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Abstract: Most of data set can be represented in an asymmetric matrix. How to mine the uncertain
information from the matrix is the primary task of data processing. As a typical unsupervised
learning method, three-way k-means clustering algorithm uses core region and fringe region to
represent clusters, which can effectively deal with the problem of inaccurate decision-making caused
by inaccurate information or insufficient data. However, same with k-means algorithm, three-way
k-means also has the problems that the clustering results are dependent on the random selection of
clustering centers and easy to fall into the problem of local optimization. In order to solve this problem,
this paper presents an improved three-way k-means algorithm by integrating ant colony algorithm
and three-way k-means. Through using the random probability selection strategy and the positive
and negative feedback mechanism of pheromone in ant colony algorithm, the sensitivity of the three k-
means clustering algorithms to the initial clustering center is optimized through continuous updating
iterations, so as to avoid the clustering results easily falling into local optimization. Dynamically
adjust the weights of the core domain and the boundary domain to avoid the influence of artificially
set parameters on the clustering results. The experiments on UCI data sets show that the proposed
algorithm can improve the performances of three-way k-means clustering results and is effective in
revealing cluster structures.

Keywords: three-way decision; three-way clustering; three-way k-means; ant colony

MSC: 68T37

1. Introduction

Rapid developments of science and technology produce a large number of data any-
time and anywhere in modern society. How to mine valuable information from massive
data has been a challenging task of information science and artificial intelligence. As one
emerging technology of intelligence information processing, granular computing [1,2] deals
with information in the form of some aggregates and their processing. The main task of
granular computing is to construct different granular structures by various methods of in-
formation granulation [3]. There are many different approaches of information granulation,
among which, clustering analysis is one of the widely and most used one [4]. Clustering
analysis [5] is a multivariate analysis method in statistics. The objective of clustering is
to divide a set of objects into different groups such that the objects in the same cluster
have high similarity while the objects in the different groups have high dissimilarity. As a
powerful data analysis technique, clustering has been widely used information granula-
tion [6–8], information fusion [9–11], attribute reduction [12–15], feature selection [16–18],
and other fields.
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There are many different clustering algorithms, among which, k-means [19] is one
of the most commonly used one. The object of k-means algorithm is to minimize the
following function,

J = min
k

∑
j=1

∑
vi∈Cj

||vi − µj||2, (1)

where ||vi − µj|| is a chosen distance measure between a data point vi and the cluster centre
µj of j-th cluster. The process of k-means has three steps. The first one is to randomly select
k samples as the initial cluster centers, the second one is to calculate the distance between
each sample and cluster center, and the third one is to assign the samples to the nearest
cluster. The process is repeated by continuously updating the iterative cluster centers until
a certain termination condition is met. Although k-means algorithm has been widely used
since it was proposed, it still has the following problems.

1. The clustering results of k-means are dependent on the random selection of clustering
centers and the problem of local optimization readily occurs.

2. Traditional k-means algorithms are based on the assumption that a cluster is rep-
resented by one single set with a sharp boundary. Only two types of relationship
between an object and cluster are considered, i.e., belong to and not belong to. The
requirement for a sharp boundary is easily met for analytical clustering results, but
may not adequately show the uncertainty information in the dataset.

To solve the above problems, many methods have been developed to improve the
results of the k-means algorithm. For example, Zhang et al. [20] proposed an improved
k-means algorithm based on a density canopy to solve the problem of determining the
best initial seeds. Wang et al. [21] presented a three-way k-means algorithm by integrating
three-way decisions [22,23] into clustering to depict the uncertainty information in the
dataset. The main idea of the three-way k-means algorithm is to introduce fault-tolerant
errors in the k-means iteration process, and represents the results of each cluster with a core
region and a fringe region. However, in common with the k-means algorithm, the three-
way k-means algorithm also has the problems that the clustering results are dependent on
the random selection of clustering centers, are sensitive to noise points and outliers, and
easily succumb to local optimization.

