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Abstract: Rigorous methods of decomposing kinetic networks to cycles are available, but the solutions
usually contain entangled transition rates, which are difficult to analyze. This study proposes a new
method of decomposing net transition flux to cycle durations, and the duration of each cycle is an
integration of the transition times along the cycle. The method provides a series of neat dependences
from the basic kinetic variables to the final flux, which support direct analysis based on the formulas.
An assisting transformation diagram from symmetric conductivity to asymmetric conductivity is
provided, which largely simplifies the application of the method. The method is likely a useful
analytical tool for many studies relevant to kinetics and networks. Applications of the method shall
provide new kinetic and thermodynamic information for the studied system.
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1. Introduction

Kinetic networks composed of stochastic transitions between significant states are a
useful representation for describing dynamics of complicated systems [1–4]. The represen-
tation is broadly used in studying biochemical and biomolecular processes [5–15]. By the
representation, the dynamics of a system can be viewed as a combination of different cycles
in the network, which not only provides an integrative picture for the dynamics, but also
provides a rational way to analyze the dynamics. Rigorous methods [5,6,9,12] for decou-
pling a network into elementary cycles are available, and fluxes caused by transitions can
be decomposed into cycle fluxes by formulas. The methods are useful tools for quantitative
studies. Recent single-molecule experiments reveal clear regularities and advances in the
thermodynamics and mechanisms of some valuable biomolecular systems [16–22]. For
example, the forward vs. backward stepping ratios of the molecular motors kinesin and
F1-ATPase display clear power law against load [16–18,20], and the load-coupling distances
are close to half-step sizes of the motors. The measured energy conversion efficiency of FOF1
ATP synthase approaches the thermodynamics limit of 100% [19–22]. The clear regularity
and remarkable performance attracted a lot of research effort, and kinetic networks are
used for in studies [7]. However, solutions from the present methods [5,6,9,12] usually
involve entangled rate constants, in which the rate dependence of the performance and
thermodynamics is difficult to analyze directly without numerical assistance. At present,
a solution with direct analytical ability is still missing. To find the physical origin of the
observed regularities and advances is also difficult. What is missing from the analytical
ability is not only about the beauty of the formulation or mathematics, but, and of more
relevance, is whether a right angle to see the physics of the systems is found.

The entangled rate constants from the present methods (e.g., refs. [5,6]) likely originate
from the type of decomposition. The present methods decompose transition fluxes into
cycle fluxes directly, and the cycle fluxes are naturally continuous and inseparable along the
cycle. Thus, it is not difficult to understand the appearance of the entangled rate constants
in the solution. However, a cycle flux can be alternatively expressed by the reciprocal
of the cycle duration, which should be a summation or integration of the durations of

Symmetry 2022, 14, 1857. https://doi.org/10.3390/sym14091857 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14091857
https://doi.org/10.3390/sym14091857
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-0887-3466
https://doi.org/10.3390/sym14091857
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14091857?type=check_update&version=1


Symmetry 2022, 14, 1857 2 of 13

the elementary transitions. Such expression might avoid the entanglement, because basic
variables might be separated with each other in the summation. Some effort has been
reported on this direction [9]. Thus, the inversed way of expression might provide solutions
with analytical ability.

In this study, we propose a general method to decompose steady-state transition flux
into cycle durations. The solution contains analytical ability, in which the basic variables
are separated with each other, and the dependences from the basic variables to the cycle
durations and further to the transition flux are transparent. A general formulation and an
assisting transformation diagram approach are provided for the application of the method.
In the following sections, we shall firstly demonstrate the method using the minimal case
of single cycle for clear understanding, and secondly describe the general formulation. A
comparison between this method and a previous method is conducted. Rigorous derivation
for supporting the method is shown in the Appendix. Applications of the method are
also discussed.

2. Results
2.1. Formulation and Transformation Diagram of Single Cycle

In a transition in a kinetic network, the flux caused by the transition can be understood
as contributions from all cycles that pass the transition. In other words, the transition flux can
be decomposed into the contributions of the cycles. To clearly display our decomposition, we
start from the simplest case of a single cycle. Figure 1A shows a kinetic diagram with a single
cycle (1↔ 2↔ 3↔ 4↔ 1) composed of four states (marked by 1, 2, 3, and 4) of the system,
and transitions (e.g., kij denotes the transition rate from state i to state j) between the states.
For the generality, all the transitions are assumed reversible (e.g., kji is the reversed rate respect
to kij) (Figure 1A).

Figure 1. Kinetic diagram of a single cycle. (A) A four-state single cycle is illustrated. Each arrow
denotes a transition and the aside kij denotes the transition rate. (B) Shown is an equivalent diagram of A
with the transition rates (kij) converted to the defined net transition rates (κij) (Equation (1)). The cycle, as
well as the transitions, now are unidirectional in the form, with the arrows denoting the direction of the
net transition and κij denoting the net transition rate. κij is a composite rate (Equation (1)) that contains
the information of both the transition rates (kij and kji) in the two opposite directions via the quantity of
entropy production (i.e., ∆Sij). (C) Illustration of a single cycle with arbitrary number of states.

