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Abstract: We consider autonomous conservative dynamical systems which are constrained with
the condition that the total energy of the system has a specified value. We prove a theorem which
provides the quadratic first integrals (QFIs), time-dependent and autonomous, of these systems in
terms of the symmetries (conformal Killing vectors and conformal Killing tensors) of the kinetic
metric. It is proved that there are three types of QFIs and for each type we give explicit formulae for
their computation. It is also shown that when the autonomous QFIs are considered, then we recover
the known results of previous works. For a zero potential function, we have the case of constrained
geodesics and obtain formulae to compute their QFIs. The theorem is applied in two cases. In the
first case, we determine potentials which admit the second of the three types of QFIs. We recover
a superintegrable potential of the Ermakov type and a new integrable potential whose trajectories
for zero energy and zero QFI are circles. In the second case, we integrate the constrained geodesic
equations for a family of two-dimensional conformally flat metrics.

Keywords: quadratic first integrals; autonomous conservative dynamical systems; conformal Killing
vectors; conformal Killing tensors; constrained dynamical systems; constrained geodesics; integrable
potentials; superintegrable potentials

1. Introduction

We consider autonomous conservative dynamical systems of the form

q̈a = −Γa
bc(q)q̇

b q̇c −V,a(q) (1)

which are subjected to the fixed energy constraint

1
2

γab(q)q̇a q̇b + V(q) = E0 (2)

where qa with a = 1, 2, . . . , n are the generalized coordinates of the configuration space
of the system, n is the dimension of the configuration space, a dot over a letter indicates
derivation with respect to (wrt) the parameter t (time) along the trajectory qa(t), a comma
denotes partial derivative, Γa

bc(q) are the Riemannian connection coefficients defined by
the kinetic metric γab(q) of the system, V(q) is the potential function of the system and E0
is a fixed constant (i.e., the total energy –Hamiltonian– of the system). Moreover, Einstein’s
summation convention is applied and the kinetic metric γab(q) is used for lowering/raising
the tensorial indices.
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This type of constrained systems is of particular interest in many areas of physics.
For example, in astrophysics and celestial mechanics, autonomous conservative systems
with a fixed energy are used in order to model the galactic motion. In such studies (see
e.g., [1–5]), it is assumed that the galaxy is described by an axisymmetric autonomous
potential and the authors look for a third first integral (FI) in addition to the well-known
FIs of energy and angular momentum. The problem is still open; however, it seems that
additional FIs may exist in certain regions of the energy domain. Similar considerations
have been performed in non-relativistic Quantum Mechanics. Furthermore, in General Rel-
ativity, Equations (1) and (2) with V = 0 define constrained geodesic trajectories (timelike,
spacelike, or null; depending upon the value of E0) in a Riemannian spacetime which have
numerous applications [6,7].

The most important role of the FIs is the assessment of the integrability of a dynamical
system, constrained or not. Therefore, it is important that systematic methods are developed
which will allow the determination of FIs. Concerning the case of the non-quantum
constrained dynamical systems, there have been developed two types of such methods:
(a) The method which uses the dynamical equations directly (see Section 1.1), and (b) The
mini-superspace Lagrangian description (see Section 1.2). Each method follows a different
approach, and its suitability depends on the particular application considered. The general
description of each of these approaches is as follows.

1.1. The Dynamical Equations Method

There are three major approaches in this method which are the following:

1.1.1. The Geodesic Approach

Because the mth-order polynomials in velocities FIs of the geodesic equations in a
Riemannian space are known (see e.g., [8,9]), one transfers the dynamical equations to
the geodesic equations of another Riemannian space. One approach is to introduce two
extra degrees of freedom in the configuration space. This is done by treating the time t
as a generalized coordinate qn+1 = t and by introducing an additional dimension qn+2

via the fixed energy constraint. This approach has been originated by Eisenhart [6] who
defined, in the (n + 2)-dimensional expanded configuration space, the so-called Eisenhart
metric whose geodesic equations produce both the dynamical equations and the energy
constraint. A different approach is the Jacobi geometrization procedure (see e.g., [10,11]).
According to this method, instead of introducing new generalized coordinates, one uses
an energy-dependent reparameterization of the parameter of the dynamical equations to
define a new metric, the Jacobi metric, whose timelike geodesics produce the dynamical
equations and the constraint. The new metric is conformally related to the kinetic metric of
the system with conformal factor the scalar quantity E0 −V(q).

The approach of the Jacobi metric has been applied in [12–15] in order to assess the
integrability of two-dimensional (2d) autonomous conservative systems constrained at
fixed and arbitrary energy. In particular, in [13,14], the integrable and superintegrable
2d Newtonian potentials that admit additional autonomous cubic and quartic FIs have
been determined. However, certain drawbacks exist concerning the Jacobi metric when
one increases the number of degrees of freedom, or the order of the FIs. This is due to
the fact that: i) The conformal Killing vectors (CKVs) and the conformal Killing tensors
(CKTs) of a general metric are not easy to compute, and ii) The Jacobi metric assumes
a reparameterization from the ‘physical time’ of the system to the so-called ‘Jacobi time’
which affects the physical interpretation of the results.

1.1.2. The Lie Symmetry Approach

This is a systematic and interesting approach which has been developed in [16–18]
and is given as follows:
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One considers the unconstrained dynamical Equation (1) and looks for Lie point
symmetries generated by the infinitesimal point transformations:

q̄a(t̄) = qa(t) + ηa(q)ε, t̄ = t + ξ(t)ε (3)

where 0 < ε � 1, the generator ξ(t) = 2
∫

φ(q(t))dt =⇒ ξ̇ = 2φ(q) and the function
φ is evaluated along trajectories. These Lie point symmetries are referred to as trajec-
tory collineations (TCs). It is proved that the generators ηa(q) of the TCs are projective
collineations (PCs) of the kinetic metric γab with projective function φ(q) which is related
to the potential V with the condition:

4φV,a + γabV;bcηc − γbcV,bηa
;c = 0 ⇐⇒ LηV,a + 4φV,a = 0 (4)

where Lη denotes the Lie derivative with respect to ηa (see also [19]). Furthermore, it is
shown that the Lie derivative of a known FI (e.g., the total energy) with respect to a TC
is also a FI. This last result allows for a systematic evaluation of FIs once the TCs have
been determined. These FIs have been called related FIs (RFIs). It is also shown that the
quadratic RFIs share the same structure constants with the Lie algebra of TCs.

In [18], the above approach was extended to the constrained autonomous conservative
dynamical systems in the sense that one requires that the point transformations (3) are
constrained by the further requirement that the energy has a fixed value E0. These new
transformations map constrained solutions into constrained solutions and, hence, they
are Lie point symmetries of the constrained system. These symmetries have been called
natural trajectory collineations (NTCs). It is proved that the generators ηa(q) of the NTCs
are CKVs of the kinetic metric γab with conformal factor φ + c, where c is a constant, which
are constrained by the new ‘selection rule’

V,aηa + 2(φ− c)(V − E0) = 0. (5)

It has been also shown that the formulation of the RFIs holds the same for the NTCs.

1.1.3. The Direct Approach

In this approach, one assumes quadratic FIs (QFIs) of the functional form

I = Kab(t, q)q̇a q̇b + Ka(t, q)q̇a + K(t, q) (6)

where the coefficients are symmetric tensors depending on qa and t. The linear FIs (LFIs)
are also included for Kab = 0.

The condition that (6) is a FI of the constrained system (1) and (2) is

dI
dt

= [ψ(t, q) + Xc(t, q)q̇c]
[
γab q̇a q̇b + 2(V − E0)

]
(7)

where ψ(t, q) is an arbitrary scalar and Xa(t, q) is an arbitrary vector. It is to be noted
that condition (7) is due to Hilbert’s zero-theorem (see Chapter IV, par. 8, pp. 166–167
in [20]). According to this theorem, since dI

dt is a third order polynomial in the velocities
(after replacing q̈a from (1)) and the constraint (2) is quadratic, there exists a first order
(3− 2 = 1) polynomial ψ(t, q) + Xc(t, q)q̇c such that the quantity dI

dt is expressed as in
equation (7). The term ψ(t, q) + Xc(t, q)q̇c plays the role of a ‘Lagrangian multiplier’. Using
the dynamical equations (1) to replace the terms q̈a whenever they appear, condition (7)
leads to a polynomial equation in the velocities q̇a.

At this point, there are two approaches. Either one looks for QFIs which hold for all
values of the velocities on the constraint surface (we call them exact QFIs), or one looks
for QFIs which are non-local, that is, they are valid only on trajectories specified by certain
velocities. In the first approach, one sets all the coefficients of the powers of the velocities
equal to zero and obtains a system of partial differential equations (PDEs) of the unknown
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quantities Kab, Ka, K and the dynamical quantities V(q), E0. The solution of this system of
PDEs provides the exact QFIs I. In the second approach, one does the same for all powers
of the velocities which are of degree equal or higher than two, that is, the terms of zeroth
and first order are excluded. In this case, one finds the conditional QFIs which are non-local
QFIs, that is, they contain quantities within integrals. This is the type of FIs given, e.g.,
in [21–23].