To solve the local optimal problem of the three-way k-means algorithm, this paper
presents an improved three-way k-means algorithm by integrating the ant colony [24]
algorithm into the k-means algorithm. The ant colony algorithm simulates the foraging
behavior of ants in nature, and initially solved a problem of traveling salesmen by analogy
with a pheromone mechanism. Its inspiration came from the behavior of ants in finding
the shortest path in the process of looking for food. Compared with other clustering algo-
rithms, the ant colony algorithm has the advantages of strong robustness, good parallelism,
adaptability to computer systems, ease of combination with other algorithms and others.

The positive pheromone feedback mechanism in the ant colony algorithm can be
transformed into a clustering problem. In the ant colony clustering algorithm, based on
ant colony foraging behavior, food sources are regarded as different clustering centers, and
data are regarded as ants with different attributes. Under the guidance of pheromones,
ants move between different food sources with a certain probability, and finally form
clustering results around different food sources. In the proposed algorithm, we use the
random probability selection strategy of ant decision-making in the ant colony algorithm to
optimize the initial clustering centers. On this basis, iterative updating can better solve the
problem of the sensitivity of the three-way k-means algorithm to the initial clustering center.

This article is structured in the following manner: In Section 2, we introduce the
background to our proposed methods, including three-way clustering and three-way
k-means. The detailed process of the proposed algorithm is presented in Section 3. In
Section 4, experiments are described which evaluate the performance of the proposed
algorithms. Some concluding remarks and discussion of future research directions are
presented in Section 5.
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2. Related Work
2.1. Three-Way Clustering

In classical two-way decision clustering, a cluster is represented by a set with a crisp
boundary. There are only two relationships between an object and a class: the object either
belongs or does not belong to the class. The requirement of a crisp boundary is conducive
to analysis results, but may not adequately adequately show the uncertainty information
in the data set. In order to address the problem of information uncertainty, Yao [22,23]
proposed a theory of three-way decision by extending the commonly used binary-decision
model. There are three main tasks in three-way decision [25]: (1) trisecting strategies,
(2) acting strategies, and (3) outcome evaluation. The whole process can be depicted as
TAO (trisecting-acting-outcome) [25] framework shown in Figure 1.

C

Trisecting

Acting

A

B

whole

strategies

Outcome evaluation

Figure 1. The TAO of three-way decision (adapted from [25]).

With the development of three-way decision, many applications of three-way decision
were researched in various fields, such as, data analysis [26,27], concept analysis [28–30],
granular computing [31,32], sequential three-way decision [33,34].

To relax this requirement of sharp boundary, a new type of clustering algorithms [35,36]
was proposed, named three-way clustering. Unlike traditional hard clustering, three-way
clustering presents a cluster through a pair of sets:

Ci = (Co(Ci), Fr(Ci)), (2)

where Co(Ci) ⊂ V and Fr(Ci) ⊂ V are defined as the core region and fringe region of
cluster Ci, respectively. These two sets divide the universe into three parts Co(Ci), Fr(Ci)
and Tr(Ci), which chapter the three types of relationships between the objects and cluster,
namely, objects belong to the cluster, objects not belong to the cluster, and objects partially
belong to the cluster. For the samples in Co(Ci), they belong to the cluster (Ci) definitely
and have a higher within-class similarities. For the samples in Fr(Ci), they maybe belong
to the cluster (Ci) and have a lower similarities with the core samples. For the samples
are in Tr(Ci), they do not belong to the cluster Ci definitely. Different from using one
single set to represent the cluster, three-way clustering uses Co(Ci), Fr(Ci) to represent
one cluster. Three-way clustering addresses the problem of information uncertainty in
traditional clustering methods through adding fringe region, which reduces decision risk
caused by inaccurate information. We take Figure 2 as an example to show one three-way
clustering result.
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Figure 2. An illustrative three-way clustering result.