Due to the single cycle (Figure 1A), the net transition fluxes (i.e., JN
ij = pikij − pjkji with

pi denoting the probability of state i) of all transitions at steady-state equal to each other
(e.g., JN

1,2 = JN
2,3 = JN

3,4 = JN
4,1 for Figure 1A), and only one cycle (i.e., 1 ↔ 2 ↔ 3 ↔ 4 ↔ 1),

contribute to the transition fluxes. For expressing the net transition fluxes by the cycle, we
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define the net transition rate from state i to state j as the ratio of the net transition flux over the
probability of state i, namely κij = JN

ij /pi. The net transition rate (κij) can be transformed to,

κij = kij(1− e−∆Sij/kB) (1)

where kB is the Boltzmann constant, and ∆Sij is the entropy production of a transition
from state i to state j, which is defined by ∆Sij = kBln((pikij)/(pjkji)) [23,24]. The entropy
production ∆Sij can represent irreversibility of the transition. For example, if e∆Sij/kB >> 1
(e.g., 1 − e−∆Sij/kB ≥ 0.993 for ∆Sij ≥ 5kB), κij approximates to kij (κij ≈ kij) (Equation (1)),
and, thereby, the reversed rate kji can be ignored during the calculation of the flux JN

ij . The

net flux (JN
ij ) of each transition in Figure 1A is expressed by introducing the net transition

rate (Appendix A), namely,

JN
j,j+1 = (κ1,2

−1 + κ2,3
−1 + κ3,4

−1 + κ4,1
−1)
−1

(2)

On the right side of Equation (2), each element of κi,i+1
−1 is the reciprocal of the net

transition rate, and, thereby, κi,i+1
−1 represents the average time for passing through the

transition. The summation of the elements in the bracket is the average duration (τ) of
the cycle, namely, τ = κ1,2

−1 + κ2,3
−1 + κ3,4

−1 + κ4,1
−1. Hence, Equation (2) expresses the

net transition flux by the cycle duration via the summation of the transition times, namely,
JN
j,j+1 = τ−1.

The advantage of Equation (2) is the analytical ability. The expression of net transition
flux (JN

j,j+1) is simply the reciprocal of cycle duration (τ−1), and the cycle duration is the simple

summation of the transition time (κi,i+1
−1). The relations are clear and understandable. Each

transition time (κi,i+1
−1) appears independently in respect to the others (Equation (2)), and

each transition time only depends on the local transition rate (ki,i+1) and the local entropy
production (∆Si,i+1) (Equation (1)), which are separated with that of the other transitions.
Hence, the series dependences from the basic variables of ki,i+1 and ∆Si,i+1 to the intermediate
quantities of κi,i+1 and τ, and further to the final quantity JN

j,j+1, are transparent, which support
thorough analysis based on the formulas (Equations (1) and (2)).

Other methods are able to decompose the transition flux too. For example, by explor-
ing the graph theory and kinetics, Hill’s method [5,6] can build complete sets of partial
diagrams, directional diagrams, and cycle flux diagrams for the original kinetic diagram.
The steady-state probability of each state on the diagram can be expressed by the algebraic
values of the directional diagrams, and the flux of a cycle can be expressed by algebraic
values of the directional diagrams, as well as by cycle flux diagrams. Thus, the method can
simultaneously decompose all the steady-state transition fluxes in a kinetic diagram into
cycle fluxes. For comparison with our method, the net flux (JN

j,j+1) in Figure 1A is expressed
by Hill’s method [5,6], namely,

JN
j,j+1 =

χ+ − χ−
σ

(3)

χ+ = k1,2k2,3k3,4k4,1 (4)

χ− = k1,4k4,3k3,2k2,1 (5)

σ = k2,3k3,4k4,1 + k4,1k4,3k3,2 + k4,1k4,3k2,3 + k2,3k3,4k1,4
+k2,1k4,1k3,4 + k3,4k4,1k1,2 + k2,1k1,4k4,3 + k2,1k1,4k3,4
+k3,2k2,1k4,1 + k4,1k1,2k3,2 + k4,1k1,2k2,3 + k3,2k2,1k1,4
+k4,3k3,2k2,1 + k1,2k3,2k4,3 + k1,2k2,3k4,3 + k1,2k2,3k3,4

(6)

In Equations (3)–(6), χ+ and χ− are the respective products of the transition rates along
the forward and backward directions of the cycle (1↔ 2↔ 3↔ 4↔ 1). σ is the sum of
algebraic values of directional diagrams, in which each value is a product of the transition
rates from the directional diagram. The algebraic value of the cycle flux diagram is unity,
which is omitted here. Equation (3) expresses the net transition flux (JN

j,j+1) by the cycle
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flux, where χ+/σ and χ−/σ are the cycle fluxes in the forward and backward directions,
respectively, and (χ+ − χ−)/σ is the net cycle flux [5,6]. Equations (3)–(6) use the eight
transition rates (k1,2, k2,1, k2,3, k3,2, k3,4, k4,3, k4,1, and k1,4 in Figure 1A) as basic variables,
while Equations (1) and (2) use the four transition rates (k1,2, k2,3, k3,4, and k4,1) and the
four entropy productions (∆S1,2, ∆S2,3, ∆S3,4, and ∆S4,1) as basic variables. As the total
number of basic variables are conserved, the two expressions (Equations (2) and (3)) are
mathematically equivalent. However, the dependences from the basic variables of the eight
transition rates (kij in Figure 1A) to the final quantities of the net cycle flux ((χ+ − χ−)/σ),
as well as the net transition flux (JN

j,j+1), are complicated, largely due to the transition rates
being entangled with each other in the expression (Equations (4)–(6)). Since Figure 1A is a
simple single-cycle diagram with only four transitions, the above dependences would be
more complicated [5,6] for diagrams containing more cycles.

The reason for the neat expression of Equation (2) is explained by Figure 1B. The rate
entanglement in Equations (3)–(6) is more or less due to the reversibility of the transitions in
Figure 1A. If all the transitions (Figure 1A) are irreversible, the entanglement will disappear.
Our formulation actually creates an equivalent diagram (Figure 1B) to the original one
(Figure 1A) with all the transitions converted to a unidirectional form (Figure 1B). The
transformation is conducted by using the net transition rates (κij) instead of the original
transition rates (kij and kji) (Figure 1B). The new diagram (Figure 1B) maintains all the
kinetic information of the original one (Figure 1A) via the net transition rates (κij), because
κij absorbs the information of the reversed transition via the entropy production (∆Sij)
(Equation (1)). The conductivity of the new diagram is asymmetric compared to the original,
which largely simplifies the expression of the net transition flux. The transformation
diagram is general, which applies to more complicated kinetic networks. The generality
are shown in the later sections.

