9.73× 103

PIO 2.20× 109 4.35× 108 1.45× 1011 1.23× 1010 1.43× 105 4.74× 104 3.79× 104 4.25× 103

Jaya 1.78× 109 9.92× 108 1.09× 1011 1.89× 1010 1.43× 105 9.40× 105 2.72× 104 6.20× 103

Algorithms F5 F6 F7 F8

Mean Std Mean Std Mean Std Mean Std

DOLGWO −4.78× 102 4.08× 102 −5.44× 102 4.83× 102 −4.31× 102 6.29× 102 −5.43× 102 6.50× 102

GWO −4.79× 102 4.08× 102 −5.49× 102 4.92× 102 −4.93× 102 6.04× 102 −5.65× 102 6.51× 102

TLBO −4.79× 102 4.07× 102 −5.27× 102 4.93× 102 −8.47× 100 5.54× 102 −4.87× 102 6.63× 102

PIO −4.79× 102 4.09× 102 −5.24× 102 4.95× 102 −1.00× 101 5.18× 102 −4.43× 102 6.64× 102

Jaya −4.79× 102 4.08× 102 −5.37× 102 4.89× 102 −3.45× 102 5.46× 102 −4.94× 102 6.61× 102

Algorithms F9 F10 F11 F12

Mean Std Mean Std Mean Std Mean Std

DOLGWO −6.43× 102 7.52× 102 7.67× 103 1.93× 103 1.06× 104 2.68× 103 −1.19× 103 9.80× 102

GWO −6.07× 102 7.48× 102 8.29× 103 2.26× 103 1.12× 104 2.54× 103 −1.20× 103 9.79× 102

TLBO −5.25× 102 7.25× 102 1.32× 104 1.12× 103 1.33× 104 9.31× 102 −1.20× 103 9.80× 102

PIO −5.19× 102 7.40× 102 1.17× 104 5.10× 102 1.35× 104 1.06× 103 −1.20× 103 9.79× 102

Jaya −5.16× 102 7.39× 102 1.03× 104 2.38× 103 1.29× 104 1.36× 103 −1.20× 103 9.80× 102
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Table 5. Cont.

Algorithms F13 F14 F15 F16

Mean Std Mean Std Mean Std Mean Std

DOLGWO −1.30× 103 1.05× 103 −1.28× 103 1.14× 103 7.57× 105 1.57× 107 −1.57× 103 1.31× 103

GWO −1.30× 103 1.06× 103 −1.29× 103 1.16× 103 1.90× 105 5.26× 106 −1.58× 103 1.31× 103

TLBO −1.29× 103 1.06× 103 −1.00× 103 1.15× 103 5.83× 106 1.22× 107 −1.58× 103 1.30× 103

PIO −1.28× 103 1.06× 103 −1.02× 103 1.15× 103 5.88× 106 3.75× 106 −1.58× 103 1.31× 103

Jaya −1.29× 103 1.06× 103 −1.22× 103 1.18× 103 4.47× 106 6.59× 106 −1.58× 103 1.31× 103

Algorithms DOLGWO GWO TLBO PIO Jaya

Best num 8 2 2 3 1

4.4. Analysis of Hybrid Test Functions and Composition Functions

To imitate the practical problems, hybrid functions are conducted to test the algorithms
through combining unimodal and multi-modal functions. To deal with hybrid functions, it
is necessary to balance exploitation and exploration capability which may result in poor
performance. In Table 6, the advantages of DOLGWO can be easily found on F18, F21,
F22 and the composition function shows that DOLGWO can still solve it no worse than
other algorithms. In that case, the DOLGWO can balance the convergence speed and
optimization solution well in many practical problems.

Table 6. The mean and standard value of hybrid and composition test functions.