There are many different strategies to obtain the the core regions and fringe regions
of three-way clustering. Typically, evaluation function is a commonly used method. The
main idea of evaluation function is to construct a function and a pair of thresholds. The
function assigns each sample a value. The samples with values greater than one threshold
are assigned to the core region and the objects with values between the two thresholds are
assigned to the fringe region. From a statistical point of view, a sample belongs to a certain
cluster with a certain probability. It is reasonable to assign a sample to core region of one
cluster when the probability of the sample belonging to this cluster is much greater than
the probability of the sample belonging to other clusters. However, when the probability of
a sample belonging to some clusters are almost same, it will be difficult to make a positive
decision. Adopting a delayed decision and assigning them into the fringe region can reduce
the risk of decision. Three-way clustering addresses the problem of information uncertainty
in traditional clustering methods through adding fringe region, which reduces decision
risk caused by inaccurate information. Recently, three-way clustering has attracted a lot
of research, and many three-way clustering algorithms were developed. Wang et al. [37]
proposed a three-way clustering framework by using contraction and expansion operators
inspired in mathematical morphology; Jia et al. [38] introduced the definition of sample
similarity to measure the uncertainty and developed an automatic three-way clustering
approach. Fan et al. [39] proposed three-way density-sensitive spectral clustering algorithm
by using density-sensitive metric. Shah [40] proposed a new three-way clustering by using
image inspired cluster blur and sharp operators. Except the above research results, some
other algorithms also enrich the theories and models of three-way clustering [41–45].

Given a set of data objects U = {x1, x2, · · · , xn}, C = {c1, c2, · · · , ck} is a finite set of
clusters, and U is divided into k classes. The idea of three-way clustering is to use a pair of
sets to represent each cluster. This pair of sets consists of a core region (Co), a fringe region
(Fr), and a trivial fringe (Tr) [46]. The results of three-way clustering can be represented as
the following family of clusters:

C = {(Co(C1), Fr(C1)), (Co(C2), Fr(C2)), · · · , (Co(Ck), Fr(Ck))}. (3)

According to the definition of clustering results, Co(Ci) and Fr(Ci) must meet the
following three conditions:

(1)Co(Ci) 6= φ, i = 1, 2, · · · , k; (4)

(2)
k⋃

i=1

(Co(Ci) ∪ Fr(Ci)) = U; (5)

(3)Co(Ci) ∩ Co(Cj) = φ, i 6= j. (6)
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2.2. Three-Way k-Means

The traditional k-means algorithm is an iterative clustering analysis algorithm. The
first step of the k-means algorithm is to randomly select k samples as the initial cluster
centers. The second step is to calculate the distance between each sample and cluster
center, and then assign the samples to the nearest cluster. The process is repeated by
continuously updating the iterative cluster centers until a certain termination condition is
met. In the process of k-means algorithm, there are only two relationships between samples
and various clusters: belonging to the cluster and not belonging to the cluster. This two
relationships ignore the samples which partially belong to one cluster. In fact, there is
another type of relationship between sample and various clusters: belong to partially. In
order to capture these three types of relationships, three-way k-means [21] was proposed
by integrating three-way decision theory with the k-means algorithm. The main idea of the
three-way k-mean algorithm is to introduce fault-tolerant errors in the k-means iteration
process, and to represent the result of each cluster with a core region and a fringe region.
The procedure of three-way k-means clustering consists mainly of two steps. The first step
is to obtain the support of each cluster and the second step is to separate the core region
from the support. For each object v and randomly selected k centroids x1, · · · , xk, let d(v, xj)
be the distance between itself and the centroid xj. Suppose d(v, xi) = min1≤j≤k d(v, xj) and
T = {j : d(v, xj)− d(v, xi) ≤ ε1 and i 6= j}, where ε1 is a given parameter. Then,

1. If T 6= φ, then v ∈ support(Ci) and v ∈ support(Cj).
2. If T = φ, then v ∈ support(Ci).

The modified centroid calculations for the above procedure are given by:

xi =
∑v∈support(Ci)

v
|support(Ci)|

, (7)

where i = 1, · · · , k, v are all objects in support(Ci), and |support(Ci)| is the number of
objects in support(Ci).