1.2. The Mini-Superspace Lagrangian Method

In this method, one introduces an extra dimension in the configuration space, the
lapse function, and defines the mini-superspace Lagrangian of the system. The Euler–
Lagrange (E-L) equations of this Lagrangian produce the dynamical equations and the
equation of the constraint for E0 = 0. This method is a particular case of a more general
procedure applied on degenerate Lagrangian constrained systems. These are constrained
systems whose Hessian vanishes, i.e., the quantity det ∂2L

∂q̇α∂q̇β = 0 where qα denotes the
generalized coordinates. In this case, a Hamiltonian cannot be defined because the Legendre
transformation has no inverse. Since the Hamiltonian is vital to Quantum Mechanics, the
Dirac–Bergmann prescription has been developed [24–27] to deal with this type of systems.
In general terms, this formalism has as follows. The constraints are equations of the
form φA(q, p) = 0 with A = 1, 2, . . . , r, where r measures the degeneracy of the singular
Lagrangian (i.e., the degeneracy of the Hessian) and pα = ∂L

∂q̇α are the conjugate momenta.
Relations φA(q, p) = 0 are used to eliminate the r degenerate coordinates. These relations
are called primary constraints and their time derivatives, secondary constraints.

Using the primary constraints, one splits the coordinates in two groups. The first
group contains n− r coordinates which define a non-vanishing Hessian, and the second
group contains the remaining r coordinates. This approach leads to conditional FIs which
are non-local, that is, they are expressed in terms of integrals and are generated by the
CKVs and the CKTs instead of the Killing vectors (KVs) and the Killing tensors (KTs) which
generate the exact QFIs. The conditional FIs can be used in the same way as the exact FIs;
for example, in order to integrate the geodesic equations. A detailed and clear discussion
of this approach with applications can be found in [22].

In the present work, we determine the QFIs (6) for the constrained dynamical systems (1)
and (2) by using the direct method and the geometry generated by the kinetic metric of
the system.

The structure of the paper is as follows.
In Section 2, we derive the main result of the present paper which is Theorem 1. It

is shown that there are at most three types of exact QFIs associated with an autonomous
conservative dynamical system constrained on a fixed energy level. Explicit formulae are
given which provide these FIs in terms of the geometric symmetries of the kinetic metric.
We note that these QFIs can be autonomous or time-dependent. In Section 2.1, we consider
the autonomous LFIs and QFIs derived from Theorem 1, and we recover the FIs found
in [18]. In Section 3, we recall the basic facts concerning the CKTs of order two, which are
necessary in the computation of the QFIs of Theorem 1. In Section 4, we apply Theorem 1
to find 2D Newtonian potentials which admit a QFI of the second type I(`)2. We consider
the cases where the vector La(q) is either a HV or a special CKV (SCKV). In the first case,
we obtain a superintegrable potential of the Ermakov type and compute the trajectory
for specific values of the constants. In the second case, we find a new class of integrable
potentials and show that the orbits for E0 = 0 and I(0)2 = 0 are circles. In Section 5, we
specialize Theorem 1 to the case of constrained geodesics and we collect our results in
Theorem 2. Applying Theorem 2, we recover all previous results in the literature (see
e.g., [8,28,29]) for an arbitrary energy level E0, and in Propositions 1 and 2 we determine
the QFIs of null (E0 = 0) and non-null (E0 6= 0) geodesics, respectively. In section 6, we
consider the non-null geodesics of a conformally flat metric and recover the results of [22]
which were found using the rather complicated Dirac–Bergmann prescription. Finally, in
Section 7, we draw our conclusions.
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2. QFIs of Constrained Autonomous Conservative Dynamical Systems with Fixed Energy

We consider autonomous conservative dynamical systems defined by Equations (1)
and (2), and we look for QFIs of the general form (6) defined by the condition (7).

Using the dynamical Equation (1) to replace the quantities q̈a whenever they appear,
condition (7) gives

0 =
(

K(ab;c) − X(aγbc)

)
q̇a q̇b q̇c +

(
Kab,t + K(a;b) − ψγab

)
q̇a q̇b+

+
[
Ka,t + K,a − 2KabV,b − 2(V − E0)Xa

]
q̇a + K,t − KaV,a − 2(V − E0)ψ. (8)

Assuming that there are no constraints on the velocities q̇a, we demand that the
polynomial Equation (8) is satisfied for all values of q̇a; therefore, the coefficient of each
power of q̇a must vanish. This leads to the system of PDEs:

K(ab;c) = X(aγbc) (9)

K(a;b) = ψγab − Kab,t (10)

K,a = 2KabV,b + 2(V − E0)Xa − Ka,t (11)

K,t = KaV,a + 2(V − E0)ψ (12)

where a semicolon denotes Riemannian covariant derivative.
Equation (9) implies that Kab is a CKT of order two of the kinetic metric γab with

associated vector Xa. Contracting (9) with γbc, we find

Xa =
1

n + 2

(
Kb

b;a + 2Kb
a;b

)
. (13)

Contracting Equation (10) with γab, we obtain

ψ =
1
n
(Ka

;a + Ka
a,t). (14)

The system of PDEs (9)–(12) must be supplemented with the integrability conditions
K,[at] = 0 and K;[ab] = 0 for the scalar K. We have:

Ka,tt − 2Kab,tV,b +
(

KbV,b
)

,a
+ 2(V − E0)(ψ,a − Xa,t) = 0 (15)

2
(

K[a|c|V
,c
)

;b]
− K[a;b],t + 2

[
(V − E0)X[a

]
;b]

= 0 (16)

where round (square) brackets indicate symmetrization (antisymmetrization) of
the enclosed indices, and indices enclosed between vertical lines are overlooked by
(anti-)symmetrization symbols.

Finally, the system of PDEs which we have to solve consists of Equations (9)–(12)
and (15)–(16), where the quantities Xa and ψ are given by (13) and (14), respectively.

We state the solution of the above system of PDEs in Theorem 1. The proof is given in
the Appendix A.

Theorem 1. The independent QFIs of the autonomous conservative dynamical system (1) subject
to the fixed energy constraint (2) are the following:

Integral 1.

I(`)1 =

(
−

`

∑
k=1

t2k

2k
L(2k−1)(a;b) + C(0)ab

)
q̇a q̇b +

`

∑
k=1

t2k−1L(2k−1)a q̇a

+
`

∑
k=1

t2k

2k
L(2k−1)aV,a + G(q) (17)
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where C(0)ab(q) and L(2k−1)(a;b)(q) for k = 1, 2, . . . , ` are CKTs with associated vectors X(0)a(q) and
Y(2k−1)a(q), respectively, while the vectors L(2k−1)a(q) and the function G(q) satisfy the conditions:(

L(2`−1)bV,b
)

,a
= −2L(2`−1)(a;b)V

,b − 2(V − E0)Y(2`−1)a (18)(
L(2k−1)bV,b

)
,a

= −2L(2k−1)(a;b)V
,b − 2k(2k + 1)L(2k+1)a

−2(V − E0)Y(2k−1)a, k = 1, 2, . . . , `− 1 (19)

G,a = 2C(0)abV,b + 2(V − E0)X(0)a − L(1)a(` > 0). (20)

Integral 2.

I(`)2 =
`

∑
k=0

(
− t2k+1

2k + 1
L(2k)(a;b) q̇

a q̇b + t2kL(2k)a q̇a +
t2k+1

2k + 1
L(2k)aV,a

)
(21)

where L(2k)(a;b)(q) for k = 0, 1, . . . , ` are CKTs with associated vectors Y(2k)a(q) and the vectors
L(2k)a(q) satisfy the conditions:(

L(2`)bV,b
)

,a
= −2L(2`)(a;b)V

,b − 2(V − E0)Y(2`)a (22)(
L(2k)bV,b

)
,a

= −2L(2k)(a;b)V
,b − 2(k + 1)(2k + 1)L(2k+2)a

−2(V − E0)Y(2k)a, k = 0, 1, . . . , `− 1. (23)

Integral 3.
I(e) = eλt

(
−L(a;b) q̇

a q̇b + λLa q̇a + LaV,a
)

(24)

where λ 6= 0 is an arbitrary constant and L(a;b)(q) is a reducible CKT with associated vector Ya(q)
such that (

LbV,b
)

,a
= −2L(a;b)V

,b − λ2La − 2(V − E0)Ya. (25)

Notation: In I(`)α with α = 1, 2, the index (`) indicates the degree of the time-dependence,
whereas the index α is used in order to distinguish between the two different types of independent
QFIs. Moreover, in Equation (20), the quantity L(1)a(` > 0) indicates that the vector L(1)a exists
only when m > 0.

We note that in the case that the involved second order CKTs of Theorem 1 are KTs, the
associated vectors X(0)a and Y(N)a vanish and Theorem 1 reduces to Theorem 3 of [29] for
Qa = −V,a. Then, the associated independent QFIs hold for an arbitrary energy level E0.

2.1. The Autonomous LFIs/QFIs of Theorem 1

Theorem 1 contains only two autonomous FIs. These are the following:

a. The QFI
J1 = Cab(q)q̇a q̇b + G(q) (26)

where Cab is a second order CKT with associated vector Xa(q) such that G,a =
2CabV,b + 2(V − E0)Xa.
The QFI (26) is derived from the FI I(`)1 given in (17) for time-dependence ` = 0. To
simplify the notation, we have set C(0)ab = Cab and X(0)ab = Xab.

b. The LFI
J2 = La(q)q̇a (27)

where La is a CKV with conformal factor ψ(q) such that LaV,a = −2(V − E0)ψ.