Algorithms F17 F18 F19 F20

Mean Std Mean Std Mean Std Mean Std

DOLGWO 1.04× 108 1.18× 108 3.64× 108 1.54× 109 −1.53× 103 1.46× 103 8.62× 105 3.38× 107

GWO 4.97× 107 9.24× 107 1.75× 109 1.77× 109 −1.51× 103 1.53× 103 2.48× 105 1.24× 107

TLBO 1.16× 108 7.48× 107 2.04× 1010 6.59× 109 2.72× 101 1.97× 103 2.27× 105 9.87× 106

PIO 6.76× 107 5.08× 107 8.18× 109 2.58× 109 −2.19× 102 1.01× 103 1.40× 106 9.73× 105

Jaya 3.43× 107 9.35× 107 8.26× 109 3.59× 109 −1.37× 103 1.47× 103 2.79× 105 4.64× 106

Algorithms F21 F22 F23 Best num

Mean Std Mean Std Mean Std Mean Std

DOLGWO 1.04× 107 3.15× 107 4.80× 102 1.53× 104 −1.64× 103 1.70× 103 3 2
GWO 1.09× 107 2.96× 107 2.60× 103 5.34× 104 −1.62× 103 1.90× 103 0 0
TLBO 7.70× 107 6.81× 107 1.12× 104 1.09× 105 −2.09× 103 1.88× 103 2 0
PIO 2.70× 107 1.63× 107 8.90× 103 1.47× 104 −1.13× 103 1.90× 103 1 0
Jaya 1.26× 107 3.12× 107 6.20× 103 1.82× 105 −1.21× 103 1.78× 103 1 5

4.5. Statistical Test Results

T test is applied to figure out difference between the average value of two independent
samples. T values are showed in Table 7. P values are represented in Table 8, which is
marked as +,−. The value of 0.05 is set as the level of significance, t (30)0.05 = 2.0423. When
the value t < 2.0423, it indicates P > 0.05. In that case, the null hypothesis is eligible, which
means that no significant difference exists between two algorithms. On the contrary, null
hypotheses are rejected; these algorithms are significantly different.

From Table 8, the results show that DOLGWO mostly performs significantly differently
to other algorithms.
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Table 7. The T values of DOLGWO and other algorithms.

Algorithms DOLGWO

F1 F2 F3 F4 F5 F6 F7 F8

GWO 5.56× 101 2.41× 10−2 3.22× 10−3 3.09× 100 9.49× 10−3 3.97× 10−1 3.83× 10−1 1.31× 10−1

TLBO 1.09× 101 2.82× 101 1.99× 10−3 1.70× 101 9.50× 10−3 1.35× 10−1 2.76× 100 3.30× 10−1

PIO 1.78× 100 2.41× 101 4.45× 10−3 1.37× 101 9.48× 10−3 1.58× 10−1 2.83× 100 5.89× 10−1

Jaya 1.31× 100 1.23× 100 3.54× 10−3 7.13× 100 9.49× 10−3 5.58× 10−2 5.66× 10−1 2.89× 10−1

Algorithms DOLGWO

F9 F10 F11 F12 F13 F14 F15 F16

GWO 1.86× 10−1 1.14× 100 8.90× 10−1 3.95× 10−2 0 3.37× 10−2 1.88× 10−1 2.96× 10−2

TLBO 6.19× 10−1 1.36× 101 5.21× 100 3.95× 10−2 0 9.47× 10−1 −1.40× 100 2.96× 10−2

PIO 6.44× 10−1 1.11× 101 5.51× 100 3.95× 10−2 7.34× 10−2 8.79× 10−1 −1.74× 100 2.96× 10−2

Jaya 6.59× 10−1 4.70× 100 4.19× 100 3.95× 10−2 0 2.00× 10−1 −1.19× 100 2.96× 10−2

Algorithms DOLGWO

F17 F18 F19 F20 F21 F22 F23

GWO 1.98× 100 −3.24× 100 −5.18×
10−2 9.34× 10−2 −6.34×

10−2
−2.09×

10−1
−4.30×

10−2

TLBO −4.70×
10−1 −1.62× 101 −3.48× 100 9.88× 10−2 −4.86× 100 −5.33×

10−1 9.72× 10−1

PIO 1.55× 100 −1.42× 101 −4.04× 100 −8.71×
10−2 −2.56× 100 −2.17× 100 −1.10× 100

Jaya 2.54× 100 −1.11× 101 −4.23×
10−1 9.36× 10−2 −2.72×

10−1
−1.72×

10−1
−9.57×

10−1

Table 8. The P values of DOLGWO and other algorithms.