The simplification from the transformation diagram might be understood as a alge-
braic transformation from transition rates (kij and kji) to entropy production (∆Sij), while
the entropy production is not merely the mathematical transformation but an important
physical quantity that is independent. The independence of the entropy production is
discussed in the later section of Discussion.

After the four-state single cycle (Figure 1A), a general formula for a single cycle with
arbitrary number of states (Figure 1C) can be given (Appendix A), namely,

JN
j,j+1 = (∑

i
κi,i+1

−1)
−1

(7)

where JN
j,j+1 denotes a net transition flux from state j to state j+1 in Figure 1C. Similar

to Equation (2), Equation (7) also expresses the net transition flux by the duration (τ) of
the cycle, namely, τ = ∑i κi,i+1

−1, and the duration is also a summation of the transition
time (κi,i+1

−1). The steady-state condition for the single cycle (Figure 1C) is expressed by
Equation (8) or Equation (7), namely,

κi,i+1 + κi,i−1 = 0 (8)

pi−1κi−1,i + pi+1κi+1,i = 0 (9)

Equation (8) indicates the total of the net transition rates from state i is zero, and
Equation (9) indicates the total of the net transition fluxes to state i is zero. Equations (8) and
(9) are necessary for analysis of the kinetics. For example, our formulation assigns a direction
for the net transition flux (also the cycle flux) in Equations (2) (1→ 2 in Figure 1A) and (7)
(i→ i + 1 in Figure 1C), which may not be the actual direction of the flux. Equations (8) and
(9) show that the formulas (Equations (2) and (7)) produce negative values if the preassigned
direction is opposite to the actual direction.
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2.2. Case Analysis for Multiple-Cycle Network

A kinetic network in general can contain multiple cycles. Given a transition of interest,
the net transition flux is contributed from the cycles that passes through the transition.
In this section, we use a minimal diagram (Figure 2) to show that the above formulation
applies to the general case.

Figure 2. Minimal diagram for multiple cycles. (A) Shown is a minimal kinetic diagram that contains
multiple cycles. All the transitions between two states are reversible, which are denoted by the
arrows. (B) Shown are the three cycles contained in the diagram of A. The arrows for the transition
direction are omitted. (C) Shown is the diagram transformed from A. The transformation is similar to
that of Figure 1A to Figure 1B. In the present diagram, all transitions are unidirectional in the form,
and each transition is described by the defined net transition rates (κij) (Equation (1)) instead of the
original transition rates (kij).

Figure 2A is a minimal diagram that contains three possible cycles, which are shown
in Figure 2B (cycle I, II, and III). If the transition 4↔ 1 is of interest, the net transition flux
(JN

4,1) should be contributed by the cycle I (1↔ 2↔ 4↔ 1) and cycle II (1↔ 3↔ 4↔ 1)
(Figure 2B). The flux is expressed by the cycles (Appendix B), namely,

JN
4,1 =

{
κ1,2

κ1,2 + κ1,3
((κ1,2 + κ1,3)

−1 + κ2,4
−1 + κ4,1

−1) +
κ1,3

κ1,2 + κ1,3
((κ1,2 + κ1,3)

−1 + κ3,4
−1 + κ4,1

−1)

}−1

(10)

In Equation (10), the factors of κ1,2/(κ1,2 + κ1,3) and κ1,3/(κ1,2 + κ1,3) are the respective
probabilities of the system working in cycle I and cycle II when the transition 4↔ 1 occurs. As
κ1,2 and κ1,3 are the respective net transition rates to the two pathways of 1→ 2 and 1→ 3,
the probabilities satisfy the flux distribution towards the two pathways at the branching state
(state 1). The rest factors of (κ1,2 + κ1,3)−1 + κ2,4

−1 + κ4,1
−1 and (κ1,2 + κ1,3)−1 + κ3,4

−1 + κ4,1
−1

are the respective durations of cycle I and II, which are relevant to the transition 4↔ 1. Here,
(κ1,2 + κ1,3)−1 is the transition time for both transitions of 1→ 2 and 1→ 3, which is different
from that of a single cycle (e.g., the transition time is κ1,2

−1 for the transition 1→ 2 in Figure 1A).
The difference is caused by the competition between the two transitions (1→ 2 and 1→ 3)
at the branching state (state 1), in which situation only the quicker transition in the stochastic
processes occurs and the actual transition times of both transitions are reduced (Appendix).
Hence, the net transition flux JN

4,1 can be understood as the reciprocal of the average duration of
the cycles (I and II) that pass through the transition 4↔ 1 (Equation (10)).

The formulation also applies to other transitions in Figure 2A. Take transition 2↔ 4
for example, the net transition flux (JN

2,4) is contributed by cycles I and III, which can be
expressed (Appendix B) as,

JN
2,4 =

{
κ4,1

κ4,1 + κ4,3
((κ4,1 + κ4,3)

−1 + κ1,2
−1 + κ2,4

−1) +
κ4,3

κ4,1 + κ4,3
((κ4,1 + κ4,3)

−1 + κ3,1
−1 + κ1,2

−1 + κ2,4
−1)

}−1
(11)
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It is not difficult to find that JN
2,4 is still the reciprocal of the average duration of cycle

I and cycle III (Equation (11)). The factors of κ4,1/(κ4,1 + κ4,3) and κ4,3/(κ4,1 + κ4,3) are the
respective probabilities of the system working in cycle I and cycle III, and the rest factors of
(κ4,1 + κ4,3)−1 + κ1,2

−1 + κ2,4
−1 and (κ4,1 + κ4,3)−1 + κ3,1

−1 + κ1,2
−1 + κ2,4

−1 are the respective
durations of cycle I and cycle III.

Equations (10) and (11) show that a net transition flux from a multiple-cycle dia-
gram can still be decomposed into durations of the cycles that pass through the transi-
tion, and the durations are still the summations of the transition times. The expressions
(Equations (10) and (11)) also contain the same analytical ability of Equations (2) and
(7), since the dependences of the final quantity (JN

ij ) on the intermediate quantities (cycle
probabilities and durations), and further on the basic variables (kij and ∆Sij) (Equation (1)),
remain clear.

