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Abstract: The permanent magnet synchronous motors (PMSMs) as the completely symmetrical
three-phase machines, which are usually driven by symmetrical voltage signals. Unfortunately, a
PMSM system usually suffers from the different lumped disturbances, such as internal parametric
perturbations and external load torques, the speed regulation problem should be addressed within
the different operation situations. Characterizing by the current variation speed of the motor winding
is much faster than that of the mechanical dynamic velocity, a dual-time-scale sliding mode control
(SMC) method for the surface-mounted PMSMs is proposed in this paper. Firstly, the mathematical
model of PMSMs is established in the two-phase synchronous rotating orthogonal reference coordi-
nate system, and the slow and fast variation subsystems are obtained based on the quasi-steady-state
theory. Secondly, a tracking differentiator (TD)-based and exponential reaching law-based sliding
mode controllers are individually designed within dual-time-scale, respectively. As a result, the
eventual SMC strategy is presented, and the stability of control system is analyzed by applying the
Lyapunov stability theory. The main contribution of this study is to present an alternative control
framework for the PMSMs servo system, where the dual-time-scale characteristic is involved, and
thus a non-cascade control structure that different from the traditional drive strategy is proposed in
the motor community. Finally, the model of whole system is built and carried out on the simulation
platform. Research results demonstrate that the presented servo control system can accurately track
the reference angle velocity signal, while the strong robustness and fast response performance are
guaranteed in the presence of external disturbances. In addition, the three-phase current transient
response values are completely symmetrical with the rapid adjustment characteristic.

Keywords: permanent magnet synchronous motors (PMSMs); sliding mode control (SMC);
dual-time-scale; symmetrical; Lyapunov stability; tracking differentiator (TD); quasi-steady-state
theory

1. Introduction

It is well-known that the permanent magnet synchronous motors (PMSMs) will rotate
when the symmetrical voltages are applied. Comparing with a DC motor, the three-phase
AC PMSMs are characterized by high power factor, small volume, light weight, simple
structure, and so on. Therefore, the PMSM servo drive systems have being widely used in
high-performance industrial applications [1–6], where require the increasing requirements
with fast response, wide speed regulation range and accurate positioning, etc. However,
the mathematical model of a PMSM is a nonlinear, high-order and strongly coupled multi-
variable system, thus resulting its analysis and design are extremely complex [3]. To this end,
it is necessary to simplify the model description, and explore novel control methods [4–6].
Based on the gradient-descent algorithm, an online parameter self-tuning algorithm for
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PID control strategy was proposed, and the adaptive speed controller for a PMSM drive
system was designed [4]. In literatures [5,6], a robust adaptive sensorless control approach
and model predictive servo control system were presented, respectively.

It is well known that the internal parameter perturbations and external disturbances
widely exist in almost whole industrial applications, which will inevitably generate the
extremely adverse influences on the system performances. In addition, the PMSM drive
systems usually operate in different and complex environments, and the corresponding
researches should be advocated to address the speed regulation problem. Among the
numerous nonlinear control technologies, sliding mode control (SMC) has been exten-
sively receiving much more attention because of simple concept, fast response, powerful
robustness and particularly insensitivity to the lumped disturbances [7]. The SMC design
procedure is generally comprised by an appropriate sliding mode surface function and a
SMC law [8], which should drive the system state variables onto the constructed sliding
mode surface in a finite time [9]. After the SMC methodology is applied to the field orienta-
tion control (FOC) for a surface-mounted PMSM servo system [10–14], the performance
indexes will be characterized by such as rapid dynamic response, strong robustness against
various disturbances, etc. In order to reduce the approximation error and improve the
PMSM system performance [10], a second-order model was proposed to describe the math-
ematical relationship between the quadrature axis reference current and the speed output.
In literatures [11,12], the extended state observer (ESO) and a DO were separately designed
to estimate the parameter perturbations and external disturbances, respectively, and their
estimation values were incorporated into the design of terminal SMC laws. In addition,
a generalized proportional integral observer (GPIO)-based sliding mode speed regulation
system was presented in [13]. A novel reaching law-based SMC approach was implemented
in [14], where an extended sliding mode disturbance observer characterized by the low
pass filter (LPF) was proposed and analyzed to accurately compensate the lumped uncer-
tainties. However, it is worth mentioning that the above mentioned approaches essentially
concentrate on the design and improvement of the speed loop [10–14], which belongs to
the conventional double closed-loop vector control structure.