Algorithms DOLGWO

F1 F2 F3 F4 F5 F6 F7 F8

GWO - - - + - - - -
TLBO + + - + - - + -
PIO - + - + - - + -
Jaya - - - + - - - -

Algorithms DOLGWO

F9 F10 F11 F12 F13 F14 F15 F16

GWO - - - - - - - -
TLBO - + + - - - - -
PIO - + + - - - - -
Jaya - + + - - - - -

Algorithms DOLGWO

F17 F18 F19 F20 F21 F22 F23 P<0.05

GWO - + - - - - - 21
TLBO - + + - + - - 14
PIO - + + - + + - 14
Jaya + + - - - - - 18

4.6. Analysis of Convergence

The convergence capability of five algorithms on test functions are plotted in Figure 3,
where the ‘Best score’ presents the average of fitness value. As the figures show, DOLGWO
converges fast along with the iterative computing, which results from the remarkable
exploration capability. As for the gradually converging trend, it is due to the exploitation
capability of the DOL strategy.
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Figure 3. The convergence trends of all algorithms on 23 benchmark functions.

4.7. Repeat the Experiment and Compare with ther Improved Algorithms

To prove the superiority of DOLGWO, a number of alternative improved meta-
heuristic algorithms are selected for comparison purposes, including several variants of
particle swarm optimization (CFPSO and CFWPSO), several variants of teacher–learning-
based optimization (ETLBO, CTLBO and NTLBO) and grey wolf Optimization (GWO).
The parameter details of DOLGWO are as follows: weighting factor w and jumping rate Jr
are set as 8 and 0.3, which are the same as the previous experiment.

The parameter settings of the other improved meta-heuristic algorithms were selected
as follows. In cfPSO and cfwPSO, the cognitive and social acceleration coefficients (C1 and
C2) are set as 2.05 with the constriction factor K = 0.729. The population size is 30 in all
cases. For all 23 benchmark functions, function evaluations (FES) is 50 × 10,000. The mean
and standard deviation (Std) of the objective function f(X) averaged over three repetitions
of the algorithms are recorded for each benchmark function, while the best numbers of
mean and standard deviation are recorded for all improved meta-heuristic algorithms in
Table 9.

Table 9. The mean and standard value of 23 test functions.

Algorithms F1 F2 F3 F4

Mean Std Mean Std Mean Std Mean Std

DOLGWO 1.49× 108 1.67× 108 1.95× 1010 5.24× 109 5.69× 104 1.39× 104 2.13× 103 5.83× 102

GWO 1.76× 108 1.36× 108 2.41× 1010 1.55× 1010 6.68× 104 1.88× 104 2.46× 103 2.26× 102

CFPSO 5.32× 108 2.19× 108 6.97× 1010 8.68× 109 9.63× 104 1.46× 104 1.65× 104 1.88× 103

CFWPSO 7.37× 109 1.21× 108 6.57× 1010 8.88× 109 1.04× 105 5.44× 103 1.39× 104 3.51× 103

ETLBO 1.78× 109 7.34× 108 1.30× 1011 2.62× 1010 1.52× 105 1.46× 104 3.36× 104 6.82× 103

CTLBO 1.42× 109 2.27× 108 9.46× 1010 4.08× 109 1.21× 105 1.46× 104 2.16× 104 6.10× 103

NTLBO 1.95× 109 3.49× 108 1.22× 1011 1.15× 1010 1.41× 105 3.86× 104 3.06× 104 4.64× 103



Symmetry 2022, 14, 1871 15 of 19

Table 9. Cont.

