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Abstract: The idea of symmetry is a built-in feature of the metric function. In this paper, we investigate
the existence and uniqueness of a fixed point of certain contraction via orthogonal triangular α-orbital
admissible mapping in the context of orthogonal complete Branciari metric spaces endowed with a
transitive binary relation. Our results generalize and extend some pioneering results in the literature.
Furthermore, the existence criteria of the solutions to fractional integro-differential equations are
established to demonstrate the applicability of our results.
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1. Introduction

In 1922, Banach [1] initiated the Banach contraction theorem that every contraction
has a unique fixed point in complete metric space. In 2000, Branciari [2] first defined
the notion of Branciari metric spaces, where the triangle inequality is replaced by the
quadrilateral inequality for all distinct pairwise points. Turinici [3] proved fixed-point
results using functional contractions, and Karpinar [4] proved some fixed-point theorems
using implicit functions in the Branciari metric space. Samet et al. (2012) [5], who introduced
admissible mapping in α-ψ contraction and is frequently used to generalize the results
across different contractions. Popescu [6] proposed in 2014 triangular α-orbital admissible
mapping, and many authors extended the results in these spaces; see [7–12].

Recently, Gordji et al. (reference [13]) introduced the attractive concept of orthogonal
sets, followed by orthogonal metric spaces. Subsequently, they extended the fixed-point
theorem by Banach to this newly constructed structure. In addition, they utilized their find-
ings to establish the existence of a solution to an ordinary differential equation. Moreover,
in [13,14], the authors improved and established a fixed-point result for F-contraction in
this context. Many researchers have contributed to the theory from a variety of perspectives
since Gordji created the notions of an orthogonal in [15–21] and references therein.

Fixed point theory is one of the outstanding fields of fractional differential equations;
see [22–26] and references therein for more information. Baitiche, Derbazi, Benchohra,
and Cabada [23] constructed a class of nonlinear differential equations using the ψ-Caputo
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fractional derivative in Banach spaces with Dirichlet boundary conditions in 2022. Impor-
tantly, Machado et al. [27] introduced a new history of fractional calculus. The majority
of articles and publications on fractional calculus concentrate on the solvability of initial
linear fractional differential equations in special function types.

The main benefit of fractional nonlinear differential equations is the possibility of
explaining the dynamics of complex nonlocal systems with memory. Specifically, fractional
nonlinear differential equations are a new field in which improved fixed-point methods
may be utilized. Using the Banach contraction, Lakshmikantham and Rao [28] demon-
strated the solution to the integro-differential equation. Ahmad et al. [29] established some
existence results for fractional integro-differential equations with nonlinear conditions,
and Sudsutad, Alzabut, Nontasawatsri, and Thaiprayoon [30] established some fixed-point
results with mixed integro-differential boundary conditions as well as a stability analysis
for a generalized proportional fractional Langevin equation with a variable coefficient.
Sharma and Chandok [31] investigated Ulam’s stability of the fixed-point problem via
Caputo-type nonlinear fractional integro-differential equation in the setting of orthogonal
metric spaces. Acar and Ozkapu [32] established an order for multivalued rational type
F-contraction on orthogonal metric spaces.

In this paper, we initiate a new type of contraction map and develop fixed-point
theorems in the context of an orthogonal concept of the Branciari metric spaces and tri-
angular α-orbital admissible mappings, while Arshad et al. [12] proved this in the setting
of Branciari metric spaces with a triangular α-orbital admissible. In contrast, we proved
our solution to the Cauchy problem involving a fractional integro-differential equation
employing a more general contraction operator.

This work consists of the following: The purpose of Section 2 is to offer some notations,
basic definitions, and related results in orthogonal Branciari metric space. The main results
are presented of this study in Section 3, while the application of the main statements is
discussed in Section 4. Section 5 concludes with a discussion of the conclusion and proposal.

2. Preliminaries

Throughout this paper, the set of all natural numbers and the set of all real numbers
are denoted by N and R, respectively.

The Branciari metric space concept has been introduced by Branciari [2].

Definition 1 ([2]). Let L 6= ∅ and let π : L × L → R+ such that, for all ζ 6= ξ ∈ L, and all
p 6= q ∈ L, each of them distinct from ζ and ξ,

(i) π(ζ, ξ) = 0⇐⇒ ζ = ξ;
(ii) π(ζ, ξ) = π(ξ, ζ);
(iii) π(ζ, ξ) ≤ π(ζ, p) + π(p, q) + π(q, ξ).

Then, the pair (L, π) is said to be a Branciari metric space (BMS).

Branciari [2] introduced the following family of function as follows.

Definition 2 ([2]). Let � denote the family of all functions ϑ : (0, ∞) → (1, ∞) satisfying the
following conditions:

(�1) ϑ is non-decreasing;
(�2) for each sequence {tη} ⊂ (0, ∞), lim

η→∞
ϑ(tη) = 1 if and only if lim

η→∞
tη = 0+;

(�3) there exists r ∈ (0, 1) and ` ∈ (0, ∞] such that

lim
t→0+

ϑ(t)− 1
tr

= `.

Gordji et al. [13] introduced the concept of an orthogonal set (or O-set); some of their
illustrations and properties are as follows:
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Definition 3 ([13]). Let L be a non-void set and a binary relation ⊥ ⊆ L × L satisfying the
condition:

∃ζ0 ∈ L : (∀ζ ∈ L, ζ⊥ζ0) or (∀ζ ∈ L, ζ0⊥ζ).

Then, (L,⊥) is called an orthogonal set (O-set for short).

Example 1. A wheel graphWn is a graph with n > 3, vertex v0 connecting to all vertices, forming
(n− 1)-cycles; see Figure 1. Let L = {Wn : n > 3}. Define υ1⊥υ2 if there is a connection from
υ1 to υ2. Then, (L,⊥) is an O-set.

v1

v2

v3

v4

v5

v6

v7

vn

v0

Figure 1. Example of an orthogonal set in a wheel graph.

Definition 4 ([13]). A sequence {ζη} defined on the O-set (L,⊥) is called an orthogonal sequence
(briefly, O-sequence) if

(∀η ∈ N, ζη⊥ζη+1) or (∀η ∈ N, ζη+1⊥ζη).

Definition 5 ([13]). Let (L,⊥) be an O-set. Then, a self-map H on L is called ⊥-preserving if
Hζ⊥Hξ whenever ζ⊥ξ.

Aiman et al. [21] introduced the concepts of orthogonal Branciari metric spaces and its
related properties.

Definition 6 ([21]). The triplet (L,⊥, π) is said to be an orthogonal Branciari metric space
(OBMS) if (L,⊥) is an O-set and (L, π) is a BMS.

Definition 7 ([21]). Let (L,⊥, π) be an OBMS. Then, the self-map H on L is called orthogonal
continuous (or ⊥-continuous) in ζ ∈ L if for each O-sequence {ζη} in L with lim

η→∞
ζη → ζ, we

obtain lim
η→∞

H(ζη)→ H(ζ).

Furthermore, H is said to be ⊥-continuous on L if H is ⊥-continuous for every ζ ∈ L.

Definition 8 ([21]). Let (L,⊥, π) be an OBMS; then, the O-sequence {ζη} ∈ L converges to
ζ ∈ L if lim

η→∞
π(ζη , ζ)→ 0. Hence, we get ζη → ζ.

Definition 9 ([21]). Let (L,⊥, π) be an OBMS. We say that the O-sequence {ζη} ∈ L is a
Cauchy O-sequence iff lim

η,ω→∞
π(ζη , ζω)→ 0.

Definition 10 ([21]). Let (L,⊥, π) be an OBMS. We say that the OBMS is orthogonal-complete
(briefly, O-complete) if every Cauchy O-sequence is convergent.
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Arul Joseph, Gunaseelan, Lee, and Park [19] introduced the orthogonal α-admissible
concepts as follows.

Definition 11 ([19]). Let H be a self-map on L and a function α : L× L → [0, ∞). Then, H is
said to be orthogonal α-admissible whenever ζ⊥ξ and α(ζ, ξ) ≥ 1 =⇒ α(Hζ, Hξ) ≥ 1.

The following example shows that each α-admissible is an orthogonal α-admissible,
but the converse is not true.

Example 2. Let L = [0, 1] with usual metric π and let H : L → L be defined by

H(ζ) =

{
ζ
2 , if ζ 6= 1;
1, otherwise.