The formulation of Equations (10) and (11) still follows the logic of the diagram trans-
formation from Figure 1A to Figure 1B. For example, if the transition 4 ↔ 1 (Figure 2A) is
of interest, a direction for the net transition flux can be assigned, e.g., 4→ 1, and cycle I and
cycle II can be transformed to unidirectional cycles along the direction, namely 1→ 2→ 4→ 1
for cycle I and 1→ 3→ 4→ 1 for cycle II. Finally, a new diagram (Figure 2C) is ready with all
transition rates (e.g., kij and kji) replaced by net transition rates (e.g., κij) (similar to Figure 1B). A
similar approach applies to transition 2↔ 4 (Figure 2A) too. The results suggest that a general
formulation for the decomposition in an arbitrary network can be given. The formulation is
shown in the next section.

2.3. General Formulation for Kinetic Network

In a kinetic network with all transitions reversible, the net flux of a transition from
state l1 to state l2 can be decomposed into the contributions from the cycles that pass
through the transition, namely,

JN
l1l2 = ( ∑

m = I, I I . . .
l1l2 ⊂ Cm

ρmτm)
−1 (12)

ρm = Π
ij;ij⊂Cm

κij

κij + ∑
n;n/∈Cm

κin
(13)

τm = ∑
ij;ij⊂ Cm

(κij + ∑
n;n/∈ Cm

κin)
−1 (14)

In Equations (12)–(14), m is a number (e.g., I, II, III . . . ) assigned to each cycle, and ρm
and τm are the probability and duration, respectively, of cycle m, which contributes to the
transition l1↔ l2. The expression of “l1l2 ⊂ Cm” denotes that the transition l1↔ l2 is in cycle
m, and the expression of “n /∈ Cm” denotes that the state n is not in cycle m. We need to note
that ρm and τm depend on the transition (e.g., l1 ↔ l2) that is decomposed. This is because
the calculation of the probability ρm (Equation (13)) and duration τm (Equation (14)) depends
on the set of cycles, which, in turn, depends on the decomposed transition. The steady-state
condition for an arbitrary kinetic network can be expressed as,

∑
j

κij = 0 (15)

∑
j

pjκji = 0 (16)

The meanings of Equations (15) and (16) are the same of Equations (8) and (9).
Equations (12)–(14) combined with Equation (1) provide an analytical form for decom-

posing a net transition flux. In a network with n transitions, Equations (12)–(14) contain
n net transition rates (i.e., κij), which, in turn, depend on n transition rates (i.e., kij) and
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n entropy productions (i.e., ∆Sij) (Equation (1)). Thus, the total number of variables (2n) for
Equations (12)–(14) is the same as the total number of transition rates. The net transition
flux is still the reciprocal of the average cycle duration (Equation (12)). Here, the cycle
probability is the product of all the branching probabilities along the cycle (Equation (13)),
and the cycle duration is the summation of the transition times (Equation (14)). Thus,
the dependences of the final quantities (Equation (12)) on the intermediate quantities
(Equation (13), and further on the basic variables (Equation (1)), are clear. The formulation
(Equations (12)–(14)) applies to any transition in a given kinetic network at steady state.

Equations (12)–(14) are derived from the transformation diagram similar to that of
Figure 1A to Figure 1B, as well as from Figure 2A to Figure 2C. For verification of
Equations (12)–(14), five kinetic networks with different connectivity are used (Figure 3).
For each diagram (Figure 3), the decomposition based on the transformation diagram
(Equations (12)–(14)) is listed in Table 1. For example, the transition 8↔ 1 in Figure 3A
is contributed from the three cycles of 1 ↔ 2 ↔ 5 ↔ 8 ↔ 1, 1 ↔ 3 ↔ 6 ↔ 8 ↔ 1, and
1 ↔ 4 ↔ 7 ↔ 8 ↔ 1. When the transition 8 ↔ 1 occurs, the probability of the sys-
tem working in the first cycle depends on the branching at state 1 (Figure 3A), which is
κ1,2/(κ1,2 + κ1,3 + κ1,4) (Equation (13)). The duration of the first cycle is the summation of
the transition times, namely, (κ1,2 + κ1,3 + κ1,4)−1 + κ2,5

−1 + κ5,8
−1 + κ8,1

−1 (Equation (14)).
Here, the transition time of 1↔ 2 ((κ1,2 + κ1,3 + κ1,4)−1) is shortened by the branching at
state 1 (Figure 3A), which follows Equation (14). Thus, the contribution of the first cycle, as
well as the other two cycles, can be derived from the procedure, and the final expression of
the net flux (JN

8,1) can be given (Table 1) (Equation (12)).

Figure 3. Examples of kinetic networks. Shown are five kinetic networks with different types of
connectivity. (A) Shown diagram contains multiple pathways at the branching state (state 1). (B) Shown
diagram displays a branching–converging–branching style. (C) Shown diagram contains secondary
branching (the branching at state 3 succeeds the branching at state 1). (D) The two pathways (1↔ 2↔ 5
and 1↔ 3↔ 4↔ 5) in the diagram contain different number of states. (E) Shown diagram contains
bridge (2↔ 5) between two pathways (1↔ 2↔ 4↔ 6 and 1↔ 3↔ 5↔ 6).

For verification, rigorous derivation of the decomposition is shown in the Appendix.
The results from the transformation diagram (Table 1) are exactly the same as that from the
rigorous derivation (Appendix C). The consistency shows that the diagram transformation
(e.g., from Figure 1A to Figure 1B and from Figure 2A to Figure 2C) combined with the
rate transformation (i.e., from the transition rate kij and kji to the net transition rate κij via
Equation (1)) (Figure 1B) is a general method for the decomposition. The transformation
diagram largely simplifies the application of Equations (12)–(14) because a diagram (or
network) of unidirectional transitions is easy to calculate.
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Table 1. Examples of net transition flux decomposition. The first column lists the transition and
diagram, which are decomposed. The second column lists the cycles that contribute to the transition.
The third column lists the probability (ρm) of the system working in the cycle when the decomposed
transition occurs. The last column lists the duration (τm) of the cycle. The results are derived from
the transformation diagram, which is equivalent to Equations (13) and (14). The expression of the net
transition flux (JN

i,j ) is ready with the elements of ρm and τm (Equation (12)).