Algorithms F5 F6 F7 F8

Mean Std Mean Std Mean Std Mean Std

DOLGWO 5.21× 102 2.77× 10−2 6.35× 102 1.96× 100 8.49× 102 9.19× 101 1.05× 103 4.12× 101

GWO 5.21× 102 6.36× 10−2 6.33× 102 2.18× 100 8.55× 102 3.31× 101 1.05× 103 2.14× 101

CFPSO 5.21× 102 9.82× 10−2 6.56× 102 4.67× 100 1.37× 103 2.09× 102 1.21× 103 2.23× 101

CFWPSO 5.21× 102 2.37× 10−2 6.56× 102 5.67× 100 1.34× 103 1.02× 102 1.20× 103 3.65× 101

ETLBO 5.21× 102 9.34× 10−2 6.70× 102 3.09× 10−1 1.90× 103 2.26× 102 1.38× 103 3.00× 100

CTLBO 5.21× 102 1.79× 10−2 6.61× 102 3.90× 100 1.56× 103 1.47× 102 1.24× 103 4.43× 101

NTLBO 5.21× 102 5.18× 10−2 6.66× 102 1.03× 100 1.79× 103 1.85× 102 1.32× 103 2.20× 101

Algorithms F9 F10 F11 F12

Mean Std Mean Std Mean Std Mean Std

DOLGWO 1.11× 103 1.73× 101 7.54× 103 6.79× 102 9.42× 103 4.11× 103 1.20× 103 2.13× 100

GWO 1.14× 103 2.87× 101 6.89× 103 1.27× 102 7.70× 103 1.58× 103 1.20× 103 2.02× 100

CFPSO 1.33× 103 4.92× 101 9.56× 103 2.25× 102 1.01× 104 1.66× 103 1.20× 103 4.09× 10−1

CFWPSO 1.39× 103 3.38× 101 8.65× 103 8.86× 102 1.18× 104 1.09× 103 1.20× 103 2.79× 10−1

ETLBO 1.58× 103 5.39× 101 1.50× 104 7.65× 102 1.52× 104 1.75× 103 1.20× 103 4.44× 10−1

CTLBO 1.40× 103 5.95× 101 1.10× 104 4.03× 102 1.21× 104 1.01× 103 1.20× 103 2.21× 10−1

NTLBO 1.51× 103 6.40× 101 1.33× 104 9.90× 102 1.37× 104 1.31× 102 1.20× 103 2.90× 10−1

Algorithms F13 F14 F15 F16

Mean Std Mean Std Mean Std Mean Std

DOLGWO 1.30× 103 1.76× 100 1.44× 103 5.87× 100 4.02× 103 1.04× 103 1.62× 103 1.08× 100

GWO 1.30× 103 9.06× 10−2 1.44× 103 1.05× 100 6.86× 103 6.56× 103 1.62× 103 5.24× 10−1

CFPSO 1.31× 103 3.16× 10−1 1.56× 103 4.68× 100 7.77× 105 7.12× 105 1.62× 103 4.49× 10−1

CFWPSO 1.31× 103 3.16× 10−1 1.56× 103 4.68× 100 7.77× 105 7.12× 105 1.62× 103 5.36× 10−1

ETLBO 1.31× 103 8.04× 10−1 1.69× 103 2.39× 101 1.75× 106 8.14× 105 1.62× 103 7.63× 10−1

CTLBO 1.31× 103 7.31× 10−1 1.60× 103 1.70× 101 6.07× 105 2.51× 105 1.62× 103 4.89× 10−1

NTLBO 1.31× 103 7.00× 10−2 1.74× 103 4.64× 101 1.76× 106 6.78× 105 1.62× 103 3.69× 10−1

Algorithms F17 F18 F19 F20

Mean Std Mean Std Mean Std Mean Std

DOLGWO 7.66× 106 5.03× 106 1.39× 108 1.37× 108 2.11× 103 1.09× 101 2.12× 104 1.20× 103

GWO 2.24× 107 1.81× 107 8.56× 107 1.48× 108 2.01× 103 5.54× 101 2.46× 104 1.05× 104

CFPSO 4.73× 107 4.10× 107 9.30× 108 4.12× 108 2.27× 103 1.01× 102 2.79× 104 1.39× 104

CFWPSO 7.51× 107 5.02× 107 2.11× 109 9.44× 108 2.38× 103 2.61× 102 2.91× 104 1.07× 104

ETLBO 1.96× 108 1.20× 108 7.60× 109 1.96× 109 3.09× 103 3.80× 102 1.07× 105 8.82× 104

CTLBO 1.66× 108 9.57× 107 3.60× 109 4.14× 108 2.44× 103 1.61× 102 4.38× 104 9.78× 103

NTLBO 2.74× 108 2.16× 108 8.23× 109 3.45× 109 2.69× 103 2.93× 102 6.41× 104 7.88× 103

Algorithms F21 F22 F23 Best num

Mean Std Mean Std Mean Std Mean Std

DOLGWO 4.48× 106 6.22× 106 3.08× 103 3.39× 101 2.59× 103 1.63× 102 12 7
GWO 1.41× 106 1.64× 106 3.40× 103 2.93× 102 2.74× 103 3.81× 101 8 5