By involving the extended high gain observer [15], the uncertain dynamics terms
were accurately estimated for compensation purpose, which were incorporated into the
proposed output feedback controller for reconfigurable pavement sweeping wheeled mo-
bile robots. Based on the nonlinear disturbance observer (DO) and feedback linearization
technology, a speed-current single-loop SMC control strategy for a PMSM drive system was
proposed [16]. The dual DOs-based single loop non-cascade integral SMC was presented
to simplify the control framework [17], while the uncertainties and disturbances were
considered by employing the similar composite structure [2]. However, there still required
an individual PI controller for direct axis current regulation [2,17]. It should be emphasized
that the above mentioned non-cascade control framework is also an alternative and effective
way to regulate a PMSM drive system, which usually differentiates from the traditional
cascade control structure. On the other hand, in order to improve the speed regulation
performance, the frequency of outer speed loop is usually designed smaller than that of
inner current loop in a conventional dual closed-loop vector control framework, which
provides a favorable guideline to the well-known PI engineering parameter determinations.
As mentioned in [10], the torque/current was controlled with a response time faster than
that of the speed, thus resulting the large control period difference between the speed and
current loops. Meanwhile, the dual reduced-order PI observer-based robust cascade control
for a DC motor drive system was proposed in [18], where the closed-loop transfer function
for each loop was characterized by a classical inertia element. Moreover, the bandwidth of
the current loop was chosen much larger than that of the outer-loop system in the design of
cascade control scheme, and then the singular perturbation theory was presented to analyze
the augmented system. It is worth mentioning that singular perturbation approach as a
powerful tool, has being widely employed in considerable industrial applications [18–23].
The output feedback control for a single link manipulator was presented in [19], which
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was modeled as an uncertain singularly perturbed system. For the 90th-order advanced
heavy water reactor spatial stabilization system [20], the singularly perturbed three-time-
scale method was introduced to reduce the design complexity and computational time.
The continuous SMC for compliant robot arms was regarded as a singularly perturbed
system comprising by a slow rigid robot and the fast series elastic actuator dynamics [21],
such achieving high-precision tracking performance. From the above discussions, it can be
concluded that a PMSM drive system has the obvious time-scale characteristic, and thus it
is feasible to employ the singularly perturbed approach. To our best knowledge, the elec-
trical transients are rather fast comparing with the mechanical response, which is also
characterized by the large time constant difference. To this end, according to the singu-
lar perturbation theory, a PMSM servo system is a typical dual-time-scale system [22].
As a result, by employing quasi-steady-state decomposing theory, the original full-order
mathematical models of a surface-mounted PMSM can be approximately equivalent to
slow variation subsystem (namely, quasi-steady equation) and fast variation subsystem
(i.e., boundary layer system) within slow- and fast-time scales, respectively [23]. Therefore,
it is an effective and alternative method to promote the control performance of a PMSM
servo system by individually designing controllers in different time-scales, where the pow-
erful SMC technique can be adopted to stabilize the decoupled subsystems and improve
the anti-disturbance ability. However, there has few reported literatures in this research
direction, which is of important significance to motor control community.

By incorporating the disturbance estimation value provided by an improved extended
state observer into the feedback control law [3], we have devoted ourselves to conducting
the corresponding research on a PMSM speed regulation problem. Motivated by the
above discussions, this study firstly establishes the mathematical model of a surface-
mounted PMSM in the two-phase synchronous rotating orthogonal reference coordinate
system, and then its state-space equation is subsequently obtained. By adopting the quasi-
steady-state theory-based decoupling approach, the slow and fast variation subsystems are
derived within slow-time-scale and fast-time-scale, respectively. In order to incorporate
the differential signal into the controller design, a tracking differentiator (TD)-based SMC
law is presented for the slow variation subsystem. Meanwhile, taking the exponential
reaching law into account, another sliding mode controller is proposed to stabilize the fast
variation subsystem. As a result, the eventual SMC strategy is synthesized, and the stability
of closed-loop system is analyzed by applying the Lyapunov stability theory. Finally,
the model of whole system is built and carried out on the Matlab/Simulink platform.
Research results can demonstrate the effectiveness of the presented servo control system
and robustness against disturbances. The contributions of this study can be summarized
as follows. (1) The quasi-steady dynamics and boundary layer system are individually
obtained by the singular perturbation decomposition theory, which are characterized by
dual-time-scale feature. (2) An alternative control framework for the PMSMs servo system
is presented based on the SMC technology, which is different from the traditional cascade
drive strategy. (3) The employed TD can generate the favorable transition dynamic and
high quality differential signal, simultaneously, such improving system performance of the
presented control method.