Flux Cycle ρm τm

JN
8,1 for

8↔ 1 of Figure 3A

1↔ 2↔ 5↔ 8↔ 1 κ1,2
κ1,2+κ1,3+κ1,4

(κ1,2 + κ1,3 + κ1,4)
−1 + κ2,5

−1 + κ5,8
−1 + κ8,1

−1

1↔ 3↔ 6↔ 8↔ 1 κ1,3
κ1,2+κ1,3+κ1,4

(κ1,2 + κ1,3 + κ1,4)
−1 + κ3,6

−1 + κ6,8
−1 + κ8,1

−1

1↔ 4↔ 7↔ 8↔ 1 κ1,4
κ1,2+κ1,3+κ1,4

(κ1,2 + κ1,3 + κ1,4)
−1 + κ4,7

−1 + κ7,8
−1 + κ8,1

−1

JN
10,1 for 10↔ 1 of Figure 3B

1↔ 2↔ 4↔ 6↔ 7↔ 8↔ 10↔ 1 κ1,2
κ1,2+κ1,3

· κ7,8
κ7,8+κ7,9

(κ1,2 + κ1,3)
−1 + κ2,4

−1 + κ4,6
−1 + κ6,7

−1

+(κ7,8 + κ7,9)
−1 + κ8,10

−1 + κ10,1
−1

1↔ 2↔ 4↔ 6↔ 7↔ 9↔ 10↔ 1 κ1,2
κ1,2+κ1,3

· κ7,9
κ7,8+κ7,9

(κ1,2 + κ1,3)
−1 + κ2,4

−1 + κ4,6
−1 + κ6,7

−1

+(κ7,8 + κ7,9)
−1 + κ9,10

−1 + κ10,1
−1

1↔ 3↔ 5↔ 6↔ 7↔ 8↔ 10↔ 1 κ1,3
κ1,2+κ1,3

· κ7,8
κ7,8+κ7,9

(κ1,2 + κ1,3)
−1 + κ3,5

−1 + κ5,6
−1 + κ6,7

−1

+(κ7,8 + κ7,9)
−1 + κ8,10

−1 + κ10,1
−1

1↔ 3↔ 5↔ 6↔ 7↔ 9↔ 10↔ 1 κ1,3
κ1,2+κ1,3

· κ7,9
κ7,8+κ7,9

(κ1,2 + κ1,3)
−1 + κ3,5

−1 + κ5,6
−1 + κ6,7

−1

+(κ7,8 + κ7,9)
−1 + κ9,10

−1 + κ10,1
−1

JN
7,1 for 7↔ 1 of Figure 3C

1↔ 2↔ 4↔ 7↔ 1 κ1,2
κ1,2+κ1,3

(κ1,2 + κ1,3)
−1 + κ2,4

−1 + κ4,7
−1 + κ7,1

−1

1↔ 3↔ 5↔ 7↔ 1 κ1,3
κ1,2+κ1,3

· κ3,5
κ3,5+κ3,6

(κ1,2 + κ1,3)
−1 + (κ3,5 + κ3,6)

−1

+ κ5,7
−1 + κ7,1

−1

1↔ 2↔ 6↔ 7↔ 1 κ1,3
κ1,2+κ1,3

· κ3,6
κ3,5+κ3,6

(κ1,2 + κ1,3)
−1 + (κ3,5 + κ3,6)

−1

+ κ6,7
−1 + κ7,1

−1

JN
5,1 for 5↔ 1 for Figure 3

1↔ 2↔ 5↔ 1 κ1,2
κ1,2+κ1,3

(κ1,2 + κ1,3)
−1 + κ2,5

−1 + κ5,1
−1

1↔ 3↔ 4↔ 5↔ 1 κ1,3
κ1,2+κ1,3

(κ1,2 + κ1,3)
−1 + κ3,4

−1 + κ4,5
−1 + κ5,1

−1

JN
6,1 for 6↔ 1 of Figure 3E

1↔ 2↔ 4↔ 6↔ 1 κ1,2
κ1,2+κ1,3

· κ2,4
κ2,4+κ2,5

(κ1,2 + κ1,3)
−1 + (κ2,4 + κ2,5)

−1

+ κ4,6
−1 + κ6,1

−1

1↔ 2↔ 5↔ 6↔ 1 κ1,2
κ1,2+κ1,3

· κ2,5
κ2,4+κ2,5

(κ1,2 + κ1,3)
−1 + (κ2,4 + κ2,5)

−1

+ κ5,6
−1 + κ6,1

−1

1↔ 3↔ 5↔ 6↔ 1 κ1,3
κ1,2+κ1,3

(κ1,2 + κ1,3)
−1 + κ3,5

−1 + κ5,6
−1 + κ6,1

−1

3. Discussions

In general, if a net transition flux is analyzed in the view of the cycles, the transition flux
is affected by both of the cycle probabilities (ρm) and durations (τm) (Equations (12)–(14)). The
net transition flux mainly depends on the cycles that contribute the most significant portions
of ρmτm (Equation (12)). However, a dominance can occur in two different situations; namely,
a cycle may dominant via the overwhelming probability (ρm) or the super slow duration
(τm). The dominance by ρm requires quicker net transition rates at the branching states for
the dominant cycle than the other cycles (Equation (13)), while the dominance by τm requires
slow net transition rates along the dominant cycle (Equation (14)), as long as the rates generate
no diminishing ρm at the branching states. The first situation is not difficult to see, while
the second situation might be ignored easily. Usually a cycle with a long duration would
be judged as a slow cycle of slow transition rates, and thereby, has a small probability of
occurring. It is unlikely that such a cycle significantly contributes to the net transition flux.
However, the rigorous formulation in this study suggests a slow cycle can contribute most
significantly to the net transition flux, as long as the slow transitions (i.e., small net transition
rates) do not appear at the branching states.