CFPSO 5.44× 106 4.53× 106 4.36× 103 2.66× 102 3.16× 103 2.12× 102 2 0
CFWPSO 9.25× 106 6.91× 106 5.20× 103 4.42× 102 3.08× 103 6.81× 101 0 2
ETLBO 2.97× 107 2.40× 109 9.10× 103 5.21× 103 2.50× 103 0.00× 100 1 3
CTLBO 1.16× 107 6.61× 106 1.19× 104 8.40× 103 2.92× 103 3.71× 102 0 3
NTLBO 3.16× 107 2.92× 107 1.09× 104 9.20× 103 2.50× 103 0.00× 100 0 3

The results for all 23 benchmark functions are shown in Table 9, and the best average
convergence results for 6 functions of DOLGWO are shown in Figure 4. It can be seen from
these results that DOLGWO algorithm performs the best in all unimodal benchmark func-
tions(3/3) and composition benchmark functions(1/1), in about half of multi-modal(6/13)
and Hybrid benchmark functions(3/6).
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DOLGWO algorithm is the best performing algorithm (Bust num Mean 12/23) and has
the highest average standard deviation (Std) among all the improved algorithms considered
in Table 9. In those results where DOLGWO is inferior to GWO, such as F5, F6, F8, F12
and F13, DOLGWO’s performance is very close to GWO. However, when the results of
DOLGWO are better than those of GWO, the DOL strategy brings a big performance
improvement, such as F1, F3, F9, F15, F17 and F22.

Figure 4. The convergence trends of all algorithms on functions F1, F3, F9, F15, F17 and F22.

In most benchmark functions, DOLGWO achieves faster convergence early in compu-
tation and is faster than the GWO algorithm. DOLGWO continues to obtain better results
when other algorithms do not change much. This shows that DOLGWO has strong robust-
ness and adaptability. Hence, DOLGWO has the best performance among all compared
algorithms, which demonstrates that the DOL strategy greatly improves the performance
of the original GWO algorithm.

4.8. Repeat the Experiment and Compare with Other Improved DOL Algorithms

In order to illustrate the superiority of DOLGWO compared to other DOL-improved
algorithms, numerical experiments are done on four algorithms including DOLGWO,
DOLJaya, GWO and Jaya. The experimental conditions of DOLGWO are the same as the
settings of the previous experiment, and the weighting factor w and jumping rate Jr of
DOLJaya are set as 15 and 0.3, respectively.
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The best average convergence results for four functions of DOLGWO are shown in
Figure 5. It can be seen from the results that DOLJaya is better than Jaya and DOLGWO
is significantly outperforming GWO, Jaya and DOLJaya. Among the DOL-improved al-
gorithms, DOLGWO is more effective and advanced. It converges faster than DOLJaya
and can continue to explore new solution spaces to obtain better solutions. Hence, we can
conclude that incorporating the DOL strategy improves the performance of GWO and Jaya
significantly. This is because DOLGWO and DOLJaya have a dynamic and asymmetric
search space, which increases search exploitation and yields excellent convergence perfor-
mance.

Figure 5. The convergence trends of four improved DOL algorithms on functions F11, F12, F16 and F23.

5. Conclusions

In this paper, a new DOLGWO algorithm has been proposed for solving complex
optimization problems. It combines dynamic opposite learning strategy (DOL) with the
GWO algorithm in order to improve convergence speed and robustness. The impacts of pa-
rameter setting and significance testing are also considered in the paper. The performance
of DOLGWO is compared with 10 different algorithms, including 4 basic algorithms, 5
improved meta-heuristic algorithms and 1 improved DOL algorithm for 23 benchmark
functions. The proposed DOLGWO algorithm mostly performs better than other partici-
pants. It converges faster and can continue to explore new solution spaces to obtain better
solutions. This shows that DOLGWO has strong robustness and adaptability. Due to the
dynamics and asymmetry characteristics of the DOL strategy, the convergence speed and
searching exploitation of DOLGWO algorithm are obviously improved. In future work,
DOLGWO algorithm will be applied to the actual short-term hydropower scheduling
problem to further verify the performance of the algorithm.
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