Symmetry 2022, 14, 1870 7 of 28

The LFI (27) is derived from the FI I(`)2 given in (21) for time-dependence ` = 0 if we
assume that L(0)a ≡ La(q) is a CKV with conformal factor ψ(q). Indeed, we have

L(a;b) = ψγab =⇒ Y(0)a = ψ,a

and the condition(
LbV,b

)
,a
= −2ψγabV,b − 2(V − E0)ψ,a =⇒ LaV,a + 2(V − E0)ψ = c = const.

Therefore, the associated QFI becomes

I(0)2 = t
(
−ψγab q̇a q̇b + LaV,a

)
+ La q̇a = t[2(V − E0)ψ + LaV,a] + La q̇a = La q̇a + ct

which for c = 0 gives the autonomous LFI (27).

The autonomous FIs (26) and (27) are those found in Section VI of [18]. In particular:
a. The QFI (26) coincides with Equation (6.5) of [18] and the additional conditions are
Equations (6.6) and (6.7); b. The LFI (27) coincides with Equation (6.1) of [18] and the addi-
tional conditions are Equations (6.3) and (6.4). Moreover, the QFI given in Equation (4.7)
of [30] is derived from the QFI (26) for G = E0 = 0. We note that the authors in [30]
determine this QFI by using the contact symmetries of the constrained system in the
mini-superspace Lagrangian formalism.

3. Conformal Killing Tensors (CKTs) of Order Two

In this section, we recall some basic results concerning the CKTs which will be used in
applications of Theorem 1 to be considered in the next sections.

A second order CKT [31] in an m-dimensional Riemannian manifold with local coordi-
nates xa and metric gab(x) is a symmetric tensor Uab such that

U(ab;c) = u(agbc) ⇐⇒ U{ab;c} = u{agbc} (28)

where ua is the vector associated to the CKT Uab and curly brackets denote cyclic permuta-
tion of the enclosed indices.

By contracting (28) with gab, we find the vector

ua =
1

m + 2

(
U;a + 2Ub

a;b

)
(29)

where U ≡ Ua
a is the trace of Uab and m is the dimension of the manifold. The following

terminology and results apply to CKTs:

a. If ua = 0, Uab is a second order KT or an improper CKT.
b. If ua 6= 0, Uab is called a proper CKT.
c. If ua is a KV, Uab is called a homothetic KT (HKT) [32].
d. If the trace U = 0, then ua =

2
m+2 Ub

a;b and Uab is called a trace-free CKT.
e. If ua is a gradient (i.e., ua = u,a where u = u(x) is a scalar), then Uab is called a CKT

of gradient type.
f. If f is an arbitrary function, then Ūab = Uab + f gab is a CKT with associated vector

ūa = ua + f;a.
g. If Uab is a CKT of gradient type, then Cab = Uab − ugab is a second order KT.

We can construct new CKTs as follows:

(i) If f is an arbitrary function, then f gab is a gradient CKT with associated vector f,a.
(ii) If Xa and Ya are CKVs with conformal factors, respectively, ψX and ψY, then the

symmetrized tensor product X(aYb) is a CKT with associated vector ψXYa + ψYXa.



Symmetry 2022, 14, 1870 8 of 28

(iii) If Tab and T̄ab are CKTs with associated vectors, respectively, Va and Wa, then the
linear combination λTab + µT̄ab, where λ and µ are arbitrary constants, is a CKT with
associated vector λVa + µWa.

From (i)–(iii), we get the following general result [31,33,34].
If an m-dimensional manifold admits M CKVs XKa with conformal factors ψK where

K = 1, 2, . . . , M, then
Uab = f gab + cKLXK(aX|L|b) (30)

is a CKT with associated vector

ua = f,a + cKL(ψKXLa + ψLXKa) (31)

where f is an arbitrary function, cKL are arbitrary constants and the summation is over the
inequality 1 ≤ K ≤ L ≤ M. In flat spaces, all second order CKTs are of the form (30).

4. Example 1: Constrained Orbits of Potentials V(x, y) in E2 that Admit FIs of the Form
I(0)2 at Fixed Energy E0 = 0

In this case, the generalized coordinates qa = (x, y), the kinetic metric γab = δab
= diag(1, 1), the fixed energy level E0 = 0 and the constraint (2) becomes

γab q̇a q̇b + 2V = 0 =⇒ ẋ2 + ẏ2 + 2V = 0. (32)

We note that we can always insert the value of the constant E0 into the potential; therefore,
the case E0 = 0 has no effect on the generality of our discussion.

For time-dependence ` = 0 and fixed energy E0 = 0, the FI (21) becomes (To simplify
the notation, we set L(0)a(q) ≡ La(q))

I(0)2 = −tL(a;b) q̇
a q̇b + La q̇a + tLaV,a (33)

where L(a;b) is a second order CKT of δab with associated vector Ya such that(
LbV,b

)
,a
= −2L(a;b)V

,b − 2VYa. (34)

We consider various cases concerning the vector La.

4.1. La = (x, y) Is the Homothetic Vector (HV)

If the vector La = (x, y) is the HV of E2, then L(a;b) = δab and Ya = 0.
Using the constraint (32), the QFI (33) reduces to the LFI

I(0)2 ≡ I2 = −t (ẋ2 + ẏ2)︸ ︷︷ ︸
=−2V

+xẋ + yẏ + t(xV,x + yV,y) = xẋ + yẏ + ct = rṙ + ct (35)

and the condition (34) becomes

xV,x + yV,y + 2V = c (36)

where we have set I(0)2 ≡ I2, r2 = x2 + y2 and c is an arbitrary constant.
Solving the PDE (36), we find the potential

V(x, y) =
F
( y

x
)

r2 +
c
2

(37)

where F is an arbitrary smooth function of its argument.
The potential (37) admits also the Ermakov QFI (see e.g., [35,36])

I1 = (xẏ− yẋ)2 + 2F; (38)
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therefore, it is superintegrable. Using the FIs (35) and (38), the constraint (32) becomes:

ẋ2 + ẏ2 +
2F
r2 + c = 0 =⇒ (xẋ + yẏ)2 + (xẏ− yẋ)2 + 2F + cr2 = 0 =⇒

(I2 − ct)2 + I1 + cr2 = 0 (39)

where I1 and I2 are arbitrary constants.
Integrating the LFI (35), we find(
r2
)·

= 2(I2 − ct) =⇒ r2 = −ct2 + 2I2t + c1 =⇒ r(t) =
√
−ct2 + 2I2t + c1 (40)

where c1 is an arbitrary constant.
Replacing (40) in (39), we get the condition

I1 = −I2
2 − cc1. (41)

Using polar coordinates x = r cos θ and y = r sin θ, and conditions (40) and (41), the
Ermakov QFI (38) is written

r2θ̇ =
√
−I2

2 − cc1 − 2F =⇒ θ̇ =

√
−I2

2 − cc1 − 2F

−ct2 + 2I2t + c1
. (42)

Because F is a function of y
x = tan θ, i.e., F(tan θ), Equation (42) cannot be integrated to

give θ(t).
In order to integrate (42), we assume c = 0 and F = k = const. Then, the potential (37)

reduces to the well-known Newton–Cotes potential (see e.g., [37,38])

V =
k
r2 (43)

and Equations (40) and (42) give the solution:

r(t) =
√

2I2t + c1, θ(t) =

√
−1

4
− k

2I2
2

ln(2I2t + c1) + θ0 (44)

which implies the orbit (with energy E0 = 0!)

r = AeBθ (45)

where θ0 is an integration constant, B ≡ 1√
−1− 2k

I2
2

and A ≡ e−Bθ0 . It has been checked that

the solution (44) satisfies the polar Euler–Lagrange equation r̈ = rθ̇2 + 2k
r3 .

The orbit (45) is a logarithmic spiral (or miraculous spiral) which has the following
properties: (a) For B > 0, the size of the spiral increases outward as θ increases. (b) For
B < 0, the size of the spiral decreases inward as θ increases.

We note that for the potential (43), Equation (42) produces the LFI of the angular
momentum (as expected for a central potential).

4.2. La Is a Special CKV (SCKV)

It is well-known that E2 admits two SCKVs:

(i) B(1)a =

(
x2−y2

2
xy

)
with conformal factor ψ1 = x.

(ii) B(2)a =

(
xy

y2−x2

2

)
with conformal factor ψ2 = y.
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We assume that the vector La =

(
x2−y2

2
xy

)
is the SCKV B(1)a of E2 with conformal

factor ψ = x. Then, L(a;b) = xδab and Ya = ψ,a = (1, 0).
Using the constraint (32), we find that the QFI (33) reduces to the LFI

I(0)2 = −tx
(

ẋ2 + ẏ2
)

︸ ︷︷ ︸
=−2V

+
x2 − y2

2
ẋ + xyẏ + t

(
x2 − y2

2
V,x + xyV,y

)

=
x2 − y2

2
ẋ + xyẏ + ct (46)

and the associated condition (34) becomes

x2 − y2

2
V,x + xyV,y + 2xV = c (47)

where c is an arbitrary constant.
For c = 0, the PDE (47) gives the potential

V =
M
(

y
r2

)
r4 (48)

where r2 = x2 + y2 and M is an arbitrary smooth function of its argument, the LFI (46) becomes

I(0)2 =
x2 − y2

2
ẋ + xyẏ (49)

and the constraint (32) is written

ẋ2 + ẏ2 +
2M
r4 = 0. (50)

We can use the LFI (49) and the zero energy constraint (50) in order to find an orbit
with E0 = 0 for the integrable potential (48).