The definition of net transition rate (Equation (1)) from this study can be used to quantify
the actual speed of a transition. The expression (Equation (1)) provides some general infor-
mation on the driving energy and environmental temperature dependence of the speed. In
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Equation (1), the entropy production (∆Sij) multiplied by the temperature (T) is a measure of
driving energy of the transition, namely, ∆Gij = T∆Sij [25]. For general cases, if the driving
energy is increased without affecting the other conditions, both the transition rate (kij) and
the entropy production (∆Sij) increase with the driving energy, and, thereby, the actual speed
of transition should increase monotonically with the driving energy (Equation (1)), and the
duration of a cycle (Equation (14)) is reduced by the driving energy. In the other case of
temperature (T) increase, the transition rate (kij) is raised by the temperature in general cases,
while the other factor of 1 − e−∆Gij/kBT (Equation (1)) decreases with the temperature, as
the thermal energy brought by the increase in temperature reduces the irreversibility of a
processes in general. Thus, the temperature dependence of the net transition rate is governed
by the two opposite factors, and the rate can be raised or depressed by the temperature. Due
to the two opposite factors, a maximum speed or minimal duration of a cycle can be formed
at a specific temperature.

The advantage of the presented method is the analytical transparency. By the method,
any dependence of a transition time (Equation (1)), cycle probability (Equation (13)), or
duration (Equation (14)) on a transition rate (i.e., kij) or entropy production (i.e., ∆Sij) is
easy to be analyzed. Usually, a kinetic network (with n reversible transitions) is accus-
tomed to being analyzed by all the given transition rates (2n rates). In this situation, the
entropy productions used in our method still need to be obtained by solving the proba-
bilities of all states (i.e., pi) via other methods (e.g., Hill’s method [5,6]), which seems ease
the analysis slightly. However, the aim of our method is to use the half transition rates
(n rates) and the entropy productions (n entropy productions) as independent variables, in-
stead of treating the entropy productions as assisting transformations from the basic transition
rates. The treatment is applicable. The basic variables of our method contain all the infor-
mation of the kinetics. One can find that the compound quantity of the net transition rate
(κij) contains the information for both directions of the transition via the entropy production
(Equation (1)), and, thereby, the set of variables of the method is a complete set for representing
a network. The entropy production is an independent physical quantity that contains impor-
tant physical implications [23,24,26–31]. Thus, the quantity can be treated as an independent
variable in the method. Applications that use entropy productions as independent quantities
are reported for both biosystems [25,32,33] and artificial systems [34,35], which provide useful
thermodynamic information for characterizing the systems. Application of the method is
likely to reveal new kinetic or thermodynamic information for systems being studied.

4. Conclusions

In summary, a method for decomposing net transition flux into contributions of cycles
is presented. The net transition flux is expressed by the reciprocal of the average duration of
the cycles that passes through the transition, and the duration of each cycle is a summation
of the transition times along the cycle. The method is rigorous and general. The advantage
of the method is the analytical ability, which provides neat dependences of quantities of
interest on basic variables. The general formulation (Equations (12)–(14)), as well as the
general transformation diagram approach (Figure 1A,B), are provided for the application
of the method. The method is likely to be a useful tool for many studies on kinetics and
networks. As the method uses the thermodynamic quantity of entropy production as a
basic variable, the application of the method to specific problems will likely provide new
thermodynamic information for the systems.
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Appendix A. Decomposition for Single Cycle

Given a single cycle at steady-state (e.g., Figure 1C), the net transition fluxes of all transitions
along the cycle are equal, namely, JN

i,i+1 = piki,i+1 − pi+1ki+1,i = pjkj,j+1 − pj+1kj+1,j = JN
j,j+1. The

steady-state conditions of Equations (8) and (9) are derived from introducing the definition of
entropy production (∆Sij = kBln((pikij)/(pjkji))) to the above equality.

By introducing the relation of piki,i+1 − pi+1ki+1,i = piκi,i+1 and the normalization
condition of ∑i pi = 1 to the net transition flux JN

i,i+1 = piki,i+1 − pi+1ki+1,i, Equation (A1) can
be given, namely,

JN
j,j+1 =

 ∑
i

pi

pjκj,j+1

−1

=

(
∑

i

pi
piκi,i+1

)−1

= (∑
i

κi,i+1
−1)
−1

(A1)

Equation (A1) is the same as Equation (7). Application of Equation (A1) to the cycle
shown in Figure 1A produces Equation (2).

Appendix B. Decomposition for the Networks

In this part, we illustrate the rigorous derivation of Equations (10) and (11) (for
Figure 2A), as well as the results shown in Table 1 (for Figure 3).

Transition 4↔ 1 in Figure 2A. Similar to Equation (A1), the net transition flux JN
4,1 can

be expressed as,

JN
4,1 =

(
p1

p1(κ1,2 + κ1,3)
+

p2 + p3

p2κ2,4 + p3κ3,4
+

p4

p4κ4,1

)−1
=

(
1

κ1,2 + κ1,3
+

1
κ2,4 +

p3
p2

κ3,4
+

1
p2
p3

κ2,4 + κ3,4
+

1
κ4,1

)−1

(A2)

Application of the steady-state condition (Equations (15) and (16)) on states 2 and 3
(Figure 2A) produces the ratios between the probabilities in Equation (A2), namely
p2/p1 = κ1,2/κ2,4, p3/p1 = κ1,3/κ3,4, and p2/p3 = (κ1,2κ3,4)/(κ1,3κ2,4). Equation (A2) is simplified
by replacing the ratios, namely,