Now, define ζ⊥ξ if ζξ ≤ min{ζ, ξ}. Note that 0⊥ζ for all ζ ∈ L. Hence, (L,⊥) is an O-set.
First, we shall show that H is orthogonal α-admissible. Indeed, if ζ⊥ξ and α(ζ, ξ) ≥ 1, then

ζξ ≤ ζ and ζξ ≤ ξ. Suppose ζξ ≥ 1; this shows that ζ = 1 and ξ = 1. Thus, α(H(ζ), H(ξ)) =
α(1, 1) = 1. On the other hand, H is not α-admissible. Because α

( 3
2 , 1
)
= 3

2 and α
(
H( 3

2 ), H(1)
)
=

α
( 3

4 , 1
)
= 3

4 .

Definition 12 ([19]). A self-map H on L is called an orthogonal triangular α-admissible if

(H1) H is orthogonal α-admissible;
(H2) whenever ζ⊥p, p⊥ξ, α(ζ, p) ≥ 1 and α(p, ξ) ≥ 1 implies that α(ζ, ξ) ≥ 1 for all ζ, p, ξ ∈ L.

Definition 13 ([19]). Let H be a self-map on L and a function α : L×L → [0, ∞). We say that
H is orthogonal α-orbital admissible

(H3) whenever ζ⊥Hζ and α(ζ, Hζ) ≥ 1 implies that α(Hζ, H2ζ) ≥ 1.

Kirk and Shahzad [10] introduced the following lemma assertion that a Branciari
metric space is a Hausdorff topological space with a neighborhood basis.

Lemma 1 ([10]). Let {ζη} be a Cauchy sequence in (L,⊥, π) such that lim
η→∞

π(ζη , ζ)→ 0, for all

ζ ∈ L. Then, lim
η→∞

π(ζη , ξ) → π(ζ, ξ), ∀ ξ ∈ L. In particular, {ζη} does not converge to ξ if

ξ 6= ζ.

Popescu [8] initialized the following lemma needed below.

Lemma 2 ([8]). Let there exists a triangular α-orbital admissible self-map H on L and there
exists ζ1 ∈ L such that α(ζ1, Hζ1) ≥ 1. Let {ζη} be a sequence defined as ζη+1 = Hζη . Then,
α(ζη , ζω) ≥ 1 ∀ ω, η ∈ N.

Very recently, Arshad et al. [12] established the following main results in the setting
of the Branciari metric space with triangular α-orbital admissible mapping. In this article,
inspired by Muhammad’s work, we introduce an orthogonal triangular α-orbital admissible
mapping and an orthogonal triangular α-orbital attractive mapping via orthogonal general-
ized contraction. We present an application of our orthogonal generalized contraction to
the solution of integro-differential equations.

3. Main Results

First, we define an orthogonal triangular α-orbital admissible mapping and with
an example.
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Definition 14. Let H be a self-map on L and a function α : L× L → [0, ∞). We say that H is
orthogonal triangular α-orbital admissible if it is satisfied (H3) and

(H4) whenever ζ⊥ξ, ξ⊥Hξ, α(ζ, ξ) ≥ 1 and α(ξ, Hξ) ≥ 1 implies that α(ζ, Hξ) ≥ 1.

Example 3. Let L = {0, 1, 2, 3}, π : L×L → R with the usual metric π(ζ, ξ) = |ζ − ξ|,
H : L → L such that

H(ζ) =


ζ, if ζ ∈ {0, 3};
1, if ζ ∈ {2};
2, if ζ ∈ {1}.

Let α : L×L → [0, ∞) be defined by

α(ζ, ξ) =

{
1, if (ζ, ξ) ∈ {(0, 1), (0, 2), (1, 1), (2, 2), (1, 2), (2, 1), (1, 3), (2, 3)};
0, otherwise.

Clearly, H is orthogonal triangular α-orbital admissible and H is orthogonal α-orbital admissi-
ble, but H is not orthogonal triangular α-admissible.

Arshad et al. [12] proved fixed-point results in Branrciari metric spaces via triangular α-
orbital admissible mappings. Inspired by [12], we prove fixed-point results via orthogonal
triangular α-orbital admissible map using a continuity hypothesis.

Theorem 1. Let H be a self-map on orthogonal complete Branciari metric space (L,⊥, π) and
α : L×L → [0, ∞) such that

(i) ∃ϑ ∈ � and κ ∈ (0, 1) such that

ζ, ξ ∈ L with ζ ⊥ ξ [π(Hζ, Hξ) > 0 =⇒ α(ζ, ξ) · ϑ(π(Hζ, Hξ)) ≤ [ϑ(R(ζ, ξ))]κ ],

where

R(ζ, ξ) = max
{

π(ζ, ξ), π(ζ, Hζ), π(ξ, Hξ),
π(ζ, Hζ)π(ξ, Hξ)

1 + π(ζ, ξ)

}
;

(ii) ∃ζ1 ∈ L such that α(ζ1, Hζ1) ≥ 1 and α(ζ1, H2ζ1) ≥ 1;
(iii) H is an orthogonal triangular α-orbital admissible;
(iv) H is ⊥-preserving;
(v) H is ⊥- continuous.

Then H has a fixed point ζ∗ ∈ L.

Proof. Since (L,⊥) is an O-set,

∃ζ0 ∈ L : ( f or all ζ ∈ L, ζ ⊥ ζ0) or ( f or all ζ ∈ L, ζ0 ⊥ ζ).

It follows that ζ0 ⊥ Hζ0 or Hζ0 ⊥ ζ0.
By condition (ii), there exists ζ1 ∈ L such that α(ζ1, Hζ1) ≥ 1 and α(ζ1, H2ζ1) ≥ 1,

which implies ζ0 ⊥ Hζ0 or Hζ0 ⊥ ζ0 and ζ0 ⊥ H2ζ0 or H2ζ0 ⊥ ζ0.
Let ζ1 = H2ζ0 = Hζ1, ζ2 = H2ζ1, ζ3 = Hζ2 = H3ζ1, . . . , ζη = Hζη−1 = Hηζ1 for all

η ≥ 1. Then {Hηζ1} is an O-sequence in L, since H is ⊥-preserving.
Condition (iii) implies that α(Hηζ1, Hη+1ζ1) ≥ 1 for all η ≥ 1.
If Hη0 ζ1 = Hη0+1ζ1 for any η0 ≥ 1, then Hη0 ζ1 has a fixed point of H. Assume that

Hηζ1 6= Hη+1ζ1 for all η ≥ 1; we obtain α(Hζ1, H2ζ1) ≥ 1, since H is an orthogonal
α-admissible mapping and α(ζ1, Hζ1) ≥ 1. By continuing in this way,

α(Hηζ1, Hη+1ζ1) ≥ 1, ∀η ≥ 1. (1)
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Furthermore, since H is orthogonal α-admissible mapping and α(ζ1, H2ζ1) ≥ 1, we
deduce that α(Hζ1, H3ζ1) ≥ 1. By continuing this process,

α(Hηζ1, Hη+2ζ1) ≥ 1, ∀η ≥ 1. (2)

From condition (i) and (1), we write that for every η ≥ 1,

ϑ
(

π
(

Hηζ1, Hη+1ζ1

))
≤ α

(
Hη−1ζ1, Hηζ1

)
· ϑ
(

π
(

Hη−1ζ1, Hηζ1

))
≤
[

ϑ

(
max

{
π
(

Hη−1ζ1, Hηζ1

)
, π
(

Hη−1ζ1, HHη−1ζ1

)
,

π(Hηζ1, HHηζ1),
π
(
Hη−1ζ1, HHη−1ζ1

)
· π(Hηζ1, HHηζ1)

1 + π
(
Hη−1ζ1, Hηζ1

) })]κ

=

[
ϑ

(
max

{
π
(

Hη−1ζ1, Hηζ1

)
, π
(

Hηζ1, Hη+1ζ1

)
,

π
(
Hη−1ζ1, Hηζ1

)
· π
(
Hηζ1, Hη+1ζ1

)
1 + π

(
Hη−1ζ1, Hηζ1

) })]κ

=
[
ϑ
(

max
{

π
(

Hη−1ζ1, Hηζ1

)
, π
(

Hηζ1, Hη+1ζ1

)})]κ
. (3)

If ∃ η ≥ 1 such that

max
{

π
(

Hη−1ζ1, Hηζ1

)
, π
(

Hηζ1, Hη+1ζ1

)}
= π

(
Hηζ1, Hη+1ζ1

)
,

then inequality (3) turns into

ϑ
(

π
(

Hηζ1, Hη+1ζ1

))
≤
[
ϑ
(

π
(

Hηζ1, Hη+1ζ1

))]κ
.