First, we assume the additional requirement I(0)2 = 0. Then, the LFI (49) becomes

x2 − y2

2
ẋ + xyẏ = 0. (51)

Using polar coordinates, Equation (51) gives:

cos θṙ + r sin θθ̇ = 0 =⇒ (ln r)· = − tan θθ̇ =⇒ ln r = −
∫

tan θdθ =⇒

r = c1 cos θ (52)

where c1 6= 0 is an arbitrary constant. The orbits (52) are circles with center ( c1
2 , 0) and

radius |c1|
2 . Indeed, we have

r = c1 cos θ =⇒ r2 = c1r cos θ =⇒ x2 + y2 = c1x =⇒
(

x− c1

2

)2
+ y2 =

c2
1

4
.

In order to compute the θ(t), we use the constraint (50) which is written

ṙ2 + r2θ̇2 +
2M
(

sin θ
r

)
r4 = 0. (53)
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Replacing the orbit (52) in (53), we obtain

θ̇2 = −
2M
(

tan θ
c1

)
c6

1 cos4 θ
=⇒ t− t0 = c3

1

∫ cos2 θdθ√
−2M

(
tan θ

c1

) (54)

where t0 is an integration constant.
Therefore, at the fixed energy E0 = 0, we have found the new class of integrable

potentials (48) and we have shown that for I(0)2 = 0 the orbits of these potentials are circles.

5. The LFIs/QFIs of the Constrained Geodesic Equations

Another important area in which we apply Theorem 1 is the determination of the LFIs
and QFIs of the constrained geodesic equations in an n-dimensional Riemannian manifold
with metric γab(q). In this case, V = 0 and Theorem 1 takes the following form.

Theorem 2. The independent QFIs of the geodesic equations

q̈a + Γa
bc(q)q̇

b q̇c = 0 (55)

subject to the quadratic constraint
γab(q)q̇a q̇b = 2E0 (56)

where Γa
bc are the Riemannian connection coefficients defined by the metric γab(q) and E0 is an

arbitrary fixed constant, are the following:
Integral 1.

I(`)1 =

(
−

`

∑
k=1

t2k

2k
L(2k−1)(a;b) + C(0)ab

)
q̇a q̇b +

`

∑
k=1

t2k−1L(2k−1)a q̇a + G(q) (57)

where C(0)ab(q) and L(2k−1)(a;b)(q) for k = 1, 2, . . . , ` are CKTs with associated vectors X(0)a(q) and
Y(2k−1)a(q), respectively, while the vectors L(2k−1)a(q) and the function G(q) satisfy the conditions:

E0Y(2`−1)a = 0 (58)

E0Y(2k−1)a = k(2k + 1)L(2k+1)a, k = 1, 2, . . . , `− 1 (59)

G,a = −2E0X(0)a − L(1)a(` > 0). (60)

Integral 2.

I(`)2 =
`

∑
k=0

(
− t2k+1

2k + 1
L(2k)(a;b) q̇

a q̇b + t2kL(2k)a q̇a

)
(61)

where L(2k)(a;b)(q) for k = 0, 1, . . . , ` are CKTs with associated vectors Y(2k)a(q) and the vectors
L(2k)a(q) satisfy the conditions:

E0Y(2`)a = 0 (62)

E0Y(2k)a = (k + 1)(2k + 1)L(2k+2)a, k = 0, 1, . . . , `− 1. (63)

Integral 3.
I(e) = eλt

(
−L(a;b) q̇

a q̇b + λLa q̇a
)

(64)

where λ 6= 0 is an arbitrary constant and L(a;b)(q) is a reducible CKT with associated vector Ya(q)
such that

La =
2E0

λ2 Ya. (65)

When there is no constraint of the form (56), that is, the value of E0 is arbitrary, the
CKTs of Theorem 2 reduce to KTs (i.e., the associated vectors X(0)a = Y(k)a = 0) and, as
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expected, the QFIs of Theorem 2 produce the well-known ones (see [8], Table IV of [28],
and Section X, par. A in [29]).

5.1. The QFIs for Null Constrained Geodesic Equations: Case E0 = 0

Applying Theorem 2 for E0 = 0, we find the following result.

Proposition 1. The independent QFIs of the null geodesic equations

q̈a + Γa
bc(q)q̇

b q̇c = 0, (66)

that is, subject to the constraint
γab(q)q̇a q̇b = 0 (67)

where Γa
bc are the Riemannian connection coefficients defined by the metric γab(q), are the following:

I1 = Cab q̇a q̇b, I2 =
t2

2
G;ab q̇a q̇b − tG,a q̇a + G(q), I3 = −tL(a;b) q̇

a q̇b + La q̇a (68)

where the quantities Cab, G;ab and L(a;b) are second order CKTs of γab.

Comparing the QFIs (68) for null geodesics with the three QFIs of Table 4 in [28] for
unconstrained geodesics, we may be tempted to say that they are the same. However, such
a claim is not correct! Observe that in the former case the involved second order symmetric
tensors are CKTs; whereas, in the latter case, they are KTs and the corresponding QFIs hold
for an arbitrary E0. This fundamental difference lies in the fact that the null geodesics are
subject to the constraint (67).

5.2. The QFIs of Non-Null (Spacelike or Timelike) Constrained Geodesic Equations: Case E0 6= 0

Applying Theorem 2 for E0 6= 0, we have the following result.

Proposition 2. The independent QFIs of the geodesic equations

q̈a + Γa
bc(q)q̇

b q̇c = 0 (69)

subject to the quadratic constraint

γab(q)q̇a q̇b = 2E0 6= 0 (70)

where Γa
bc are the Riemannian connection coefficients defined by the metric γab(q) and E0 6= 0 is an

arbitrary fixed constant, are the following:
Integral 1.

I(`)1 =

(
−

`

∑
k=1

t2k

2k
L(2k−1)(a;b) + C(0)ab

)
q̇a q̇b +

`

∑
k=1

t2k−1L(2k−1)a q̇a + G(q) (71)

where L(2`−1)(a;b)(q) is a KT, C(0)ab(q) and L(2k−1)(a;b)(q) for k = 1, 2, . . . , `− 1 are CKTs with

associated vectors X(0)a(q) and Y(2k−1)a =
k(2k+1)

E0
L(2k+1)a, respectively, and the function G(q) is

such that
G,a = −2E0X(0)a − L(1)a(` > 0). (72)

Integral 2.

I(`)2 =
`

∑
k=0

(
− t2k+1

2k + 1
L(2k)(a;b) q̇

a q̇b + t2kL(2k)a q̇a

)
(73)

where L(2`)(a;b) is a KT and L(2k)(a;b)(q) for k = 0, 1, . . . , `− 1 are CKTs with associated vectors

Y(2k)a =
(k+1)(2k+1)

E0
L(2k+2)a.
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Integral 3.
I(e) = eλt

(
−L(a;b) q̇

a q̇b + λLa q̇a
)

(74)

where λ 6= 0 is an arbitrary constant and L(a;b)(q) is a reducible CKT with associated vector

Ya =
λ2

2E0
La.

In the following section, we apply the results of Section 5 to a number of cases
considered in [22], and we show that we recover the answers without using the complex
arguments of the mini-superspace Lagrangian method and the conditional FIs.

6. Example 2: The Non-Null Constrained Geodesic Equations of the Metric

γab = f (x, y)
(

0 1
1 0

)
Consider the constrained dynamical system of two degrees of freedom qa = (x, y),

which is described by the dynamical equations:

ẍ +
f,x

f
ẋ2 = 0 (75)

ÿ +
f,y

f
ẏ2 = 0 (76)

f (x, y)ẋẏ = E0. (77)

Equations (75) and (76) are subjected to the quadratic constraint (77), where f (x, y) is an
arbitrary smooth function and E0 is a non-zero fixed constant.

From the constraint Equation (77), we read the 2d metric

γab = f (x, y)
(

0 1
1 0

)
. (78)

We calculate that the Riemann tensor is

R1212 = f,xy −
f,x f,y

f
=

R
2

γ1212 (79)

where γabcd ≡ γacγbd − γadγbc and γ1212 = − f 2. However, the metric (78) is not in general
a metric of constant curvature because the Ricci scalar R is not constant.

The non-vanishing Riemannian connection coefficients for the metric (78) are Γ1
11 = f,x

f

and Γ2
22 =

f,y
f . We note then that the dynamical Equations (75) and (76) are the geodesic

Equation (69) of the metric (78) provided t is the affine parameter. The constraint Equation (77)
is of the required form (70).

The metric (78) has been discussed for various cases of the function f (x, y) in [22],
using the rather complicated method of Dirac constraints [26,27] and the associated condi-
tional FIs. Our purpose here is to solve these cases, using the FIs of Proposition 2.