The rest of this paper is organized as follows. In Section 2, dual-time-scale system
modeling and preliminaries are presented. The main results are given in Section 3, includ-
ing the design and analysis of the individual and eventual controllers in details. Some
simulation results are prsented in Section 4. Section 5 concludes this paper.

2. Dual-Time-Scale System Modeling and Preliminaries

In the three-phase symmetrical static A− B−C reference coordinate system, the math-
ematical model of a PMSM is composed by voltage, flux linkage, electromagnetic torque
and motion equations, which are strongly coupled and nonlinear [4]. According to the well-
known Clark and Park transformations, the general dynamic model of a surface-mounted
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PMSM can be established with respect to two-phase synchronous rotating orthogonal d− q
coordinate system [14], which is comprised by electrical dynamics{

Ls
d
dt id = ud − Rsid + ωeLsiq

Ls
d
dt iq = uq − Rsiq −ωeLsid −ωeψf

(1)

and mechanical dynamic equation

J
d
dt

ωm = KTiq − Fωm − Tm (2)

where Ls is the stator inductance; id and iq denote d and q axes stator currents, respectively;
ud and uq represent d and q axes stator voltages, respectively; Rs is stator resistance; ψf is the
flux linkage of permanent magnets; J is the moment of the rotational inertia; KT = 3pnψf

/
2

is the electromagnetic torque coefficient, and pn is the number of pole pairs; F is the viscous
friction coefficient; Tm represents the load torque disturbance, which characterizing by
Ṫm = 0; ωe and ωm are electrical and mechanical angular velocities, respectively, which
satisfying ωe = pnωm.

Remark 1. Based on the above mentioned mathematical model (1) and (2), the traditional cascade
servo controller design of a PMSM drive system belongs to a double closed-loop vector control
structure [10–14], which benefits form the large bandwidth difference between the outer speed and
inner current loops. If we consider the characteristic of their time constants and take them into
account, a typical dual-time-scale system can be easily modeled. However, it is still an open research
direction, and there has few reported literatures in this field.

Introduce the state vector and control input as

i =
[

id
iq

]
, u =

[
ud
uq

]
(3)

And then substituting the above definitions (3) into the mathematical Equations (1)
and (2), thus resulting their following state space description form:

d
dt i =

[
− Rs

Ls
ωe

−ωe − Rs
Ls

]
i + 1

Ls
u−

[
0

ψf
Ls

ωe

]
d
dt ωm = − F

J ωm+
[

0 KT
J

]
i− 1

J Tm

(4)

The objective of this study is to design the eventual SMC law u for a surface-mounted
PMSM (4), such that the mechanical angular velocity ωm should be accurately regulated to
its reference velocity value ω∗m in the presences of the external disturbances.

To our best knowledge, the electrical transients (namely, currents id and iq) are rather
fast comparing with the mechanical response (i.e., angular velocity ωm) [10], which can be
also characterized by

Tc � Ts (5)

where Tc = Ls/Rs and Ts = J/F denote the electrical and mechanical time constants, respectively.
According to the above relationship, it can be concluded that the PMSM is an typical

dual-time-scale system [23]. As a result, a singularly perturbed system can be derived by
choosing the singular perturbation parameter as

ε = Tc (6)
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And then, the Formulation (4) can be modeled as
d
dt ωm = − F

J ωm+
[

0 KT
J

]
i− 1

J Tm

ε d
dt i =

[
−1 pnLs

Rs
ωm

− pnLs
Rs

ωm −1

]
i + 1

Rs
u−

[
0

pnψf
Rs

ωm

]
(7)

According to the quasi-steady-state theory [21], one can firstly set ε = 0, thus resulting
the following equations:

d
dt ωms = − F

J ωms+
[

0 KT
J

]
is − 1

J Tm

0 =

[
−1 pnLs

Rs
ωms

− pnLs
Rs

ωms −1

]
is +

1
Rs

us −
[

0
pnψf
Rs

ωms

]
(8)

where the extra subscript ”s” represents the slow variable components (namely, quasi-
steady-states) of the corresponding physical quantities (including the angular velocity,
currents and voltages).