This implies

ln
[
ϑ
(

π
(

Hηζ1, Hη+1ζ1

))]
≤ k ln

[
ϑ
(

π
(

Hηζ1, Hη+1ζ1

))]
.

This is a reductio absurdum with κ ∈ (0, 1). Then

max{π(Hη−1ζ1, Hηζ1), π(Hηζ1, Hη+1ζ1)} = π(Hη−1ζ1, Hηζ1), ∀η ≥ 1.

Thus, from (3), we have

ϑ
(

π
(

Hηζ1, Hη+1ζ1

))
≤
[
ϑ
(

π
(

Hη−1ζ1, Hηζ1

))]κ
, ∀η ≥ 1.

This implies

ϑ(π(Hηζ1, Hη+1ζ1)) ≤ [ϑ(π(Hη−1ζ1, Hηζ1))]
κ

≤
[
ϑ
(

π
(

Hη−2ζ1, Hη−1ζ1

))]κ2

≤
[
ϑ
(

π
(

Hη−3ζ1, Hη−2ζ1

))]κ3

...

≤ [ϑ(π(ζ1, Hζ1))]
κη

.

Thus, we have

1 ≤ ϑ
(

π
(

Hηζ1, Hη+1ζ1

))
≤ [ϑ(π(ζ1, Hζ1))]

κη
, ∀η ≥ 1. (4)
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Letting η → ∞, we obtain

lim
η→∞

ϑ
(

π
(

Hηζ1, Hη+1ζ1

))
= 1, (5)

which together with (�2) gives lim
η→∞

π
(
Hηζ1, Hη+1ζ1

)
= 0.

From �3, there exists r ∈ (0, 1) and ` ∈ (0, ∞] such that

lim
η→∞

ϑ
(
π
(
Hηζ1, Hη+1ζ1

))
− 1

π
(
Hηζ1, Hη+1ζ1

)r = `.

In this case, assume that ` < ∞ and let B = l
2 > 0.

From the definition of limit, ∃ η0 ≥ 1, such that∣∣∣∣∣ϑ
(
π
(
Hηζ1, Hη+1ζ1

))
− 1

π
(
Hηζ1, Hη+1ζ1

)r − `

∣∣∣∣∣ ≤ B, ∀η ≥ η0.

This implies

ϑ
(
π
(
Hηζ1, Hη+1ζ1

))
− 1

π
(
Hηζ1, Hη+1ζ1

)r ≥ `−B = B, ∀η ≥ η0.

Then

η
[
π
(

Hηζ1, Hη+1ζ1

)]r
≤ Aη

[
ϑ
(

π
(

Hηζ1, Hη+1ζ1

))
− 1
]
, ∀η ≥ η0,

where A = 1
B . Now, let ` = ∞ and let B > 0.

From the limit definition, there exists η0 ≥ 1 such that

ϑ
(
π
(
Hηζ1, Hη+1ζ1

))
− 1

π
(
Hηζ1, Hη+1ζ1

)r ≥ B, ∀η ≥ η0.

This implies

η
[
π
(

Hηζ1, Hη+1ζ1

)]r
≤ Aη

[
ϑ
(

π
(

Hηζ1, Hη+1ζ1

))
− 1
]
, ∀η ≥ η0,

where A = 1
B .

Then ∃ A > 0 and η0 ≥ 1 such that

η
[
π
(

Hηζ1, Hη+1ζ1

)]r
≤ Aη

[
ϑ
(

π
(

Hηζ1, Hη+1ζ1

))
− 1
]
, ∀η ≥ η0.

By using (4), we obtain

η
[
π
(

Hηζ1, Hη+1ζ1

)]r
≤ Aη([ϑ(π(ζ1, Hζ1))]

κη

− 1), ∀η ≥ η0. (6)

Taking η → ∞ in Equation (6), we have

lim
η→∞

η
[
π
(

Hηζ1, Hη+1ζ1

)]r
= 0.

Thus, ∃ η1 ∈ N such that

π
(

Hηζ1, Hη+1ζ1

)
≤ 1

η
1
r

, ∀η ≥ η1. (7)
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Now, we show that ζ∗ is a periodic point in H.
Conversely, we assume that Hηζ1 6= Hωζ1, ∀ η, ω ≥ 1, such that η 6= ω.
By (i) and Equation (2), we obtain

ϑ
(

π
(

Hηζ1, Hη+2ζ1

))
≤ α

(
Hη−1ζ1, Hη+1ζ1

)
· ϑ
(

π
(

Hη−1ζ1, Hη+1ζ1

))
≤
[

ϑ

(
max

{
π
(

Hη−1ζ1, Hη+1ζ1

)
, π
(

Hη−1ζ1, HHη−1ζ1

)
,

π
(

Hη+1ζ1, HHη+1ζ1

)
,

π
(
Hη−1ζ1, HHη−1ζ1

)
· π
(
Hη+1ζ1, HHη+1ζ1

)
1 + π

(
Hη−1ζ1, Hη+1ζ1

) })]κ

=

[
ϑ

(
max

{
π
(

Hη−1ζ1, Hη+1ζ1

)
, π
(

Hη−1ζ1, Hηζ1

)
,

π
(

Hη+1ζ1, Hη+2ζ1

)
,

π
(
Hη−1ζ1, Hηζ1

)
· π
(
Hη+1ζ1, Hη+2ζ1

)
1 + π

(
Hη−1ζ1, Hη+1ζ1

) })]κ

=
[
ϑ
(

max
{

π
(

Hη−1ζ1, Hη+1ζ1

)
, π
(

Hη−1ζ1, Hηζ1

)
, π
(

Hη+1ζ1, Hη+2ζ1

)})]κ
. (8)

Since ϑ is non-decreasing and from (8), we obtain

ϑ
(

π
(

Hηζ1, Hη+2ζ1

))
≤
[
max

{
ϑ
(

π
(

Hη−1ζ1, Hη+1ζ1

))
, ϑ
(

π
(

Hη−1ζ1, Hηζ1

))
,

ϑ
(

π
(

Hη+1ζ1, Hη+2ζ1

))}]κ
. (9)

Let I = {η}η∈N, satisfying

pη = max
{

ϑ
(

π
(

Hη−1ζ1, Hη+1ζ1

))
, ϑ
(

π
(

Hη−1ζ1, Hηζ1

))
, ϑ
(

π
(

Hη+1ζ1, Hη+2ζ1

))}
= ϑ

(
π
(

Hη−1ζ1, Hη+1ζ1

))
.

If |I| < ∞, then ∃ η ≥ 1, such that ∀ η ≥ N,

max
{

ϑ
(

π
(

Hη−1ζ1, Hη+1ζ1

))
, ϑ
(

π
(

Hη−1ζ1, Hηζ1

))
, ϑ
(

π
(

Hη+1ζ1, Hη+2ζ1

))}
= max

{
ϑ
(

π
(

Hη−1ζ1, Hηζ1

))
, ϑ
(

π
(

Hη+1ζ1, Hη+2ζ1

))}
.

In this case, from (9), we obtain

1 ≤ ϑ
(

π
(

Hηζ1, Hη+2ζ1

))
≤
[
max

{
ϑ
(

π
(

Hη−1ζ1, Hηζ1

))
, ϑ
(

π
(

Hη+1ζ1, Hη+2ζ1

))}]κ
, ∀η ≥ N.

If, in the above inequality, taking η → ∞ and using (5), we obtain

lim
η→∞

ϑ
(

π
(

Hηζ1, Hη+2ζ1

))
= 1.

Find a subsequence of {pη}. If |I| = ∞, then

pη = ϑ
(

π
(

Hη−1ζ1, Hη+1ζ1

))
.



Symmetry 2022, 14, 1859 9 of 23

In this case, from (9), we obtain

1 ≤ ϑ
(

π
(

Hηζ1, Hη+2ζ1

))
≤
[
ϑ
(

π
(

Hη−1ζ1, Hη+1ζ1

))]κ

≤
[
ϑ
(

π
(

Hη−2ζ1, Hηζ1

))]κ2

...