We shall need the CKVs of the metric (78) in order to compute from them the KVs and
the CKTs of this metric. For the metric (78), we find the two-parameter family of CKVs

Ba = f (x, y)
(

F1(y)
F2(x)

)
=⇒ B = Ba∂a = F2(x)∂x + F1(y)∂y (80)

whose conformal factor

ψ(x, y) =
F2 f,x + F1 f,y + f

(
dF1
dy + dF2

dx

)
2 f

(81)

where F1(y) and F2(x) are arbitrary smooth functions.
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Using the general formulae (30) and (31), we construct for the metric (78) the second
order CKT

Cab = f 2(x, y)
(

A1(y) 0
0 A2(x)

)
(82)

with associated vector

Xa =

(
f,y A1(y) +

f
2

dA1
dy

f,x A2(x) + f
2

dA2
dx

)
(83)

where A1(y) and A2(x) are arbitrary smooth functions.
To find the KVs, we require ψ = 0. Then, condition (81) implies that

F2 f,x + F1 f,y + f
(

dF1

dy
+

dF2

dx

)
= 0. (84)

6.1. The Case of a Space of Constant Curvature: LFIs

We require the metric (78) to be a metric of constant curvature. Since the metric (78)
is 2d and satisfies the condition (79), it must also satisfy the additional requirement that
R = const.

Without loss of generality, we set R = − 4
k where k 6= 0 is an arbitrary non-zero

constant. Replacing this R in (79), we get the non-linear PDE:

f,xy −
f,x f,y

f
− 2 f 2

k
= 0 (85)

whose solution is f (x, y) = k
(x+y)2 . Therefore, the metric of constant curvature is

γab =
k

(x + y)2

(
0 1
1 0

)
. (86)

The constrained system (75)–(77) becomes:

ẍ− 2
x + y

ẋ2 = 0 (87)

ÿ− 2
x + y

ẏ2 = 0 (88)

k
(x + y)2 ẋẏ = E0 (89)

A space of constant curvature has three KVs. Therefore, the system of the constrained
geodesic Equations (87)–(89) admits three independent LFIs and, as a result, it is superinte-
grable. To find the KVs, we use Equation (84) which in this case becomes

x
dF1

dy
+ y

dF2

dx
+

(
y

dF1

dy
− 2F1

)
+

(
x

dF2

dx
− 2F2

)
= 0. (90)

From the leading terms x dF1
dy and y dF2

dx in (90), we deduce that the function F1(y) must be of
the form

F1(y) = c1y2 + c2y + c3 (91)

where c1, c2, c3 are arbitrary constants.
Replacing (91) in (90), we find

F2(x) = −c1x2 + c2x− c3. (92)
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Substituting the functions (91) and (92) in (80), we find for the metric (86) the following
three KVs (one for each constant ci, i = 1, 2, 3):

L(1)a =
k

(x + y)2

(
y2

−x2

)
, L(2)a =

k
(x + y)2

(
y
x

)
, L(3)a =

k
(x + y)2

(
1
−1

)
. (93)

Replacing the KVs (93) in the FI (73) for ` = 0, we find the following three LFIs:

I1 =
k

(x + y)2

(
y2 ẋ− x2ẏ

)
, I2 =

k
(x + y)2 (yẋ + xẏ), I3 =

k
(x + y)2 (ẋ− ẏ). (94)

These LFIs establish the superintegrability of the geodesic Equations (87) and (88).

Integration of the Constrained Geodesics (87)–(89)

To simplify the notation, we introduce the constants a0 = E0
k 6= 0 and aD = ID

k with
D = 1, 2, 3.

Then, the fixed energy constraint (89) and the LFIs (94) are written:

a0(x + y)2 = ẋẏ (95)

a1(x + y)2 = y2 ẋ− x2ẏ (96)

a2(x + y)2 = yẋ + xẏ (97)

a3(x + y)2 = ẋ− ẏ. (98)

Solving Equations (97) and (98) wrt ẋ and ẏ, we find that:

ẋ = (a2 + a3x)(x + y) (99)

ẏ = (a2 − a3y)(x + y). (100)

Replacing (99) and (100) in the remaining Equations (95) and (96), we obtain, respec-
tively, the following:

a0 = (a2 − a3y)(a2 + a3x) (101)

0 = (a3x + a2)y2 + (a3x2 − a1)y− x(a2x + a1). (102)

Solving the quadratic algebraic Equation (102) wrt y, we find the solution

y =
a2x + a1

a3x + a2
. (103)

We note that the solution y = −x is not acceptable, because of the requirement x + y 6= 0;
otherwise, the function f = k

(x+y)2 is not well-defined.
Replacing (103) into (101), we obtain the relation

a0 = a2
2 − a1a3 6= 0 (104)

where a0 is a non-zero constant fixed by the energy E0 of the geodesics. This means that
the constants a1, a2 and a3 take only those values which satisfy the relation (104) as fixed
by the ‘energy’ constant a0. We note also that the orbit (103) coincides with Equation (6.17)

of [22], if we rename the constants as follows: a1 = ∓κ2
2

√
2κ2

1 − R, a2 =
√

2κ1κ2 and

a3 = ∓
√

2κ2
1 − R.

Replacing the orbit (103) in (99), we find:

ẋ = a3x2 + 2a2x + a1 =⇒ t =
∫ dx

a3x2 + 2a2x + a1
. (105)
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There are two cases to be considered.

(a) Case a3 = 0.

In this case, from Equations (103) and (105), we find the parametric geodesic solutions:

x(t) = c1e2a2t + c2, y(t) = c1e2a2t − c2 (106)

where c1 is an arbitrary constant and the constant c2 ≡ − a1
2a2

. Equation (104) implies
that the constant a2 is fixed by the energy constraint a0 = a2

2 6= 0, while the remaining
Equation (100) is satisfied identically.

(b) Case a3 6= 0.

In this case, from Equations (103) and (105), we find the parametric geodesic solutions:

x(t) =
√
−a0

a3
tan
(√
−a0t + c0

)
− a2

a3
, y(t) =

√
−a0

a3

1
tan(
√
−a0t + c0)

+
a2

a3
(107)

where c0 is an arbitrary constant and a0 = a2
2 − a1a3 < 0. From Equation (104), the constant

a1 =
a2

2
a3
− a0

a3
, while the remaining Equation (100) is satisfied identically.

Remark 1. The choice f (x, y) = x made in [22] (see Section 6, Equation (6.1)) leads to the
flat Lorentzian metric and the solution of the geodesic equations is straightforward. Indeed, the
coordinate transformation qa = (x, y)→ q̄a = (u, v) given by the relations:

u = y− x2

4
, v = y +

x2

4

brings the metric γab =

(
0 x
x 0

)
to its canonical form ηab = diag(−1,+1).

In the coordinates (u, v), the solution of the constrained geodesic equations is:

u(t) = k1t + k2, v(t) = k3t + k4

where k1, k2, k3 and k4 are arbitrary constants, while the associated quadratic constraint (70)
implies that

ηab ˙̄qa ˙̄qb = 2E0 6= 0 =⇒ −u̇2 + v̇2 = 2E0 =⇒ E0 =
1
2

(
k2

3 − k2
1

)
.

Therefore, in this case, the application of neither the exact nor the conditional FIs is necessary.

6.2. The Case of a Metric That Does Not Possess KVs: QFIs

In this case, we shall use the QFI I(`)1 given in (71) for ` = 0 (To simplify the notation,
we set C(0)ab = Cab(q) and X(0)a = Xa(q)), that is,

I(0)1 = Cab(q)q̇a q̇b + G(q) (108)

where Cab is a CKT of the metric (78) with associated vector Xa(q) and the function G(q) is
such that

G,a = −2E0Xa. (109)

Replacing Cab from (82) in (108), the QFI is written

I(0)1 = f 2
[

A1(y)ẋ2 + A2(x)ẏ2
]
+ G(q). (110)
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Replacing Xa from (83) in the condition (109), we obtain the following system of PDEs:

G,x = −2E0

[
f,y A1(y) +

f
2

dA1

dy

]
, G,y = −2E0

[
f,x A2(x) +

f
2

dA2

dx

]
. (111)

Taking the integrability condition G,[xy] = 0 of the function G(x, y), we find the second
order PDE:

f,yy A1(y)− f,xx A2(x) +
3
2

(
f,y

dA1

dy
− f,x

dA2

dx

)
+

f
2

(
d2 A1

dy2 −
d2 A2

dx2

)
= 0. (112)

Equation (112) cannot be solved in full generality because it has three unknown
functions f (x, y), A1(y) and A2(x); therefore, it is an overdetermined PDE. In order to find
a solution, we must fix two of the three unknowns.

First, we choose f (x, y) = −x3ey(x + ey).
For this choice, the metric (78) is (see Equation (6.26) of [22])

γab = −x3ey(x + ey)

(
0 1
1 0

)
(113)

with Ricci scalar R = − 2
x3(x+ey)3 and Riemann tensor R1212 = x3e2y

x+ey . The metric (113) does
not possess KVs (or non-trivial second order KTs) and, therefore, to assess the integrability
of its corresponding constrained geodesics, we should focus to the proper CKVs and CKTs.