According to the Formulation (5), the change of mechanical angular velocity is signifi-
cantly slower than that of currents and voltages. To this end, it is feasible to assume that
ωm = ωms within the slow-time-scale t. As a result, the solution of the quasi-steady-state
Equation (8) can be calculated as follows

is =
1

N(ωm)

[
1 pnLs

Rs
ωm

− pnLs
Rs

ωm 1

](
1

Rs
us −

[
0

pnψf
Rs

ωm

])
(9)

where N(ωm) = 1 +
(

pnLsωm
/

Rs
)2.

Combining (8) with (9), the following slow variation subsystem can be obtained:

d
dt

ωm = −
(

F
J
+

pnKTψf
JRsN(ωm)

)
ωm+

KT

JRsN(ωm)

[
− pnLs

Rs
ωm 1

]
us −

1
J

Tm (10)

On the other hand, one can introduce the following fast-time-scale:

τ =
t
ε

(11)

Then, the derivatives of the corresponding physical quantities indicated by subscript
”s” in slow variation subsystem (10) are equal to zero within this fast-time scale τ. By com-
bining (7) with (9) and (11), the fast variation subsystem can be derived as follows

d
dτ

if =

[
−1 pnLs

Rs
ωm

− pnLs
Rs

ωm −1

]
if +

1
Rs

uf (12)

where the extra subscript ”f” denotes the fast variable components (namely, boundary
layer states) of the above mentioned corresponding physical quantities, which satisfying
if = i− is and uf = u− us, respectively.

From (10) and (12), it can be concluded that the mathematical model of a surface-
mounted PMSM can be eventually described as the following slow variation subsystem:

d
dt

ωm = −
(

F
J
+

pnKTψf
JRsN(ωm)

)
ωm+

KT

JRsN(ωm)

[
− pnLs

Rs
ωm 1

]
us −

1
J

Tm (13)

and the fast variation subsystem as follows

d
dτ

if =

[
−1 pnLs

Rs
ωm

− pnLs
Rs

ωm −1

]
if +

1
Rs

uf (14)
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Remark 2. According to the quasi-steady-state theory, the original full-order mathematical de-
scriptions (1) and (2) can be approximately decomposed into the above mentioned slow and fast
variation subsystems. Therefore, a eventual SMC law can be synthesized by individually designing
corresponding controllers in slow-time-scale t and fast-time-scale τ, respectively.

3. SMC Design and Analysis

In this section, we will design and analyze the controller u for a surface-mounted
PMSM, which includes SMC laws us and uf for decoupled slow and fast variation subsys-
tems, respectively.

3.1. A TD-Based SMC Design for Slow Variation Subsystem

According to (13), the slow variation subsystem of the surface-mounted PMSM can be
rewritten as follows

d
dt

ωm = Asωm + Bsus −
1
J

Tm (15)

with the following parameter definitions:

As = −
(

F
J
+

pnKTψf
JRsN(ωm)

)
, Bs=

KT

JRsN(ωm)

[
− pnLs

Rs
ωm 1

]
(16)

We can introduce the following velocity tracking error:

ew = ω∗m −ωm (17)

And then, a linear slow variable sliding mode surface function can be constructed
as follows

Ss = cew + ėw (18)

where c > 0 is the tracking error coefficient.
Calculating the time-derivative of the Ss in terms of ew, leads to

Ṡs = cėw + ω̈∗m − ω̈m = cėw + ω̈∗m − Asω̇m − Bsu̇s (19)

Based on the exponential reaching law [13], a slow-SMC (S-SMC) can be designed
as follows

us =

[
uds
uqs

]
=
∫ t

0

JRs

KT

[
− pnLs

Rs
ωm

1

]
(cėw + ω̈∗m − Asω̇m + ξssgn(Ss) + ksSs)dt (20)

where sgn (·) denotes the sign function; ξs > 0 and ks > 0 represent the slow switching and
exponential gains, respectively.