≤
[
ϑ
(

π
(

ζ1, H2ζ1

))]κη

,

for large η.
Setting η → ∞ in the above inequality, we obtain

lim
η→∞

ϑ
(

π
(

Hηζ1, Hη+2ζ1

))
= 1. (10)

In all cases, (10) holds. Then, using (10) and (�2), we have

lim
η→∞

π
(

Hηζ1, Hη+2ζ1

)
= 0.

Similarly, from (�3), there exists η2 ≥ 1 such that

π
(

Hηζ1, Hη+2ζ1

)
≤ 1

η
1
r

, ∀η ≥ η2. (11)

Let h = max{η0, η1}. Now we raise the following cases.

Case 1: If ω > 2 is odd, then ω = 2L+ 1 for some L ≥ 1; by Equation (7) ∀ η ≥ h, we
obtain

π
(
Hηζ1, Hη+ωζ1

)
≤ π

(
Hηζ1, Hη+1ζ1

)
+ π

(
Hη+1ζ1, Hη+2ζ1

)
+ · · ·+ π

(
Hη+2Lζ1, Hη+2L+1ζ1

)
≤ 1

η
1
r

+
1

(η + 1)
1
r

+ · · ·+ 1

(η + 2L)
1
r

≤
∞

∑
n=η

1

n
1
r

.

Case 2: If ω > 2 is even, then ω = 2L for some L ≥ 2; by Equations (7) and (11) ∀ η ≥ h,
we obtain

π
(
Hηζ1, Hη+ωζ1

)
≤ π

(
Hηζ1, Hη+2ζ1

)
+ π

(
Hη+2ζ1, Hη+3ζ1

)
+ · · ·+ π

(
Hη+2L−1ζ1, Hη+2Lζ1

)
≤ 1

η
1
r

+
1

(η + 2)
1
r

+ · · ·+ 1

(η + 2L− 1)
1
r

≤
∞

∑
i=η

1

i
1
r

.

Combining all cases, we thus have

π
(
Hηζ1, Hη+ωζ1

)
≤

∞

∑
n=η

1

n
1
r

, ∀η ≥ h, ω ≥ 1.
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We conclude that {Hηζ1} is a Cauchy O-sequence, since the series ∑∞
n=η

1
n

1
r

converges,

since 1
r > 1.

From O-completeness of L, there is ζ∗ ∈ L such that Hηζ1 → ζ∗ as η → ∞. Since H is
orthogonal continuous, we have

ζ∗ = lim
η→∞

Hη+1ζ1 = lim
η→∞

H(Hηζ1) = H
(

lim
η→∞

Hηζ1

)
= Hζ∗.

We obtain ζ∗ = Hζ∗, a contradiction by our assumptions. Therefore, H has a peri-
odic point.

Suppose fix(H) = φ. Then s > 1 and π(ζ∗, Hζ∗) > 0. Now,

ϑ(π(ζ∗, Hζ∗)) = ϑ
(

π
(

Hsζ∗, Hs+1ζ∗
))

≤ α
(

Hs−1ζ∗, Hsζ∗
)
· ϑ
(

π
(

Hsζ∗, Hs+1ζ∗
))

≤ [ϑ(π(ζ∗, Hζ∗))]
κs

< ϑ(π(ζ∗, Hζ∗)),

which is a contradiction with k ∈ (0, 1). Therefore, we have a non-empty set of fixed points
of H; that is, H has at least one fixed point.

Arshad et al. [12] proved fixed-point results in Branrciari metric spaces via triangular
α-orbital admissible mappings. Inspired by [12], we prove the fixed point theorem on an
orthogonal triangular α-orbital admissible mapping using without a continuity hypothesis.

Theorem 2. Let H be a self-map on orthogonal complete Branciari metric space (L,⊥, π) and a
map α : L×L → [0, ∞) such that

(i) We can find ϑ ∈ � and κ ∈ (0, 1) satisfying

ζ, ξ ∈ L with ζ ⊥ ξ[π(Hζ, Hξ) > 0, π(Hζ, Hξ) 6= 0

=⇒ α(ζ, ξ).ϑ(π(Hζ, Hξ)) ≤ [ϑ(R(ζ, ξ))]κ ],

where

R(ζ, ξ) = max
{

π(ζ, ξ), π(ζ, Hζ), π(ξ, Hξ),
π(ζ, Hζ)π(ξ, Hξ)

1 + π(ζ, ξ)

}
;

(ii) ∃ ζ1 ∈ L such that α(ζ1, Hζ1) ≥ 1 and α
(
ζ1, H2ζ1

)
≥ 1;

(iii) H is an orthogonal triangular α-orbital admissible mapping;
(iv) if {Hηζ1} is an O-sequence in L such that α

(
Hηζ1, Hη+1ζ1

)
≥ 1 for all η and ζη →

ζ ∈ L as n → ∞; then, there exists a sub-sequence
{

Hη(κ)ζ1

}
of {Hηζ1} such that

α
(

Hη(κ)ζ1, ζ
)
≥ 1, ∀ κ;

(v) ϑ is ⊥-continuous.

Then, H has a fixed point ζ∗ ∈ L.

Proof. Since (L,⊥) is an O-set,

∃ζ0 ∈ L : (∀ζ ∈ L, ζ ⊥ ζ0) or (∀ζ ∈ L, ζ0 ⊥ ζ).

It follows that ζ0 ⊥ Hζ0 or Hζ0 ⊥ ζ0.
Since there exists ζ1 ∈ L such that α(ζ1, Hζ1) ≥ 1 and α

(
ζ1, H2ζ1

)
≥ 1,

ζ0 ⊥ Hζ0 or Hζ0 ⊥ ζ0 and ζ0 ⊥ H2ζ0 or H2ζ0 ⊥ ζ0.

Let ζ1 = H2ζ0 = Hζ1, ζ2 = H2ζ1, ζ3 = Hζ2 = H3ζ1, . . . , ζη = Hζη−1 = Hηζ1, ∀η ≥ 1.
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If Hη0 ζ1 = Hη0+1ζ1 for any η0 ≥ 1, then it is clear that Hη0 ζ1 has a fixed point of H.
From condition (iv), which implies a sub-sequence

{
(Hη(κ)ζ1)

}
of {(Hηζ1)} such that

α
(

Hη(κ)ζ1, ζ∗
)
≥ 1, ∀ κ.

Suppose that Hη(κ)+1ζ1 6= Hζ∗; then, from condition (i), we have

ϑ(π(Hη(κ)+1ζ1, Hζ∗)) = ϑ
(

π
(

H
(

Hη(κ)ζ1

)
, Hζ∗

))
≤ α

(
Hη(κ)ζ1, ζ∗

)
· ϑ
(

π
(

H
(

Hη(κ)ζ1

)
, Hζ∗

))
≤
[

ϑ

(
max

{
π
(

Hη(κ)ζ1, ζ∗
)

, π
(

Hη(κ)ζ1, HHη(κ)ζ1

)
, π(ζ∗, Hζ∗),

π
(

Hη(κ)ζ1, H
(

Hη(κ)ζ1

))
· π(ζ∗, Hζ∗)

1 + π
(
Hη(κ)ζ1, ζ∗

) })]κ

=

[
ϑ

(
max

{
π
(

Hη(κ)ζ1, ζ∗
)

, π
(

Hη(κ)ζ1, Hη(κ)+1ζ1

)
, π(ζ∗, Hζ∗),

π
(

Hη(κ)ζ1, Hη(κ)+1ζ1

)
· π(ζ∗, Hζ∗)

1 + π
(
Hη(κ)ζ1, ζ∗

) })]κ

. (12)

Suppose that π(ζ∗, Hζ∗) > 0. Now, taking the limit as κ → ∞ in (12) and by the
continuity of ϑ and Lemma 1, we obtain

ϑ(π(ζ∗, Hζ∗)) ≤ [ϑ(π(ζ∗, Hζ∗))]
κ < ϑ(π(ζ∗, Hζ∗)),

We obtain ζ∗ = Hζ∗, a contradiction by our assumptions. Therefore, H has a peri-
odic point.