The constrained system (75)–(77) becomes:

ẍ +

(
1

x + ey +
3
x

)
ẋ2 = 0 (114)

ÿ +

(
ey

x + ey + 1
)

ẏ2 = 0 (115)

−x3ey(x + ey)ẋẏ = E0. (116)

In order to solve (112), we have to fix either A1(y) or A2(x). We choose A2(x) = 0
and the PDE (112) gives the first degree polynomial in x(

A1 +
3
2

dA1

dy
+

1
2

d2 A1

dy2

)
x + ey

(
4A1 + 3

dA1

dy
+

1
2

d2 A1

dy2

)
= 0 (117)

whose solution is A1(y) = e−2y. We note that if instead of A2(x) = 0 we had chosen
A1(y) = 0, the PDE (112) would have given the trivial solution A2(x) = 0

Having fixed the three unknown functions:

f (x, y) = −x3ey(x + ey), A1(y) = e−2y, A2(x) = 0 (118)

the system of PDEs (111) becomes:

G,x = 2E0x3, G,y = 0 (119)

from which we find the function
G =

E0

2
x4. (120)

Replacing (118) and (120) in (110), we find for the constrained non-null geodesic
Equations (114)–(116) the QFI

I1 = x6(x + ey)2 ẋ2 +
E0

2
x4. (121)



Symmetry 2022, 14, 1870 18 of 28

Using the QFI (121) and the quadratic constraint (116), the constrained non-null
geodesics (114)–(116) can be integrated as follows.

First, we assume that I1 = 0. Then, the QFI (121) gives

E0 = −2x2(x + ey)2 ẋ2. (122)

Replacing (122) in the constraint (116), we find the trajectory

ẏ
ẋ
=

2(x + ey)

xey =⇒ dy
dx

=
2(x + ey)

xey =⇒ y = ln
(

c1x2 − 2x
)

. (123)

where c1 is a constant. This result coincides with Equation (6.27c) of [22].
Moreover, replacing (123) in (122), we find(

c1x3 − x2
)2

ẋ2 = −E0

2
> 0 (124)

since E0 6= 0. Therefore, E0 < 0 and Equation (124) implies that

∫ (
c1x3 − x2

)
dx = ±

√
−E0

2

∫
dt =⇒ t = ±

√
− 2

E0

(
c1

4
x4 − x3

3

)
+ t0 (125)

where t0 is an integration constant.

Remark 2. As we have seen, t is the affine parameter of the geodesics. If we assume E0 = − 1
2 and

a reparameterization t = t(τ) such that in the new parameter x(τ) = τ, Equation (125) determines
the parameter transformation

dt
dτ

= ±2τ2(c1τ − 1) ≡ N(τ).

The function N(τ) is the lapse function of the corresponding mini-superspace Lagrangian (see
Equation (6.27a) of [22]).

6.3. The Case of a Class of Integrable Lorentzian Toda Systems: QFIs

Another case where QFIs are required is a class of 2d integrable Lorentzian Toda
systems [39] which is equivalent to the constrained dynamical system (75)–(77) for (see
Equation (6.35) of [22])

f (x, y) = k1e
√

2[b1x+(b2−b1)y] + k2e
1√
2
(b1x+b3y) (126)

where k1, k2, b1, b2, b3 are arbitrary non-zero constants and b1 6= b2.
In this case, the metric (78) is

γab =

(
k1e
√

2[b1x+(b2−b1)y] + k2e
1√
2
(b1x+b3y)

)(
0 1
1 0

)
. (127)

We note that this metric is in fact the Jacobi metric of the system, and it is flat only when
b3 = 2(b2 − b1).

In order to solve (112), we choose A1(y) = 0. Then, the PDE (112) gives A2(x) =

e−
√

2b1x.
Having fixed the three unknown functions:

f (x, y) = k1e
√

2[b1x+(b2−b1)y] + k2e
1√
2
(b1x+b3y), A1(y) = 0, A2(x) = e−

√
2b1x (128)
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the system of PDEs (111) becomes:

G,x = 0, G,y = −
√

2k1b1E0e
√

2(b2−b1)y (129)

from which we find the function

G =
k1b1E0

b1 − b2
e
√

2(b2−b1)y. (130)

Replacing (128) and (130) in (110), we find for the constrained non-null geodesic
Equations (75)–(77) with f (x, y) given by (126) the QFI

I1 =

(
k1e
√

2[b1x+(b2−b1)y] + k2e
1√
2
(b1x+b3y)

)2
e−
√

2b1x ẏ2 +
k1b1E0

b1 − b2
e
√

2(b2−b1)y. (131)

Using the QFI (131) and the corresponding quadratic constraint, the integration of the
constrained non-null geodesics for I1 = 0 is straightforward (see previous examples). We
conclude that the conditional LFI used in [22] is again not necessary because we can solve
the problem by using instead the exact QFI (131).

7. Conclusions

The assessment of the integrability of a dynamical system requires the knowledge of
‘enough’ in number (functionally) independent FIs in involution. In this work, we have
considered constrained autonomous conservative dynamical systems where the constraint
is a specified value of the total energy. This constraint defines in the configuration space a
surface on which the trajectories of the dynamical system evolve. We proved a theorem
which allows the systematic determination of autonomous and time-dependent exact QFIs
of these constrained dynamical systems in terms of the symmetries of the kinetic metric;
the latter being defined by the dynamical equations. Specifically, it is found that these QFIs
are generated by CKVs and CKTs of the kinetic metric. Furthermore, there are three types
of QFIs and specific formulae were given for their determination. It is to be noted that the
time-dependent FIs appear for the first time in the literature of constrained systems.

In order to test the consequences and the validity of the theorem, we have considered
various applications from previous works in the topic. As a first application, we required
the potential to admit a QFI of the second type, and we found a superintegrable potential
of the Ermakov type and an integrable potential which for zero energy and zero QFI gives
orbits which are circles. Next, in order to discuss the case of geodesics, we set the potential
function equal to zero and determined the corresponding QFIs for the cases of null and
timelike/spacelike constrained geodesics. The well-known QFIs of the unconstrained
geodesics (see e.g., [8,28,29]) are recovered as special cases. As an application in this area,
we considered a general example which provides the various cases discussed in [22] using
the Dirac–Bergmann formalism. We recovered all results of [22] and showed that one
can integrate the constrained systems using exact FIs instead of the more complicated
non-local FIs.

Theorem 1 opens new directions in the study of the integrability of constrained
dynamical systems. It would be interesting to generalize Theorem 1 for other types of
constraints, less trivial than the fixed energy constraint; and to reexamine well-known
problems in celestial mechanics using the constraint of specified energy with the possibility
to obtain new QFIs.
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Appendix A

Since the considered constrained dynamical system is autonomous, we should use the
polynomial method described in [38] in order to solve the system of PDEs. According to
this method, one assumes a general polynomial expression in the variable t for both the
quantities Kab(t, q) and Ka(t, q), and replaces these expressions in the system of PDEs.

In particular, we assume that the CKT

Kab(t, q) = C(0)ab(q) +
m1

∑
P=1

C(P)ab(q)
tP

P
(A1)

where C(P)ab(q), P = 0, 1, . . . , m1, is a sequence of second rank symmetric tensors, and
the vector

Ka(t, q) =
m2

∑
M=0

L(M)a(q)t
M (A2)

where L(M)a(q), M = 0, 1, . . . , m2, are arbitrary vectors.
We note that both powers m1 and m2 in the above polynomial expressions may

be infinite.
Substituting (A1) and (A2) in Equations (13) and (14), we obtain:

Xa = X(0)a +
m1

∑
P=1

X(P)a
tP

P
(A3)

ψ =
1
n

(
m2

∑
M=0

L(M)
a

;atM +
m1

∑
P=1

C(P)
a

atP−1

)
(A4)

where
X(P)a =

1
n + 2

(
C(P)

b
b;a + 2C(P)

b
a;b

)
, P = 0, 1, . . . , m1. (A5)
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Then, the PDEs (9)–(12) and (15)–(16) become:

0 =C(0)(ab;c) − X(0)(aγbc) +
m1

∑
P=1

[
C(P)(ab;c) − X(P)(aγbc)

] tP

P
(A6)

0 =
m1

∑
P=1

[
C(P)ab −

1
n

C(P)
c
cγab

]
tP−1 +

m2

∑
M=0

[
L(M)(a;b) −

1
n

L(M)
c
;cγab

]
tM (A7)

0 =K,a − 2C(0)abV,b − 2(V − E0)X(0)a +
m2

∑
M=1

ML(M)atM−1

− 2
m1

∑
P=1

[
C(P)abV,b + (V − E0)X(P)a

] tP

P
(A8)

0 =K,t −
2
n
(V − E0)

m1

∑
P=1

C(P)
a

atP−1 −
m2

∑
M=0

[
L(M)aV,a +

2
n
(V − E0)L(M)

a
;a

]
tM (A9)

0 =
m2

∑
M=2

M(M− 1)L(M)atM−2

+ 2
m1

∑
P=1

[
1
n
(V − E0)C(P)

b
b,a − (V − E0)X(P)a − C(P)abV,b

]
tP−1

+
m2

∑
M=0

[(
L(M)bV,b

)
,a
+

2
n
(V − E0)L(M)

b
;ba

]
tM (A10)

0 =2
(

C(0)[a|c|V
,c
)