For the above mentioned controller (20), there need the differential operation for the
some signals. The traditional backward difference (BD)-based extraction method will
inevitably confront and amplify the measurement noise [24]. At the same time, for the
purpose of promoting the tracking performance, it is recommended to arrange the smooth
transition dynamic for the reference velocity value, which is commonly given as a step
signal. In order to realize the above mentioned objectives, an optimal control synthesis
function-based TD is presented in this section, which is aimed at providing a transition
signal, while the first and second-order differential information are feasible to S-SMC (20),
simultaneously. For the following continuous system:[

ẋ1
ẋ2

]
=

[
x2
ur

]
(21)



Symmetry 2022, 14, 1835 7 of 15

where |ur| ≤ r, and r is the velocity factor.
An optimal nonlinear function is employed for its discrete-time system, yields the

following nonlinear TD:[
x̂1(k + 1)− x̂1(k)
x̂2(k + 1)− x̂2(k)

]
= To

[
x̂2(k)

fhan(e(k), x̂2(k), r, h)

]
(22)

where x̂1 and x̂2 are the real-time estimation values for x1 and its differential signal x2,
respectively; To is the discrete step; k and k + 1 represent the current and next instants,
respectively; e(k) = x̂1(k)− x1(k) is the tracking error; h is the filtering factor [25].

The optimal control synthesis function ur = fhan(·) is summarized as follows

d = rh, do = hd

y = e(k) + hx̂2(k)

ao =
√

d2 + 8r|y|

a =

{
x̂2(k) + ao−d

2 sgn(y), |y| > do

x̂2(k) +
y
h , |y| ≤ do

fhan(e(k), x̂2(k), r, h) = −
{

rsgn(a), |a| > d
r a

d , |a| ≤ d

(23)

Remark 3. The exhibited high performance TD (22) has strong insensitivity to the parameter
perturbations of r and h. A large value of the speed factor r will decrease the response time of the
transition tracking dynamic. Meanwhile, a smaller discrete step To is beneficial to suppress noise
influence. In addition, the filtering factor h should be selected greater than the value of To, which
determines the noise attenuation characteristic. In a summary, when choosing the appropriate
parameters values for presented TD (22), there should adequately take the tracking and filtering
performances into account.

Remark 4. It is worth mentioning that the above mentioned design procedure of TD (22) is directly
implemented in the discrete-time domain, thus greatly improving feasibility and realizability of the
proposed strategy for the actual industrial applications.

3.2. SMC Design for Fast Variation Subsystem

According to (14), the fast variation subsystem of the surface-mounted PMSM can be
rewritten as follows

d
dτ

if = Afif +
1

Rs
uf (24)

with the following parameter matrix:

Af =

[
−1 pnLs

Rs
ωm

− pnLs
Rs

ωm −1

]
(25)

A linear fast variable sliding mode surface function can be constructed as follows

Sf =

[
Sdf
Sqf

]
=

[
idf
iqf

]
= if (26)

Calculating the time-derivative of the Sf in terms of if, leads to

Ṡf =
d

dτ
if = Afif +

1
Rs

uf (27)
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Based on the exponential reaching law [13], a fast-SMC (F-SMC) can be designed
as follows

uf =

[
udf
uqf

]
= −Rs(Afif + ξfsgn(Sf) + kfSf) (28)

where ξf > 0 and kf > 0 represent the fast switching and exponential gains, respectively.

3.3. Eventual SMC Design and Analysis

According to the quasi-steady-state theory [21], the eventual SMC law can be synthe-
sized by combining (20) and (28), that is to say

u = us + uf =

[
uds
uqs

]
+

[
udf
uqf

]
=
∫ t

0

JRs

KT

[
− pnLs

Rs
ωm

1

]
(cėw + ω̈∗m − Asω̇m + ξssgn(Ss) + ksSs)dt− (29)

Rs(Afif + ξfsgn(Sf) + kfSf)

For the proposed SMC (29), we have the following theorem.

Theorem 1. The controlled system under the SMC (29) is asymptotically stable. Namely, The
system state variables will uniformly converge their equilibrium points, respectively.