Suppose fix {H} = φ. Then s > 1 and π(ζ∗, Hζ∗) > 0. Now,

ϑ(π(ζ∗, Hζ∗)) = ϑ
(

π
(

Hsζ∗, Hs+1ζ∗
))

≤ α
(

Hs−1ζ∗, Hsζ∗
)
· ϑ
(

π
(

Hsζ∗, Hs+1ζ∗
))

≤ [ϑ(π(ζ∗, Hζ∗))]
κs

< ϑ(π(ζ∗, Hζ∗)),

which is a reductio absurdum. Thus, the set of fixed points of H is non-empty; that is, H
has at least one fixed point.

Next, we provide an example that shows that Theorem 2 can be used to prove the
existence of fixed-point results when such mapping is applicable.

Example 4. Let L = [−2,−1] ∪ {0} ∪ [1, 2]. Define π : L×L → [0, ∞) as follows:

π(ζ, ξ) =


0, if ζ = ξ;
3, if ζ, ξ ∈ [1, 2];
1, if ζ, ξ ∈ (−2,−1] ∪ [1, 2];
|ζ − ξ|, otherwise.

Define the binary relation ⊥ on L by ζ⊥ξ if ζξ ≥ 0. Clearly, (L,⊥, π) is an orthogonal
complete BMS. Define the mapping H : L → L by

H(ζ) =

{
−ζ, if ζ ∈ [−2,−1) ∪ (1, 2];
0, if ζ ∈ {−1, 0, 1}.
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Let α : L×L → [0, ∞) be given by

α(ζ, ξ) =

{
1, if ζξ ≥ 0;
0, if otherwise.

Furthermore, define ϑ : (0, ∞) → (1, ∞) by ϑ(t) = e
√
tet . Obviously, H is an orthogonal

triangular α-orbital admissible mapping.
Let ζ, ξ ∈ L with ζ ⊥ ξ

π(Hζ, Hξ) > 0 =⇒ α(ζ, ξ) · ϑ(π(Hζ, Hξ)) ≤ [ϑ(R(ζ, ξ))]κ .

Case 1: Let ζ = 0, ξ ∈ [−2,−1) or ζ ∈ [−2,−1), ξ = 0.

α(0,−2)ϑ(π(H0, H−2)) ≤
[

ϑ

(
R(0,−2) = max

{
π(0,−2), π(0, H0), π(−2, H−2),

π(0, H0)π(−2, H−2)

1 + π(0,−2)

})]κ

.

ϑ(π(0, 2)) ≤
[

ϑ

(
max

{
π(0,−2), π(0, 0), π(−2, 2),

π(0, 0) · π(−2, 2)
1 + π(0,−2)

})]κ

.

ϑ(2) ≤ [ϑ(max{2, 0, 4, 0})]κ = [ϑ(4)]κ .

e
√

2e2 ≤
[
e
√

4e4
]κ

.

Case 2: Let ζ = 0, ξ ∈ (1, 2] or ζ ∈ (1, 2], ξ = 0.

α(0, 2) · ϑ(π(H0, H2)) ≤
[

ϑ

(
R(0, 2) = max

{
π(0, 2), π(0, H0), π(2, H2),

π(0, H0) · π(2, H2)

1 + π(0, 2)

})]κ

.

ϑ(π(0, 2)) ≤
[

ϑ

(
max

{
π(0, 2), π(0, 0), π(2,−2),

π(0, 0).π(2,−2)
1 + π(0, 2)

})]κ

.

ϑ(2) ≤ [ϑ(max{2, 0, 4, 0})]κ = [ϑ(4)]κ .

e
√

2e2 ≤
[
e
√

4e4
]κ

.

Furthermore, the hypotheses of Theorem 2 are satisfied and hence, H has a fixed point.

Example 5. Let L = [0, 1) and let the metric on L be the Euclidean metric. Define ζ⊥ξ if
ζξ ∈ {ζ, ξ} for all ζ, ξ ∈ L. Let H : L → L be a mapping defined by

H(ζ) =

{
ζ
2 , if ζ ∈ Q∩ L;
0, if ζ ∈ Qc ∩ L.

Then, it is easy to show that H is an O-contraction on L, but it is not a contraction.

Now, we define an orthogonal α-orbital attractive map.

Definition 15. Let H be a self-map on L and a function α : L × L → [0, ∞). Then, H is
said to be an orthogonal α-orbital attractive map if ζ ∈ L, ζ⊥Hζ and α(ζ, Hζ) ≥ 1 =⇒
α(ζ, ξ) or α(ξ, Hζ) ≥ 1 for every ξ ∈ L.

Arshad et al. [12] proved fixed-point results in Branrciari metric spaces via triangular
α-orbital admissible mappings. Inspired by [12], we prove the fixed-point theorem an
orthogonal triangular α-orbital attractive mapping.

Theorem 3. Let (L,⊥, π) be an orthogonal complete Branciari metric space,H : L → L be a
given map and let α : L×L → [0, ∞) be a mapping such that
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(i) We can find ϑ ∈ � and κ ∈ (0, 1) satisfying

ζ, ξ ∈ L with ζ ⊥ ξ[π(Hζ, Hξ) > 0, π(Hζ, Hξ) 6= 0

=⇒ α(ζ, ξ) · ϑ(π(Hζ, Hξ)) ≤ [ϑ(R(ζ, ξ))]κ ],

where

R(ζ, ξ) = max
{

π(ζ, ξ), π(ζ, Hζ), π(ξ, Hξ),
π(ζ, Hζ)π(ξ, Hξ)

1 + π(ζ, ξ)

}
.

(ii) There exists ζ1 ∈ L such that α(ζ1, Hζ1) ≥ 1 and α(ζ1, H2ζ1) ≥ 1;
(iii) H is an orthogonal α-orbital admissible mapping;
(iv) H is an orthogonal α-orbital attractive mapping;
(v) H is ⊥-preserving;
(vi) H is ⊥-continuous.

Then, H has a unique fixed point ζ∗ ∈ L.

Proof. Since (L,⊥) is an O-set,

∃ζ0 ∈ L : (∀ζ ∈ L, ζ ⊥ ζ0) or (∀ζ ∈ L, ζ0 ⊥ ζ).

It follows that ζ0 ⊥ Hζ0 or Hζ0 ⊥ ζ0.
Since there exists ζ1 ∈ L such that α(ζ1, Hζ1) ≥ 1 and α(ζ1, H2ζ1) ≥ 1, so

ζ0 ⊥ Hζ0 or Hζ0 ⊥ ζ0 and ζ0 ⊥ H2ζ0 or H2ζ0 ⊥ ζ0.

Let ζ1 = H2ζ0 = Hζ1, ζ2 = H2ζ1, ζ3 = Hζ2 = H3ζ1, . . . , ζη = Hζη−1 = Hηζ1 for all
η ≥ 1.

If Hη0 ζ1 = Hη0+1ζ1 for any η0 ≥ 1, then it is clear that Hη0 ζ1 has a fixed point of H.
Assume that Hηζ1 6= Hη+1ζ1 for all η ≥ 1. Thus, we have π(Hηζ1, Hη+1ζ1) > 0 for

all η ≥ 1, which implies

Hηζ1 ⊥ Hη+1ζ1 or Hη+1ζ1 ⊥ Hηζ1, ∀η ≥ 1.

Therefore, {Hηζ1} is an O-sequence.
Since H is α-orbital admissible, we obtain

α(ζ1, Hζ1) ≥ 1 implies α
(

ζ1, H2ζ1

)
≥ 1

and
α
(

ζ1, H2ζ1

)
≥ 1 implies α

(
Hζ1, H3ζ1

)
≥ 1.

By continuing this process, we obtain

α
(

Hηζ1, Hη+1ζ1

)
≥ 1 (13)

and
α
(

Hηζ1, Hη+2ζ1

)
≥ 1, ∀η ≥ 1. (14)

From condition (i) and (13), then for every η ≥ 1, we write
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ϑ
(

π
(

Hηζ1, Hη+1ζ1

))
≤ α

(
Hη−1ζ1, Hηζ1

)
· ϑ
(

π
(

Hη−1ζ1, Hηζ1

))
≤
[

ϑ

(
max

{
π(Hη−1ζ1, Hηζ1), π(Hη−1ζ1, HHη−1ζ1),

π(Hηζ1, HHηζ1),
π
(
Hη−1ζ1, HHη−1ζ1

)
· π(Hηζ1, HHηζ1)

1 + π
(
Hη−1ζ1, Hηζ1

) })]κ

=

[
ϑ

(
max

{
π
(

Hη−1ζ1, Hηζ1

)
, π
(

Hηζ1, Hη+1ζ1

)
,

π
(
Hη−1ζ1, Hηζ1

)
· π
(
Hηζ1, Hη+1ζ1

)
1 + π

(
Hη−1ζ1, Hηζ1

) })]κ

=
[
ϑ
(

max
{

π
(

Hη−1ζ1, Hηζ1

)
, π
(

Hηζ1, Hη+1ζ1

)})]κ
. (15)

If ∃ η ≥ 1 such that

max
{

π
(

Hη−1ζ1, Hηζ1

)
, π
(

Hηζ1, Hη+1ζ1

)}
= π

(
Hηζ1, Hη+1ζ1

)
,

then inequality (15) turns into

ϑ
(

π
(

Hηζ1, Hη+1ζ1

))
≤
[
ϑ
(

π
(

Hηζ1, Hη+1ζ1

))]κ
.