;b]
+ 2
[
(V − E0)X(0)[a

]
;b]
−

m2

∑
M=1

ML(M)[a;b]t
M−1

+ 2
m1

∑
P=1

{(
C(P)[a|c|V

,c
)

;b]
+
[
(V − E0)X(P)[a

]
;b]

}
tP

P
. (A11)

Integrating Equation (A9), we find the scalar

K =
2
n
(V − E0)

m1

∑
P=1

C(P)
a

a
tP

P
+

m2

∑
M=0

[
L(M)aV,a +

2
n
(V − E0)L(M)

a
;a

]
tM+1

M + 1
+ G(q) (A12)

where G(q) is an arbitrary function.
Replacing (A12) in Equation (A8), we get the condition

0 = G,a − 2C(0)abV,b − 2(V − E0)X(0)a +
m2

∑
M=1

ML(M)atM−1

+
m2

∑
M=0

[(
L(M)bV,b

)
,a
+

2
n
(V − E0)L(M)

b
;ba +

2
n

V,aL(M)
b

;b

]
tM+1

M + 1

+2
m1

∑
P=1

[
1
n
(V − E0)C(P)

b
b,a +

1
n

V,aC(P)
b

b − C(P)abV,b − (V − E0)X(P)a

]
tP

P
. (A13)

We note that the integrability conditions (A10) and (A11) of the scalar K are trivially
satisfied, because the assumptions (A1) and (A2) bring the PDE (12) into the integrable
form (A9) whose integration gives directly the scalar K(t, q) (see Equation (A12)) in terms
of the arbitrary function G(q). Hence, the integrability conditions of K are substituted by
the integrability conditions G,[ab] = 0 of G, which in the case of the Euclidean plane E2

produce the well-known second order Bertrand–Darboux equation [36,40]. However, it can
been checked that both Equations (A10) and (A11) are always satisfied identically from the
solutions of the other equations of the system.

Moreover, Equation (A6) implies that the second rank symmetric tensors C(P)ab(q)
with P = 0, 1, . . . , m1 are second order CKTs of the kinetic metric γab with associated vectors
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the quantities X(P)a given by (A5). We conclude that the system of equations we have to
solve consists of Equations (A7) and (A13).

To solve Equations (A7) and (A13), we consider the following cases
I. Case m1 = m2 ≡ m (both m1 and m2 are finite)
In this case, Equations (A7) and (A13) become:

0 =
m−1

∑
k=0

[
C(k+1)ab −

1
n

C(k+1)
c
cγab + L(k)(a;b) −

1
n

L(k)
c
;cγab

]
tk

+

[
L(m)(a;b) −

1
n

L(m)
c
;cγab

]
tm (A14)

0 =G,a − 2C(0)abV,b − 2(V − E0)X(0)a + L(1)a

+
m−1

∑
k=1

[(
L(k−1)bV,b

)
,a
− 2C(k)abV,b + k(k + 1)L(k+1)a

+
2
n
(V − E0)

(
C(k)

b
b,a + L(k−1)

b
;ba − nX(k)a

)
+

2
n

V,a

(
C(k)

b
b + L(k−1)

b
;b

)] tk

k

+

[(
L(m−1)bV,b

)
,a
− 2C(m)abV,b +

2
n
(V − E0)

(
C(m)

b
b,a + L(m−1)

b
;ba − nX(m)a

)
+

2
n

V,a

(
C(m)

b
b + L(m−1)

b
;b

)] tm

m

+

[(
L(m)bV,b

)
,a
+

2
n
(V − E0)L(m)

b
;ba +

2
n

V,aL(m)
b

;b

]
tm+1

m + 1
. (A15)

Equation (A14) implies that L(m)a is a CKV of γab with conformal factor
ψ(m) =

1
n L(m)

a
;a and the CKTs

C(k)ab = f(k)γab − L(k−1)(a;b), k = 1, 2, . . . , m (A16)

where f(k) ≡ 1
n

[
C(k)

c
c + L(k−1)

c
;c

]
.

From (A16), we have:

L(k−1)(a;b) = f(k)γab − C(k)ab =⇒ L(k−1)((a;b);c) = f(k),(aγbc) − C(k)(ab;c)︸ ︷︷ ︸
=X(k)(aγbc)

=⇒

L(k−1)((a;b);c) = Y(k−1)(aγbc)

where the vector Y(k−1)a ≡ f(k),a − X(k)a. Therefore, the vectors L(k−1)a, k = 1, 2, . . . , m,
produce the second order reducible CKTs L(k−1)(a;b) of γab with associated vectors

Y(k−1)a = f(k),a − X(k)a = f(k),a −
1

n + 2

(
C(k)

b
b;a + 2C(k)

b
a;b

)
= f(k),a −

1
n + 2

[
n f(k),a − L(k−1)

b
;ba + 2

(
f(k)δ

b
a − γbcL(k−1)(c;a)

)
;b

]
=

1
n + 2

[
L(k−1)

b
;ba + 2γbcL(k−1)(c;a);b

]
which, as expected, are in accordance with the defining relation (29).

From Equation (A15), we find the following conditions (We have replaced the CKTs
C(k)ab with k = 1, 2, . . . , m from the relations (A16)):
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(
L(m)bV,b

)
,a

= −2(V − E0)ψ(m),a − 2ψ(m)V,a =⇒

L(m)aV,a + 2(V − E0)ψ(m) = s = const (A17)(
L(m−1)bV,b

)
,a

= −2L(m−1)(a;b)V
,b − 2(V − E0)Y(m−1)a (A18)(

L(k−1)bV,b
)

,a
= −2L(k−1)(a;b)V

,b − k(k + 1)L(k+1)a −

−2(V − E0)Y(k−1)a, k = 1, 2, . . . , m− 1 (A19)

G,a = 2C(0)abV,b + 2(V − E0)X(0)a − L(1)a(m > 0). (A20)

The notation L(1)a(m > 0) indicates that the vector L(1)a exists only when m > 0. If m = 0,
then L(1)a = 0.

From (A12), we find that the scalar

K =
m−1

∑
k=0

[
2
n
(V − E0)C(k+1)

a
a + L(k)aV,a +

2
n
(V − E0)L(k)

a
;a

]
tk+1

k + 1

+

[
L(m)aV,a +

2
n
(V − E0)L(m)

a
;a

]
tm+1

m + 1
+ G(q). (A21)

Then, the QFI (6) is

I(m) =

(
m

∑
k=1

f(k)γab
tk

k
−

m

∑
k=1

L(k−1)(a;b)
tk

k
+ C(0)ab

)
q̇a q̇b

+
m

∑
k=0

tkL(k)a q̇a +
[

L(m)aV,a + 2(V − E0)ψ(m)

] tm+1

m + 1

+
m

∑
k=1

[
L(k−1)aV,a + 2(V − E0) f(k)

] tk

k
+ G(q)

=

(
−

m

∑
k=1

L(k−1)(a;b)
tk

k
+ C(0)ab

)
q̇a q̇b +

m

∑
k=0

tkL(k)a q̇a

+
[

L(m)aV,a + 2(V − E0)ψ(m)

] tm+1

m + 1

+
m

∑
k=1

L(k−1)aV,a tk

k
+ G(q) +

m

∑
k=1

f(k)
[
γab q̇a q̇b + 2(V − E0)

] tk

k︸ ︷︷ ︸
=0

=⇒

I(m) =

(
−

m

∑
k=1

L(k−1)(a;b)
tk

k
+ C(0)ab

)
q̇a q̇b +

m

∑
k=0

tkL(k)a q̇a + s
tm+1

m + 1

+
m

∑
k=1

L(k−1)aV,a tk

k
+ G(q). (A22)

In (A22), the index (m) indicates the degree of the time-dependence of the coefficients, the
quantities C(0)ab and L(k)(a;b) for k = 0, 1, . . . , m− 1 are second order CKTs with associated
vectors X(0)a and Y(k)a, respectively, L(m)a is a CKV with conformal factor ψ(m), while the
constant s, the vectors L(k)a and the function G(q) satisfy the conditions (A17)–(A20).

In what follows, we show that the QFI I(m) given in (A22) consists of two independent QFIs.
For small values of m, we have:
- For m = 0.
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The QFI is
I(0) = C(0)ab q̇a q̇b + L(0)a q̇a + st + G(q) (A23)

where C(0)ab is a CKT with associated vector X(0)a, L(0)a is a CKV with conformal factor
ψ(0) such that L(0)aV,a + 2(V − E0)ψ(0) = s and the function G(q) satisfies the condition
G,a = 2C(0)abV,b + 2(V − E0)X(0)a.

The QFI (A23) consists of the independent FIs:

I(0,1) = C(0)ab q̇a q̇b + G(q)

I(0,2) = L(0)a q̇a + st.

- For m = 1.
The QFI is

I(1) =
(
−tL(0)(a;b) + C(0)ab

)
q̇a q̇b + tL(1)a q̇a + L(0)a q̇a + s

t2

2
+ tL(0)aV,a + G(q) (A24)

where C(0)ab and L(0)(a;b) are CKTs with associated vectors X(0)a and Y(0)a, respectively,
L(1)a is a CKV with conformal factor ψ(1) such that L(1)aV,a + 2(V − E0)ψ(1) = s, while the
vector L(0)a and the function G(q) satisfy the conditions:(

L(0)bV,b
)

,a
= −2L(0)(a;b)V

,b − 2(V − E0)Y(0)a

G,a = 2C(0)abV,b + 2(V − E0)X(0)a − L(1)a.