Proof. First of all, we can construct the following sliding mode surface function:

S =

[
Ss
Sf

]
(30)

Introducing the Lyapunov candidate function as the following quadratic form:

V(S) =
STS

2
=

S2
s + ST

f Sf

2
(31)

Calculating the time-derivative of the V(S) in terms of S, while taking the first-order
differential descriptions of sliding mode surface (19) and (27) into account, yield

V̇(S) = SsṠs + ST
f Ṡf = Ss[cėw + ω̈∗m − Asω̇m − Bsu̇s] + ST

f

[
Afif +

1
Rs

uf

]
= Ss

{
cėw + ω̈∗m − Asω̇m −

JRsBs

KT

[
− pnLs

Rs
ωm

1

]
(cėw + ω̈∗m − Asω̇m + ξssgn(Ss) + ksSs)

}
+

ST
f [Afif − (Afif + ξfsgn(Sf) + kfSf)] (32)

= −ξs|Ss| − ksS2
s − ξf‖Sf‖ − kf‖Sf‖2 < 0

where ‖·‖ denotes the Euclidean norm.
It can be concluded the stability condition is satisfied, and thus the closed-loop system

is asymptotically stable.
This completes the proof.

In order to improve chattering phenomenon of the SMC, the sgn(·) function is replaced
by Euclidean norm, which resulting the eventual SMC law as follows
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[
ud
uq

]
=
∫ t

0

JRs

KT

[
− pnLs

Rs
ωm

1

](
cėw + ω̈∗m − Asω̇m + ξs

Ss

‖Ss‖2 + ksSs

)
dt−

Rs

(
Afif + ξf

Sf

‖Sf‖2 + kfSf

)
(33)

Remark 5. The robustness of the SMC strategy is guaranteed by introducing the sgn(·) function
term into the control law, which unavoidably causes the chattering phenomenon [26]. In this study,
the Euclidean norm is incorporated into the eventual control law (33), such resulting suppressing the
inherent chattering phenomenon caused by sgn(·) function, while the anti-disturbance performance of
the controlled system is still maintained. For the subsequent actual implementation [27], the modified
revision of S

/
(‖S‖+ 0.001) should be recommended to replace the S

/
‖S‖, where a small positive

constant is added in the denominator. In addition, it should be emphasized that the high quality
differential signals provided by TD (22) will be employed in the designed controller (33), which can
significantly improve the system performance.

As a result, the corresponding whole schematic block diagram of dual-time-scale
SMC for a surface-mounted PMSM drive system is shown as Figure 1. First of all, based
on the velocity tracking error ew between the reference velocity value ω∗m and the actual
feedback velocity ωm, the S-SMC (20) generates the slow variable components us (uds and
uqs). Meanwhile, according to the famous Clark and Park transformation equations (θe is
the spatial angle of rotor flux linkage vector, where a mod operation is usually involved
with respect to 2π), the three-phase symmetrical currents iA, iB and iC can be equivalently
converted to d and q axes currents id and iq. Incorporating the ωm and us into the obtained
id and iq, the fast variable current components if (idf and iqf) can be exactly extracted, which
will be adopted in F-SMC (28). Therefore, the eventual SMC law u (ud and uq) can be
synthesized by combining us and uf (udf and uqf), which are subsequently employed to
generate the modulation waves uα and uβ (through the Park inverse transformation) for
space vector pulse width modulation (SVPWM) component. In the last, the corresponding
a series of digital pulse (constant amplitude with unequal width) signals are transmitted to
the three-phase full-bridge inverter, such generating the three-phase symmetrical voltages
for the surface-mounted PMSM. To this end, the closed-loop control of the speed regulation
system is performed by employing the eventual SMC law (33).
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uβ

Park

inverse

ud
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iq
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F-SMC

idf
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iqf

S-SMC

udf

uqf
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Fast variable 

component 

extractions

TD-SMC

Figure 1. The schematic block diagram of dual-time-scale SMC for a PMSM drive system.

For the above mentioned schematic block diagram (shown as Figure 1), we can identify
it as “TD-SMC”, because there involves the TD to generate the differential signal. On the
other hand, the standard double closed-loop cascade vector control framework (named
by “SMC”) is shown as Figure 2, which is comprised by the outer SMC speed loop and
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inner PI current loop. The different structures will be employed to obtain the comparative
speed performance.