This implies

ln
[
ϑ
(

π
(

Hηζ1, Hη+1ζ1

))]
≤ k ln

[
ϑ
(

π
(

Hηζ1, Hη+1ζ1

))]
,

which is a contradiction.
Therefore,

max
{

π
(

Hη−1ζ1, Hηζ1

)
, π
(

Hηζ1, Hη+1ζ1

)}
= π

(
Hη−1ζ1, Hηζ1

)
, ∀η ≥ 1.

Thus, from (15), we have

ϑ
(

π
(

Hηζ1, Hη+1ζ1

))
≤
[
ϑ
(

π
(

Hη−1ζ1, Hηζ1

))]κ
, ∀η ≥ 1.

This implies

ϑ
(

π
(

Hηζ1, Hη+1ζ1

))
≤
[
ϑ
(

π
(

Hη−1ζ1, Hηζ1

))]κ

≤
[
ϑ
(

π
(

Hη−2ζ1, Hη−1ζ1

))]κ2

≤
[
ϑ
(

π
(

Hη−3ζ1, Hη−2ζ1

))]κ3

...

≤ [ϑ(π(ζ1, Hζ1))]
κη

.

Thus, we have

1 ≤ ϑ
(

π
(

Hηζ1, Hη+1ζ1

))
≤ [ϑ(π(ζ1, Hζ1))]

κη
, ∀η ≥ 1. (16)
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Setting η → ∞, we obtain

lim
η→∞

ϑ
(

π
(

Hηζ1, Hη+1ζ1

))
= 1, (17)

which together with (�2) gives lim
η→∞

π
(
Hηζ1, Hη+1ζ1

)
= 0.

From condition �3, we can find r ∈ (0, 1) and l ∈ (0, ∞] satisfying

lim
η→∞

ϑ
(
π
(
Hηζ1, Hη+1ζ1

))
− 1

π
(
Hηζ1, Hη+1ζ1

)r = l.

Suppose that l < ∞. In this case, let B = l
2 > 0. From the definition of the limit, there

exists η0 ≥ 1 such that∣∣∣∣∣ϑ
(
π
(
Hηζ1, Hη+1ζ1

))
− 1

π
(
Hηζ1, Hη+1ζ1

)r − l

∣∣∣∣∣ ≤ B, ∀η ≥ η0.

Since |x− l| ≤ ε ⇐⇒ l − ε ≤ x ≤ l + ε and l < ∞, we obtain l − ε ≤ x; this implies

l −B ≤
ϑ
(
π
(
Hηζ1, Hη+1ζ1

))
− 1

π
(
Hηζ1, Hη+1ζ1

)r , ∀η ≥ η0.

l − l
2
= B ≤

ϑ
(
π
(
Hηζ1, Hη+1ζ1

))
− 1

π
(
Hηζ1, Hη+1ζ1

)r , ∀η ≥ η0.

ϑ
(
π
(
Hηζ1, Hη+1ζ1

))
− 1

π
(
Hηζ1, Hη+1ζ1

)r ≥ l −B = B, ∀η ≥ η0.

Then

η
[
π
(

Hηζ1, Hη+1ζ1

)]r
≤ Aη

[
ϑ
(

π
(

Hηζ1, Hη+1ζ1

))
− 1
]
, ∀η ≥ η0,

where A = 1
B .

Now, suppose that l = ∞. Let B > 0 be an arbitrary positive number. From the
definition of the limit, there exists η0 ≥ 1 such that

ϑ
(
π
(
Hηζ1, Hη+1ζ1

))
− 1

π
(
Hηζ1, Hη+1ζ1

)r ≥ B, ∀η ≥ η0.

This implies

η
[
π
(

Hηζ1, Hη+1ζ1

)]r
≤ Aη

[
ϑ
(

π
(

Hηζ1, Hη+1ζ1

))
− 1
]
, ∀η ≥ η0,

where A = 1
B .

Thus, in all cases, there exist A > 0 and η0 ≥ 1 such that

η
[
π
(

Hηζ1, Hη+1ζ1

)]r
≤ Aη

[
ϑ
(

π
(

Hηζ1, Hη+1ζ1

))
− 1
]
, ∀η ≥ η0.

By using (4), we obtain

η
[
π
(

Hηζ1, Hη+1ζ1

)]r
≤ Aη

([
ϑ
(

π
(

Hηζ1, Hη+1ζ1

))]κη

− 1
)

, ∀η ≥ η0. (18)

Letting η → ∞ in the inequality (6), we obtain lim
η→∞

η
[
π
(
Hηζ1, Hη+1ζ1

)]r
= 0.
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Thus, there exists η1 ∈ N such that

π
(

Hηζ1, Hη+1ζ1

)
≤ 1

η
1
r

, ∀η ≥ η1. (19)

Now, we show that ζ∗ is a periodic point in H.
Conversely, we assume that Hηζ1 6= Hωζ1, ∀ η, ω ≥ 1 such that η 6= ω. By (i) and

Equation (14), we have

ϑ
(

π
(

Hηζ1, Hη+2ζ1

))
≤ α

(
Hη−1ζ1, Hη+1ζ1

)
· ϑ
(

π
(

Hη−1ζ1, Hη+1ζ1

))
≤
[

ϑ

(
max

{
π
(

Hη−1ζ1, Hη+1ζ1

)
, π
(

Hη−1ζ1, HHη−1ζ1

)
,

π
(

Hη+1ζ1, HHη+1ζ1

)
,

π
(
Hη−1ζ1, HHη−1ζ1

)
· π
(
Hη+1ζ1, HHη+1ζ1

)
1 + π

(
Hη−1ζ1, Hη+1ζ1

) })]κ

=

[
ϑ

(
max

{
π
(

Hη−1ζ1, Hη+1ζ1

)
, π
(

Hη−1ζ1, Hηζ1

)
,

π
(

Hη+1ζ1, Hη+2ζ1

)
,

π
(
Hη−1ζ1, Hηζ1

)
· π
(
Hη+1ζ1, Hη+2ζ1

)
1 + π

(
Hη−1ζ1, Hη+1ζ1

) })]κ

=
[
ϑ
(

max
{

π(Hη−1ζ1, Hη+1ζ1), π(Hη−1ζ1, Hηζ1), π
(

Hη+1ζ1, Hη+2ζ1

)})]κ
. (20)

Since ϑ is non-decreasing, from (20), we obtain

ϑ
(

π
(

Hηζ1, Hη+2ζ1

))
≤
[

max
{

ϑ
(

π
(

Hη−1ζ1, Hη+1ζ1

))
, ϑ
(

π
(

Hη−1ζ1, Hηζ1

))
,

ϑ
(

π
(

Hη+1ζ1, Hη+2ζ1

))}]κ

. (21)

Let I = {η}η∈N, satisfying

pη = max
{

ϑ
(

π
(

Hη−1ζ1, Hη+1ζ1

))
, ϑ
(

π
(

Hη−1ζ1, Hηζ1

))
, ϑ
(

π
(

Hη+1ζ1, Hη+2ζ1

))}
= ϑ

(
π
(

Hη−1ζ1, Hη+1ζ1

))
.

If |I| < ∞, then ∃ η ≥ 1, such that, ∀ η ≥ N,

max
{

ϑ
(

π
(

Hη−1ζ1, Hη+1ζ1

))
, ϑ
(

π
(

Hη−1ζ1, Hηζ1

))
, ϑ
(

π
(

Hη+1ζ1, Hη+2ζ1

))}
= max

{
ϑ
(

π
(

Hη−1ζ1, Hηζ1

))
, ϑ(π(Hη+1ζ1, Hη+2ζ1))

}
.