JN
4,1 =

{
κ1,2

κ1,2 + κ1,3

(
1

κ1,2 + κ1,3
+

1
κ2,4

+
1

κ4,1

)
+

κ1,3

κ1,2 + κ1,3

(
1

κ1,2 + κ1,3
+

1
κ3,4

+
1

κ4,1

)}−1

(A3)

Transition 2↔ 4 in Figure 2A. Similar to Equation (A2), the net transition flux JN
2,4 can

be expressed as,

JN
2,4 =

(
1

κ4,1 + κ4,3
+

1
κ3,1 +

p4
p3

κ4,1
+

1
κ1,2

+
1

κ2,4

)−1

(A4)

Application of Equations (15) and (16) to states 3 and 4 (Figure 2A) generates the ratio
of p4/p3 = κ3,1/κ4,3. Equation (A4) is simplified by replacing the ratio, namely,

JN
2,4 =

{
κ4,1

κ4,1 + κ4,3

(
1

κ4,1 + κ4,3
+

1
κ1,2

+
1

κ2,4

)
+

κ4,3

κ4,1 + κ4,3

(
1

κ4,1 + κ4,3
+

1
κ3,1

+
1

κ1,2
+

1
κ2,4

)}−1
(A5)

Transition 8↔ 1 in Figure 3A. Similar to Equation (A2), the net transition flux JN
8,1 can

be expressed as,

JN
8,1 =

(
1

κ1,2+κ1,3+κ1,4
+ 1

κ2,5+
p3
p2

κ3,6+
p4
p2

κ4,7
+ 1

p2
p3

κ2,5+κ3,6+
p4
p3

κ4,7
+ 1

p2
p4

κ2,5+
p3
p4

κ3,6+κ4,7

+ 1
κ5,8+

p6
p5

κ6,8+
p7
p5

κ7,8
+ 1

p5
p6

κ5,8+κ6,8+
p7
p6

κ7,8
+ 1

p5
p7

κ5,8+
p6
p7

κ6,8+κ7,8
+ 1

κ8,1

)−1 (A6)
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Application of Equations (15) and (16) to states 2, 3, 4, 5, 6, and 7 (Figure 3A) generates
the ratios of p2/p3 = (κ1,2κ3,6)/(κ1,3κ2,5), p3/p4 = (κ1,3κ4,7)/(κ1,4κ3,6), p2/p4 = (κ1,2κ4,7)/(κ1,4κ2,5),
p5/p6 = (κ1,2κ6,8)/(κ1,3κ5,8), p6/p7 = (κ1,3κ7,8)/(κ1,4κ6,8), and p5/p7 = (κ1,2κ7,8)/(κ1,4κ5,8).
Equation (A6) is simplified by replacing the ratios, namely,

JN
8,1 =

{
κ1,2

κ1,2+κ1,3+κ1,4

(
1

κ1,2+κ1,3+κ1,4
+ 1

κ2,5
+ 1

κ5,8
+ 1

κ8,1

)
+

κ1,3
κ1,2+κ1,3+κ1,4

(
1

κ1,2+κ1,3+κ1,4
+ 1

κ3,6
+ 1

κ6,8
+ 1

κ8,1

)
+

κ1,4
κ1,2+κ1,3+κ1,4

(
1

κ1,2+κ1,3+κ1,4
+ 1

κ4,7
+ 1

κ7,8
+ 1

κ8,1

)}−1 (A7)

Transition 10↔ 1 in Figure 3B. Similar to Equation (A2), the net transition flux JN
10,1 can

be expressed as,

JN
10,1 =

(
1

κ1,2+κ1,3
+ 1

κ2,4+
p3
p2

κ3,5
+ 1

p2
p3

κ2,4+κ3,5
+ 1

κ4,6+
p5
p4

κ5,6
+ 1

p4
p5

κ4,6+κ5,6
+ 1

κ6,7
+ 1

κ7,8+κ7,9

+ 1
κ8,10+

p9
p8

κ9,10
+ 1

p8
p9

κ8,10+κ9,10
+ 1

κ10,1

)−1 (A8)

Application of Equations (15) and (16) to states 2, 3, 4, 5, 8, and 9 generates the ratios
of p2/p3 = (κ1,2κ3,5)/(κ1,3κ2,4), p4/p5 = (κ1,2κ5,6)/(κ1,3κ4,6), and p8/p9 = (κ7,8κ9,10)/(κ7,9κ8,10).
Equation (A8) can be transformed by replacing the ratios, namely,

JN
10,1 =

{
κ1,2

κ1,2+κ1,3

κ7,8
κ7,8+κ7,9

(
1

κ1,2+κ1,3
+ 1

κ2,4
+ 1

κ4,6
+ 1

κ6,7
+ 1

κ7,8+κ7,9
+ 1

κ8,10
+ 1

κ10,1

)
+

κ1,2
κ1,2+κ1,3

κ7,9
κ7,8+κ7,9

(
1

κ1,2+κ1,3
+ 1

κ2,4
+ 1

κ4,6
+ 1

κ6,7
+ 1

κ7,8+κ7,9
+ 1

κ9,10
+ 1

κ10,1

)
+

κ1,3
κ1,2+κ1,3

κ7,8
κ7,8+κ7,9

(
1

κ1,2+κ1,3
+ 1

κ3,5
+ 1

κ5,6
+ 1

κ6,7
+ 1

κ7,8+κ7,9
+ 1

κ8,10
+ 1

κ10,1

)
+

κ1,3
κ1,2+κ1,3

κ7,9
κ7,8+κ7,9

(
1

κ1,2+κ1,3
+ 1

κ3,5
+ 1

κ5,6
+ 1

κ6,7
+ 1

κ7,8+κ7,9
+ 1

κ9,10
+ 1

κ10,1

)}−1

(A9)

Transition 7↔ 1 in Figure 3C. Similar to Equation (A2), the net transition flux JN
7,1 can

be expressed as,

JN
7,1 =

(
1

κ1,2 + κ1,3
+

1
κ2,4 +

p3
p2
(κ3,5 + κ3,6)