SVPWM

PMSM

pn ò

Inverter

Udcuα

uβ

Park

inverse

ud

uq

Clark

iA

iC

iBPark

+
_

ωm

iα

iβ

θe

id

iq

*

mw
SMC PI

PI

_

_

*

d 0i =

*

qi

SMC

Figure 2. The double closed-loop cascade vector control framework.

Remark 6. This study proposes the dual-time-scale SMC (symbolized by Figure 1) for a PMSM
speed regulation system, which is inspired by the fast slow response characteristic of a surface-
mounted PMSM. As a result, the non-cascade control structure that different from the traditional
vector control strategy (namely, the Figure 2) is exhibited in the motor community. Moreover,
the advantages and effectiveness of the presented alternative control framework are demonstrated by
the following comparison results.

4. Simulation Results

In this section, a surface-mounted PMSM is considered to demonstrate the effective-
ness and advantages of the proposed approach, whose specification parameter values are
listed in Table 1. When the uncertainties and disturbances are not taken into account in the
electrical dynamics (1) and mechanical Equation (2), their corresponding transfer functions
for the nominal systems can be characterized by a classical inertia element with the indi-
vidual time constants. According to Table 1, we can calculate that Tc = 5.217× 10−3 and
Ts = 5.8, respectively, which illustrate the relationship (5), thus resulting the dual-time-scale
characteristic of the surface-mounted PMSM drive system.

Table 1. Specification parameters of a surface-mounted PMSM.

Symbol Value Unit

Rs 2.875 Ω
Ls 15 mH
ψf 0.15 Wb

Un (Rated voltage) 220 V
J 0.029 kg·m2

F 5× 10−3 −
pn 4 −

In addition, the DC-link capacitor voltage for the voltage source inverter and the pulse
width modulation (PWM) frequency are set as Udc = Un ×

√
2V and fPWM = 10 kHz,

respectively. Because there has the integration operation in the S-SMC (20), it is reasonable
to set the output saturation values as ±0.9×Un. In addition, the other design parameters
of the constructed TD (22) and the eventual SMC (33) are listed in Table 2.
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Table 2. Design parameters of the constructed TD and the eventual SMC.

To h r c ξs ks ξf kf

1× 10−6 10× To 1× 104 1× 103 5 100 1.5 50

For the sake of illustrating the effectiveness of the presented approaches, one can
firstly give the reference velocity value ω∗m as a step signal, which changes from 40 rad/s
to 90 rad/s at 0.3 s. In order to generating the second-order differential signal ω̈∗m, which
will be incorporated into the designed S-SMC (20), a nested TD (22) structure is employed
in Figure 1. As a result, its evolution together with the first-order time-derivative signal
ω̇∗m are shown as Figure 3, which reveal that the proposed TD can produce the high quality
differential signals with the perfect noise filtering performance.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

200

400

600

800

-1000

-500

0

500

1000

1500

Figure 3. The evolution curves of differential signals.

In order to the implement the traditional double closed-loop cascade vector control
framework (shown as Figure 2), we can firstly deign the controller for the out speed loop,
which resulting the following SMC law:

d
dt

i∗q =
J

KT
[250ėw + 5sgn(S) + 30S] +

F
KT

ω̇ (34)

where the sliding mode surface is constructed as S = 250ew + ėw. At the same time, the PI
controller is adopted for the inner current loop, where the gain parameters are determined
as KP = 50 and KI = 100, respectively. In addition, the saturation values for the outer and
inner loops are set as ±30 A and ±200 V, respectively. The corresponding comparative
velocity tracking performances are shown as Figures 4 and 5.
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20
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100
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Figure 4. The reference velocity signal with its corresponding estimation and response values.

After the eventual SMC (33) is employed, the velocity response ωm and its correspond-
ing TD-based estimation value ω̂∗m are shown as Figure 4. From the Figure 4, it can be
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seen that the presented TD (22) can generate a favourable transition dynamic, while the
feedback velocity response is smooth without small overshoot.

Meanwhile, the velocity tracking error ew is also exhibited as Figure 5, which is used
to further analyze the tracking performance.
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1
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Figure 5. The characteristic curves of velocity tracking error ew.