In this case, from Equation (21), we obtain

1 ≤ ϑ
(

π
(

Hηζ1, Hη+2ζ1

))
≤
[
max

{
ϑ
(

π
(

Hη−1ζ1, Hηζ1

))
, ϑ
(

π
(

Hη+1ζ1, Hη+2ζ1

))}]κ
, ∀η ≥ N.

Taking η → ∞ in the above equation and by (17), we have

lim
η→∞

ϑ
(

π
(

Hηζ1, Hη+2ζ1

))
= 1.

Find a subsequence of {pη}. If |I| = ∞, then

pη = ϑ
(

π
(

Hη−1ζ1, Hη+1ζ1

))
,

for large η.
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In this case, from (21), we obtain

1 ≤ ϑ
(

π
(

Hηζ1, Hη+2ζ1

))
≤
[
ϑ
(

π
(

Hη−1ζ1, Hη+1ζ1

))]κ

≤
[
ϑ
(

π
(

Hη−2ζ1, Hηζ1

))]κ2

...

≤
[
ϑ
(

π
(

ζ1, H2ζ1

))]κη

,

for large η.
Setting η → ∞ in the above inequality, we obtain

lim
η→∞

ϑ
(

π
(

Hηζ1, Hη+2ζ1

))
= 1. (22)

Then in all cases, (22) holds. Using (22) and (�2), we have

lim
η→∞

ϑ
(

π
(

Hηζ1, Hη+2ζ1

))
= 0.

Similarly, from (�3), there exists η2 ≥ 1 such that

π
(

Hηζ1, Hη+2ζ1

)
≤ 1

η
1
r

, ∀η ≥ η2. (23)

Let h = max{η0, η1}; we consider the following cases:

Case 1: If ω > 2 is odd, then we write ω = 2L+ 1,L ≥ 1; by Equation (19) ∀ η ≥ h,
we have

π
(
Hηζ1, Hη+ωζ1

)
≤ π

(
Hηζ1, Hη+1ζ1

)
+ π

(
Hη+1ζ1, Hη+2ζ1

)
+ · · ·+ π

(
Hη+2Lζ1, Hη+2L+1ζ1

)
≤ 1

η
1
r

+
1

(η + 1)
1
r

+ · · ·+ 1

(η + 2L)
1
r

≤
∞

∑
n=η

1

n
1
r

.

Case 2: If ω > 2 is even, then we write ω = 2L,L ≥ 2; by Equations (19) and (23) ∀ η ≥ h,
we obtain

π
(
Hηζ1, Hη+ωζ1

)
≤ π

(
Hηζ1, Hη+2ζ1

)
+ π

(
Hη+2ζ1, Hη+3ζ1

)
+ · · ·+ π

(
Hη+2L−1ζ1, Hη+2Lζ1

)
≤ 1

η
1
r

+
1

(η + 2)
1
r

+ · · ·+ 1

(η + 2L− 1)
1
r

≤
∞

∑
n=η

1

n
1
r

.

Then combining all cases, we have

π
(
Hηζ1, Hη+ωζ1

)
≤

∞

∑
n=η

1

n
1
r

,

for all η ≥ h, ω ≥ 1.
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Since the series ∑∞
n=η

1
n

1
r

is convergent (since 1
r > 1), we conclude that {Hηζ1} is a

Cauchy O-sequence. By completeness, there exists ζ∗ ∈ L such that lim
η→∞

Hηζ1 → ζ∗.

Now, we show that ζ∗ = Hζ∗. Since H is orthogonal α-orbital-attractive, ∀ η ≥ 1,
we have

α(Hηζ1, ζ∗) ≥ 1 or α
(

ζ∗, Hη+1ζ1

)
≥ 1.

Thus, there exists a subsequence
{

Hη(κ)ζ1

}
of {Hηζ1} such that

α
(

Hη(κ)ζ1, ζ∗
)
≥ 1 or α(ζ∗, Hη(κ)ζ1) ≥ 1, ∀κ ≥ 1.

In case (1), without loss of the generality, suppose that Hη(κ)ζ1 6= ζ∗, ∀ κ. By condition
(i), we obtain

ϑ
(

π
(

Hη(κ)+1ζ1, Hζ∗
))

= ϑ
(

π
(

H(Hη(κ)ζ1), Hζ∗
))

≤ α
(

Hη(κ)ζ1, ζ∗
)
· ϑ
(

π
(

H
(

Hη(κ)ζ1

)
, Hζ∗

))
≤
[

ϑ

(
max

{
π
(

Hη(κ)ζ1, ζ∗
)

, π
(

Hη(κ)ζ1, HHη(κ)ζ1

)
, π(ζ∗, Hζ∗),

π
(

Hη(κ)ζ1, H
(

Hη(κ)ζ1

))
· π(ζ∗, Hζ∗)

1 + π
(
Hη(κ)ζ1, ζ∗

) })]κ

=

[
ϑ

(
max

{
π
(

Hη(κ)ζ1, ζ∗
)

, π
(

Hη(κ)ζ1, Hη(κ)+1ζ1

)
, π(ζ∗, Hζ∗),

π
(

Hη(κ)ζ1, Hη(κ)+1ζ1

)
· π(ζ∗, Hζ∗)

1 + π
(
Hη(κ)ζ1, ζ∗

) })]κ

. (24)

Putting κ → ∞,

ϑ(π(ζ∗, Hζ∗)) ≤ [ϑ(π(ζ∗, Hζ∗))]
κ < ϑ(π(ζ∗, Hζ∗)),

and we obtain ζ∗ = Hζ∗, a contradiction by our assumptions. Therefore, H has a periodic
point. Then, s > 1 and π(ζ∗, Hζ∗) > 0. Now,

ϑ(π(ζ∗, Hζ∗)) = ϑ
(

π
(

Hsζ∗, Hs+1ζ∗
))

≤ α
(

Hs−1ζ∗, Hsζ∗
)
· ϑ
(

π
(

Hsζ∗, Hs+1ζ∗
))

≤ [ϑ(π(ζ∗, Hζ∗))]
κs

< ϑ(π(ζ∗, Hζ∗)),

a contradiction. Thus, fix {H} 6= ∅; that is, H has at least one fixed point.
If ξ∗ is another fixed point of H such that ζ∗ 6= ξ∗, since H is orthogonal α-orbital

attractive, we deduce that

α(Hηζ1, ξ∗) ≥ 1 or α(ξ∗, Hη+1ζ1) ≥ 1.

Hence, there exists a sub sequence {Hη(κ)ζ1} of {Hηζ1} such that

α(Hη(κ)ζ1, ξ∗) ≥ 1 or α(ξ∗, Hη(κ)ζ1) ≥ 1, ∀ κ ≥ 1.

In the first case,
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ϑ
(

π
(

Hη(κ)+1ζ1, ξ∗
))

= ϑ
(

π
(

Hη(κ)+1ζ1, Hξ∗
))

= ϑ
(

π
(

H(Hη(κ)ζ1), Hξ∗
))

≤ α
(

Hη(κ)ζ1, ξ∗
)
· ϑ
(

π
(

H(Hη(κ)ζ1), Hξ∗
))

≤
[

ϑ

(
max

{
π
(

Hη(κ)ζ1, ξ∗
)

, π
(

Hη(κ)ζ1, HHη(κ)ζ1

)
, π(ξ∗, Hξ∗),

π
(

Hη(κ)ζ1, H
(

Hη(κ)ζ1

))
· π(ξ∗, Hξ∗)

1 + π
(
Hη(κ)ζ1, ξ∗

) })]κ

=

[
ϑ

(
max

{
π
(

Hη(κ)ζ1, ξ∗
)

, π
(

Hη(κ)ζ1, Hη(κ)+1ζ1

)
, π(ξ∗, Hξ∗),

π
(

Hη(κ)ζ1, Hη(κ)+1ζ1

)
· π(ξ∗, Hξ∗)

1 + π
(
Hη(κ)ζ1, ξ∗

) })]κ

. (25)

Setting κ → ∞ in the above equality, we obtain ϑ(π(ζ∗, ξ∗)) < ϑ(π(ξ∗, ζ∗)). This is a
contradiction. The second case is similar.

4. Application

In this section, we present an application of Theorem 1 to the solution of a Cauchy
problem involving a fractional integro-differential equation.