The QFI (A24) consists of the independent FIs:

I(1,1) = C(0)ab q̇a q̇b + tL(1)a q̇a + s
t2

2
+ G(q)

I(1,2) = −tL(0)(a;b) q̇
a q̇b + L(0)a q̇a + tL(0)aV,a.

- For m = 2.
The QFI is

I(2) =

(
− t2

2
L(1)(a;b) − tL(0)(a;b) + C(0)ab

)
q̇a q̇b + t2L(2)a q̇a + tL(1)a q̇a + L(0)a q̇a

+s
t3

3
+

t2

2
L(1)aV,a + tL(0)aV,a + G(q) (A25)

where C(0)ab and L(k)(a;b) for k = 0, 1 are CKTs with associated vectors X(0)a and Y(k)a,
respectively, L(2)a is a CKV with conformal factor ψ(2) such that L(2)aV,a + 2(V − E0)ψ(2)
= s, while the vectors L(k)a and the function G(q) satisfy the conditions:(

L(1)bV,b
)

,a
= −2L(1)(a;b)V

,b − 2(V − E0)Y(1)a(
L(0)bV,b

)
,a

= −2L(0)(a;b)V
,b − 2L(2)a − 2(V − E0)Y(0)a

G,a = 2C(0)abV,b + 2(V − E0)X(0)a − L(1)a.

The QFI (A25) consists of the independent FIs:

I(2,1) =

(
− t2

2
L(1)(a;b) + C(0)ab

)
q̇a q̇b + tL(1)a q̇a +

t2

2
L(1)aV,a + G(q)

I(2,2) = −tL(0)(a;b) q̇
a q̇b + t2L(2)a q̇a + L(0)a q̇a + s

t3

3
+ tL(0)aV,a.
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- For m = 3.

I(3) =

(
− t3

3
L(2)(a;b) −

t2

2
L(1)(a;b) − tL(0)(a;b) + C(0)ab

)
q̇a q̇b + t3L(3)a q̇a

+t2L(2)a q̇a + tL(1)a q̇a + L(0)a q̇a + s
t4

4
+

t3

3
L(2)aV,a

+
t2

2
L(1)aV,a + tL(0)aV,a + G(q) (A26)

where C(0)ab and L(k)(a;b) for k = 0, 1, 2 are CKTs with associated vectors X(0)a and Y(k)a,
respectively, L(3)a is a CKV with conformal factor ψ(3) such that L(3)aV,a + 2(V − E0)ψ(3)
= s, while the vectors L(k)a and the function G(q) satisfy the conditions:(

L(2)bV,b
)

,a
= −2L(2)(a;b)V

,b − 2(V − E0)Y(2)a(
L(1)bV,b

)
,a

= −2L(1)(a;b)V
,b − 6L(3)a − 2(V − E0)Y(1)a(

L(0)bV,b
)

,a
= −2L(0)(a;b)V

,b − 2L(2)a − 2(V − E0)Y(0)a

G,a = 2C(0)abV,b + 2(V − E0)X(0)a − L(1)a.

The QFI (A26) consists of the independent FIs:

I(3,1) =

(
− t2

2
L(1)(a;b) + C(0)ab

)
q̇a q̇b + t3L(3)a q̇a + tL(1)a q̇a + s

t4

4
+

t2

2
L(1)aV,a + G(q)

I(3,2) =

(
− t3

3
L(2)(a;b) − tL(0)(a;b)

)
q̇a q̇b + t2L(2)a q̇a + L(0)a q̇a +

t3

3
L(2)aV,a + tL(0)aV,a.

By mathematical induction, it is proved that the QFI I(m) consists of the following two
independent QFIs:

a.

I(`)1 =

(
−

`

∑
k=1

t2k

2k
L(2k−1)(a;b) + C(0)ab

)
q̇a q̇b +

`

∑
k=1

t2k−1L(2k−1)a q̇a

+
`

∑
k=1

t2k

2k
L(2k−1)aV,a + G(q)

where C(0)ab and L(2k−1)(a;b) for k = 1, 2, . . . , ` are CKTs with associated vectors X(0)a and
Y(2k−1)a, respectively, and the vectors L(2k−1)a and the function G(q) satisfy the conditions:(

L(2`−1)bV,b
)

,a
= −2L(2`−1)(a;b)V

,b − 2(V − E0)Y(2`−1)a(
L(2k−1)bV,b

)
,a

= −2L(2k−1)(a;b)V
,b − 2k(2k + 1)L(2k+1)a

−2(V − E0)Y(2k−1)a, k = 1, 2, . . . , `− 1

G,a = 2C(0)abV,b + 2(V − E0)X(0)a − L(1)a(` > 0).

b.

I(`)2 =
`

∑
k=0

(
− t2k+1

2k + 1
L(2k)(a;b) q̇

a q̇b + t2kL(2k)a q̇a +
t2k+1

2k + 1
L(2k)aV,a

)
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where L(2k)(a;b) for k = 0, 1, . . . , ` are CKTs with associated vectors Y(2k)a and the vectors
L(2k)a satisfy the conditions:(

L(2`)bV,b
)

,a
= −2L(2`)(a;b)V

,b − 2(V − E0)Y(2`)a(
L(2k)bV,b

)
,a

= −2L(2k)(a;b)V
,b − 2(k + 1)(2k + 1)L(2k+2)a

−2(V − E0)Y(2k)a, k = 0, 1, . . . , `− 1.

II. Case(MDPI: Please confirm if keep bold and underline.) m1 6= m2. (m1 or m2
may be infinite)

We find QFIs that are subcases of those found in Case I and Case III below.
III. Both m1 and m2 are infinite.
In this case, the only non-trivial solution is for Kab = eλtCab(q) and Ka = eµtLa(q),

where Cab is a second order CKT with associated vector Ba(q) and the constants λµ 6= 0.
Then, the scalar (A12) is

K =
eµt

µ

[
LaV,a +

2
n
(V − E0)La

;a

]
+

2
n
(V − E0)Ca

aeλt + G(q) (A27)

and the PDEs (A7) and (A13) become:

0 = λeλt
(

Cab −
1
n

Cc
cγab

)
+ eµt

(
L(a;b) −

1
n

Lc
;cγab

)
(A28)

0 = G,a +
eµt

µ

[(
LbV,b

)
,a
+

2
n
(V − E0)Lb

;ba +
2
n

V,aLb
;b + µ2La

]
+2eλt

[
1
n
(V − E0)Cb

b,a +
1
n

V,aCb
b − CabV,b − (V − E0)Ba

]
. (A29)

We consider the following subcases:

(1) For λ 6= µ.

Equation (A28) implies that Cab = f γab is a second order gradient CKT with associated
vector Ba = f,a, where f (q) is a smooth function, and La is a CKV with conformal factor ρ(q).

From the condition (A29), we get:

G = const ≡ 0, La = −
1

µ2

[
LbV,b + 2(V − E0)ρ

]
,a

.

Recall that by contracting with γab the relations Cab = f γab and L(a;b) = ργab, we find
f = 1

n Ca
a and ρ = 1

n La
;a, respectively.

The scalar (A27) is written

K =
eµt

µ
[LaV,a + 2(V − E0)ρ] + 2(V − E0) f eλt + G(q).

The QFI reduces to the LFI

Ie(λ 6= µ) = eλt f γab q̇a q̇b + 2(V − E0) f eλt︸ ︷︷ ︸
=0

+eµtLa q̇a +
eµt

µ
[LaV,a + 2(V − E0)ρ]

= eµtLa q̇a +
eµt

µ
[LaV,a + 2(V − E0)ρ]

where La = − 1
µ2

[
LbV,b + 2(V − E0)ρ

]
,a

is a gradient CKV with conformal factor ρ(q).

(2) For λ = µ.
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In this case, Equation (A28) implies that the CKT λCab = gγab − L(a;b), where g(q) is a
smooth function. Then, L(a;b) is a reducible CKT with associated vector Ya ≡ g,a − λBa.

From the remaining condition (A29), we get:

G = const ≡ 0,
(

LbV,b
)

,a
= −2L(a;b)V

,b − λ2La − 2(V − E0)Ya.

Recall that by contracting the relation λCab = gγab − L(a;b), we find g = 1
n (λCa

a + La
;a).

The scalar (A27) is written

K =
eλt

λ
[LaV,a + 2(V − E0)g] + G(q).

The QFI is (We multiply by the non-zero constant λ)

Ie(λ = µ) = eλt
(
−L(a;b) q̇

a q̇b + λLa q̇a + LaV,a
)
+ geλt

[
γab q̇a q̇b + 2(V − E0)

]
︸ ︷︷ ︸

=0

= eλt
(
−L(a;b) q̇

a q̇b + λLa q̇a + LaV,a
)

where L(a;b) is a reducible CKT with associated vector Ya such that
(

LbV,b
)

,a
= −2L(a;b)V,b − λ2La − 2(V − E0)Ya.

We note that the LFI Ie(λ 6= µ) is derived from Ie(λ = µ) in the case that La is a CKV.
The above completes the proof of Theorem 1.
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