Furthermore, in order to demonstrate the speed regulation system robustness against
the external disturbance Tm, an initial load torque value 5 N·m is added. In addition,
a variable step disturbance that suddenly varies from 5 N·m to 15 N·m at 0.6 s, and then
decreasing to 10 N·m at 0.8 s is employed. According to some performance indexes,
the detailed comparisons can also be found in Table 3.

Table 3. Speed response performance comparisons.

Index TD-SMC SMC

Response time (0→ 40 rad/s) 0.16 s 0.25 s
Overshoot (0→ 40 rad/s) 0.25 rad/s 3 rad/s

Response time (40 rad/s→ 90 rad/s) 0.18 s 0.24 s
Overshoot (40 rad/s→ 90 rad/s) 0.4 rad/s 2.6 rad/s

Recovering time (5 N·m→ 15 N·m) 0.07 s 0.15 s
Velocity fluctuation (5 N·m→ 15 N·m) 1.2 rad/s 1.9 rad/s
Recovering time (15 N·m→ 10 N·m) 0.08 s 0.17 s

Velocity fluctuation (15 N·m→ 10 N·m) 0.6 rad/s 0.9 rad/s

It can be concluded form Figures 4 and 5 and Table 3 that the actual feedback velocity
ωm can quickly recover to its reference value ω̂∗m in the presence of variable external
disturbances, while the more satisfactory tracking performance and anti-disturbance ability
are presented by comparing with the conventional SMC strategy. In addition, the imposed
torque, electromagnetic torque Te with q axis stator current iq are shown as Figure 6,
respectively. It can be concluded that the torque output is directly proportional to iq with
the electromagnetic torque coefficient KT, while it can accurately balance the external torque
Tm and viscous friction effect Fωm, simultaneously.

Finally, for the sake of exploring the current transient response performance, the three-
phase current signals are shown as Figure 7. It can be seen that the three-phase currents
iA, iB and iC are completely symmetrical, while the electrical angle difference is 2π/3 for
each other.

Benefitting from the excellent adjustment capacity, it can be concluded from Figures 4–6
that the presented dual-time-scale SMC for PMSM regulation system can precisely track the
reference velocity signal and actively suppress the disturbances, simultaneously. It can be
concluded that the closed-loop system under the eventual SMC (33) has strong robustness
against the external disturbances, where the Euclidean norm rather than sgn(·) function
is employed to improve the inherent chattering phenomenon. Meanwhile, it is worth
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mentioning that the tracking performance is characterized by quick response speeds, small
overshoot and steady-state error, etc, where the velocity fluctuations are within ±1.5 rad/s
in the presence of external disturbances.
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Figure 6. The evolution curves of Tm, Te and iq.
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Figure 7. The three-phase current signals.

It is well-known that the stator resistance of motor winding will change along with
operation temperature, thus it is recommended to research the robustness against para-
metric perturbations. To this end, we employ different stator resistance values for the
surface-mounted PMSM listed in Table 1, and adopt the above mentioned proposed control
strategy with the same Rs. On the other hand, the initial reference velocity ω∗m value
50 rad/s is given, while a sudden 10 N·m load torque is added at 0.3 s, thus resulting
the corresponding velocity response curves shown as Figure 8. It can be concluded that
the presented approach has certain robustness against the parametric variation of stator
resistance. The more rigorous and comprehensive research on parametric perturbations
will be considered in our future work.
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Figure 8. The evolution curves of velocity response with different stator resistance values.



Symmetry 2022, 14, 1835 14 of 15

5. Conclusions

This paper has investigated the problem of dual-time-scale SMC for the surface-
mounted PMSMs with disturbances. A quasi-steady-state theory-based decomposing,
an optimal control synthesis function-based TD and a novel SMC method have been
exhibited in details, respectively. By demonstrating the eventually synthesized control law,
it can be concluded that the obtained servo drive system possesses strong anti-disturbance
performance. In addition, the velocity tracking performance has the characteristic of
rapid response dynamics, small overshoot and steady-state error, and so on. Our future
work will concentrate on the disturbance observer-based SMC, where will involve the
design and analysis of disturbance observer, such resulting the estimation compensation
values of parametric uncertainties and external disturbances, simultaneously. In addition,
the experimental implementation will be performed to demonstrate the stability and
effectiveness when considering the interrupt execution period, etc.
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