We consider a Cauchy problem involving a fractional integro-differential equation
with a non-local condition given by{

cDqζ(t) = f(t, ζ(t)) +
∫ t

0 K(t, p, ζ(t))dp, t ∈ [0, T ], T > 0, 0 < q < 1,
ζ(0) = ζ0 − g(ζ),

(26)

where cDq denotes the Caputo fractional derivative of order q, f : [0, T ] × L → L, K :
[0, T ]× [0, T ]×L → L are jointly continuous, g : C([0, T ],L) → L is continuous. Here,
(L, ‖ · ‖) is a Banach space and C([0, T ],L) denotes the Banach space of all continuous
functions from [0, T ] → L endowed with a topology of uniform convergence with the
norm ||ζ|| = maxt∈[0,T ] |ζ(t)|; see [29].

Let L = C([0, T ],L) endowed with the metric d : L × L → [0, ∞) be defined as
π(h, p) = maxt∈[0,T ] |h(t)− p(t)| for all h, p ∈ L. Define the orthogonality relation ⊥ on
L by

ζ⊥ξ ⇐⇒ ζ(t)ξ(t) ≥ 0, ∀t ∈ [0, T ].

Then, (L,⊥, d) is an orthogonal complete Branciari metric space. Clearly, a solution o
Equation (26) is a fixed point of the integral Equation [28]:

ζ(t) = ζ0 − g(ζ) +
1

Γ(q)

∫ t

0
(t− s)q−1[f(s, ζ(s)) +

∫ t

s
K(ϑ, s, ζ(s))dϑ]ds, (27)

where Γ is the Gamma function.
A solution to the problem mentioned in Equation (26) is, evidently, a fixed point of

H. The existence uniqueness theorem for the solution of Equation (26) is presented in the
following theorem.
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Theorem 4. Suppose that (L,⊥, d) is an orthogonal complete Branciari metric space equipped
with metric π(h, g) = maxt∈[0,T ] |h(t)− g(t)| for all h, g ∈ L and H : L → L is an orthogonal
continuous operator on L defined by

Hζ(t) = ζ0 − g(ζ) +
1

Γ(q)

∫ t

0
(t− s)q−1[f(s, ζ(s)) +

∫ t

s
K(ϑ, s, ζ(s))dϑ]ds. (28)

For all ζ, ξ ∈ L with ζ 6= ξ and s, t ∈ [0, T ], satisfying the following inequality

(A1)

|K(t, s, Hζ(s))− K(t, s, Hξ(s))| ≤r1 max
{
|ζ(s)− ξ(s)|, |ζ(s)−Hζ(s)|,

|ξ −Hξ(s)|, |ζ(s)−Hζ(s)||ξ −Hξ(s)|
1 + |ζ(s)− ξ(s)|

}
;

(A2)

|f(s, ζ(s))− f(s, ξ(s))| ≤r2 max
{
|ζ(s)− ξ(s)|, |ζ(s)−Hζ(s)|,

|ξ −Hξ(s)|, |ζ(s)−Hζ(s)||ξ −Hξ(s)|
1 + |ζ(s)− ξ(s)|

}
;

(A3)

|g(ζ)− g(ξ)| ≤r3 max
{
|ζ(s)− ξ(s)|, |ζ(s)−Hζ(s)|,

|ξ −Hξ(s)|, |ζ(s)−Hζ(s)||ξ −Hξ(s)|
1 + |ζ(s)− ξ(s)|

}
.

Then, the Cauchy problem (26) has a unique solution provided r3 < 1
2 , r1 ≤ Γ(q+1)

4T q and
r1 ≤ Γ(q+2)

4T q+1 .

Proof. We define α : L × L → [0, ∞) such that α(ζ, ξ) = 1 for all ζ, ξ ∈ L. Therefore,
H is an orthogonal triangular α-orbital admissible mapping. Now, we show that H is
⊥-preserving. For each ζ, ξ ∈ L with ζ⊥ξ and t ∈ [0, T ], we have

Hζ(t) = ζ0 − g(ζ) +
1

Γ(q)

∫ t

0
(t− s)q−1[f(s, ζ(s)) +

∫ t

s
K(ϑ, s, ζ(s))dϑ]ds > 0.

Then, H is ⊥-preserving. Clearly, H is orthogonal continuous. Let ζ, ξ ∈ L with ζ⊥ξ.
Suppose that H(ζ) 6= H(ξ). Then, we have

|Hζ(t)−Hξ(t)| ≤ |g(ζ)− g(ξ)|+ 1
Γ(q)

∫ t

0
(t− s)q−1

[
|f(s, ζ(s))− f(s, ξ(s))|

+
∫ t

s
|K(ϑ, s, ζ(s))− K(ϑ, s, ξ(s))|dϑ

]
ds

≤
(

r3 +
r1T q

Γ(q+ 1)
+

r2T q+1

Γ(q+ 2)

)
max

{
|ζ(s)− ξ(s)|, |ζ(s)−Hζ(s)|,

|ξ −Hξ(s)|, |ζ(s)−Hζ(s)||ξ −Hξ(s)|
1 + |ζ(s)− ξ(s)|

}
.
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Since r3 < 1
2 , r1 ≤ Γ(q+1)

4T q and r1 ≤ Γ(q+2)
4T q+1 ; therefore, i := r3 +

r1T q

Γ(q+1) +
r2T q+1

Γ(q+2) < 1,

|Hζ(t)−Hξ(t)| ≤ i max
{
|ζ(s)− ξ(s)|, |ζ(s)−Hζ(s)|, |ξ −Hξ(s)|,

|ζ(s)−Hζ(s)||ξ −Hξ(s)|
1 + |ζ(s)− ξ(s)|

}
.

Taking the maximum on both sides for all t ∈ [0, T ], we obtain

π(Hζ(t), Hξ(t)) = max
t∈[0,T ]

|Hζ(t)−Hξ(t)|

≤ max
t∈[0,T ]

[
i max

{
|ζ(s)− ξ(s)|, |ζ(s)−Hζ(s)|, |ξ −Hξ(s)|,

|ζ(s)−Hζ(s)||ξ −Hξ(s)|
1 + |ζ(s)− ξ(s)|

}]
.

≤ i max
[

max
r∈[0,T ]

{
|ζ(s)− ξ(s)|, |ζ(s)−Hζ(s)|, |ξ −Hξ(s)|,

|ζ(s)−Hζ(s)||ξ −Hξ(s)|
1 + |ζ(s)− ξ(s)|

}]
= i max

{
π(ζ, ξ), π(ζ, Hζ), π(ξ, Hξ),

π(ζ, Hζ)π(ξ, Hξ)

1 + π(ζ, ξ)

}
,

which implies that

eπ(Hζ,Hξ) ≤ ei max
{

π(ζ,ξ),π(ζ,Hζ),π(ξ,Hξ), π(ζ,Hζ)π(ξ,Hξ)
1+π(ζ,ξ)

}

=

(
emax

{
π(ζ,ξ),π(ζ,Hζ),π(ξ,Hξ), π(ζ,Hζ)π(ξ,Hξ)

1+π(ζ,ξ)

})i

=
(

eR(ζ,ξ)
)i

.

Consider ϑ : (0, ∞)→ (1, ∞) such that ϑ(ρ) = eρ for all ρ > 0. Thus,

α(ζ, ξ)ϑ(π(Hζ, Hξ)) ≤ (ϑ(R(ζ, ξ)))i.

Therefore, all the conditions of Theorem 1 are satisfied, and so H has a unique solution.

5. Conclusions and Open Problem

In this paper, we investigated the existence and uniqueness of a fixed point of or-
thogonal generalized contraction via orthogonal triangular α-orbital admissible mapping
in an orthogonal complete Branciari metric space. Khalehoghli, Rahimi, and Eshaghi
Gordji [33,34] presented a real generalization of the mentioned Banach’s contraction princi-
ple by introducing R-metric spaces, where R is an arbitrary relation on L. We note that in a
special case, R can be considered as R :=�[partially ordered relation], R := ⊥[orthogonal
relation], etc. If one can find a suitable replacement for a Banach theorem that may deter-
mine the value of fixed point, then many problems can be solved in this R-relation. This
will provide a structural method for finding a value of a fixed point. It is an interesting
open problem to study the fixed-point results on R-complete R-Branciari metric spaces.
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