+
1

κ4,7 +
p5
p4

κ5,7 +
p6
p4

κ6,7
+

1
p4
p5

κ4,7 + κ5,7 +
p6
p5

κ6,7
+

1
p4
p6

κ4,7 +
p5
p6

κ5,7 + κ6,7
+

1
κ7,1

)−1

(A10)

Application of Equations (15) and (16) to states 2, 3, 4, 5, and 6 (Figure 3C) generates
the ratios of p2/p3 = (κ1,2(κ3,5 + κ3,6))/(κ1,3κ2,4), p4/p5 = (κ1,2(κ3,5 + κ3,6)κ5,7)/(κ1,3κ4,7κ3,5),
p5/p6 = (κ3,5κ6,7)/(κ3,6κ5,7), and p4/p6 = (κ1,2(κ3,5 + κ3,6)κ6,7)/(κ1,3κ4,7κ3,6). Equation (A10)
is simplified by replacing the ratios, namely,

JN
7,1 =

{
κ1,2

κ1,2+κ1,3

(
1

κ1,2+κ1,3
+ 1

κ2,4
+ 1

κ4,7
+ 1

κ7,1

)
+

κ1,3
κ1,2+κ1,3

κ3,5
κ3,5+κ3,6

(
1

κ1,2+κ1,3
+ 1

κ3,5+κ3,6
+ 1

κ5,7
+ 1

κ7,1

)
+

κ1,3
κ1,2+κ1,3

κ3,6
κ3,5+κ3,6

(
1

κ1,2+κ1,3
+ 1

κ3,5+κ3,6
+ 1

κ6,7
+ 1

κ7,1

)}−1 (A11)

Transition 5↔ 1 in Figure 3D. Similar to Equation (A2), the net transition flux JN
5,1 can

be expressed as,

JN
5,1 =

(
1

κ1,2 + κ1,3
+

1
κ2,5 +

p3
p2

κ3,4
+

1
p2
p3

κ2,5 + κ3,4
+

1
p4
p2

κ2,5 + κ4,5
+

1
κ5,1

)−1

(A12)

Application of Equations (15) and (16) to states 2, 3, and 4 (Figure 3D) generates
the ratios of p2/p3 = (κ1,2κ3,4)/(κ1,3κ2,5) and p2/p4 = (κ1,2κ4,5)/(κ1,3κ2,5). Equation (A12) is
simplified by replacing the ratios, namely,

JN
5,1 =

{
κ1,2

κ1,2 + κ1,3

(
1

κ1,2 + κ1,3
+

1
κ2,5

+
1

κ5,1

)
+

κ1,3

κ1,2 + κ1,3

(
1

κ1,2 + κ1,3
+

1
κ3,4

+
1

κ4,5
+

1
κ5,1

)}−1
(A13)

Transition 6↔ 1 in Figure 3E. Similar to Equation (A2), the net transition flux JN
6,1 can

be expressed as,
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JN
6,1 =

(
1

κ1,2 + κ1,3
+

1
κ2,4 + κ2,5 +

p3
p2

κ3,5
+

1
p2
p3
(κ2,4 + κ2,5) + κ3,5

+
1

κ4,6 +
p5
p4

κ5,6
+

1
p4
p5

κ4,6 + κ5,6
+

1
κ6,1

)−1

(A14)

Applying Equations (15) and (16) to states 2, 3, 4, and 5 (Figure 3E) generates the ratios of
p2/p3 = (κ1,2κ3,5)/(κ1,3(κ2,4 + κ2,5)) and p4/p5 = (κ1,2κ2,4κ5,6)/(κ4,6(κ2,5(κ1,2 + κ1,3) + κ1,3κ2,4)).
Equation (A14) is simplified by replacing the ratios, namely,

JN
6,1 =

{
κ1,2

κ1,2+κ1,3

κ2,4
κ2,4+κ2,5

(
1

κ1,2+κ1,3
+ 1

κ2,4+κ2,5
+ 1

κ4,6
+ 1

κ6,1

)
+

κ1,2
κ1,2+κ1,3

κ2,5
κ2,4+κ2,5

(
1

κ1,2+κ1,3
+ 1

κ2,4+κ2,5
+ 1

κ5,6
+ 1

κ6,1

)
+

κ1,3
κ1,2+κ1,3

(
1

κ1,2+κ1,3
+ 1

κ3,5
+ 1

κ5,6
+ 1

κ6,1

)}−1 (A15)

Appendix C. Actual Transition Rate and Ratio at Branching

The probability density of a stochastic transition occurring at time t satisfies the
distribution of p(t) = e−t/τ/τ, where τ is the average transition time, namely, τ =

∫ ∞
0 tp(t)dt.

If there are two transitions, for example 1 → 2 and 1 → 3, competing at a branching
state (state 1), we can assume both the transitions satisfy the distribution above, and their
original transition times in the absence of the branching are τ1,2 and τ1,3, respectively. In
the presence of the branching, their actual transition times are changed by the branching.
The branching probability for 1→ 2 is,

ρ1,2 =
∫ ∞

0
dt1,3

e−t1,3/τ1,3

τ1,3

∫ t1,3

0
dt1,2

e−t1,2/τ1,2

τ1,2
=

1/τ1,2

1/τ1,2 + 1/τ1,3
(A16)

while the actual transition time for 1→ 2 is,

τ′1,2 =
1

ρ1,2

∫ ∞

0
dt1,3

e−t1,3/τ1,3

τ1,3

∫ t1,3

0
dt1,2

t1,2e−t1,2/τ1,2

τ1,2
=

1
1/τ1,2 + 1/τ1,3

(A17)

Similarly, ρ1,3 = (1/τ1,3)/(1/τ1,2 + 1/τ1,3) and τ′1,3 = 1/(1/τ1,2 + 1/τ1,3). The results
derived in the main text for Figures 2 and 3 are consistent with these results.
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