This process is repeated until modified centroids in the current iteration are identical to
those that have been generated in the previous one, i.e., when the prototypes are stabilized.
The second step is to separate the core regions from the supports using a perturbation
analysis method. Algorithm 1 is designed to describe the process of TWKM clustering.
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Algorithm 1: Three-way k-means [21]
Input: A set of points V = {v1, · · · , vn}, the number of clusters k and parameters

ε1 and ε2.
Output: C = {(Co(C1), Fr(C1)), (Co(C2), Fr(C2)), · · · , (Co(Ck), Fr(Ck))}.

1 randomly select k cluster centroids x1, · · · , xk
2 For i = 1 : n do
3 for a data point vi, determine its closest centroid

xh : d(vi, xh) = min1≤c≤k d(vi, xc);;
4 determine set T = {j : d(vi, xj)− d(vi, xh) ≤ ε1 and j 6= h};
5 If T = φ
6 assign xi to the support of the cluster h, i.e., vi ∈ support(Ch);
7 Else
8 assign xi to the support of the cluster h and j, i.e., vi ∈ support(Ch) and

v ∈ support(Cj);
9 End

10 calculate the new centroid for each cluster using Equation (5);
11 until modified centroids in the current iteration are identical to those of the

previous.
12 End
13 For i← 1 to k do
14 for each v ∈ support(Ci), determine set H = {j : j 6= i ∧ v ∈ support(Cj)};
15 If H 6= φ
16 assign v to the fringe region of Ci, i.e., v ∈ Fr(Ci);
17 Else
18 add mi times v into support(Ci) and denote the new cluster by

support(C∗i ), where mi is the number of elements in support(Ci);
19 calculate the new centroid x∗i of support(C∗i ) by Equation (7) and the

differences |x∗i − xi|; If |x∗i − xi| ≤ ε2
20 assign v to the core region of Ci, i.e., v ∈ Co(Ci);
21 Else
22 assign v to the fringe region of Ci, i.e., v ∈ Fr(Ci);
23 End
24 End
25 End
26 Return {(Co(C1), Fr(C1)), (Co(C2), Fr(C2)), · · · , (Co(CK), Fr(CK))}.

3. The Improved Three-Way k-Means

The three-way k-means clustering algorithm integrates three-way decision theory with
the k-means algorithm and uses a pair of sets to represent a cluster, which can effectively
deal with the uncertainty of data. However, as for the k-means algorithm, the three-way
k-means method is still sensitive to the initial clustering centers and can easily succumb to
the problem of local optimization.To solve this problem, we present an improved three-way
k-means clustering algorithm by combining a random probability selection strategy and
the pheromone feedback mechanism in the ant colony algorithm with three-way k-means.
The sensitivity of the three k-means clustering algorithm to the initial clustering center is
optimized through continuous updating iterations, so as to avoid the clustering results
easily falling into local optimization. The weights of the core domain and the boundary
domain are dynamically adjusted to avoid the influence of artificially set parameters on the
clustering results.

3.1. Random Probability Selection Strategy

The ant colony algorithm simulates the foraging behavior of ants in nature, and ini-
tially solves the problem of traveling salesman by analogy with a pheromone mechanism.
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The inspiration for the ant colony algorithm came from the behavior of ants in finding the
shortest path in the process of looking for food. In the ant colony algorithm, the process
of ants looking for food sources can be viewed as continuous clustering. According to
the size of the current pheromone quantity, ants randomly select according to probability,
and allocate samples to each cluster center. The larger the pheromone amount between a
sample and a cluster center, the greater the probability that the sample will be assigned
to this class. In the process of clustering, the probability that a sample is assigned to a
cluster center is calculated according to the size of the pheromone between the sample and
the cluster center and the heuristic function. The random probability selection strategy
greatly increases the effectiveness of the algorithm, causes the algorithm to have the charac-
teristics of convergence, and prevents the algorithm from falling into local optimization.
The probability calculation formula of the cluster center to which the ant search sample
belongs is:

pij = τα
ij(t)η

β
ij(t), (8)

where ηij(t) is a heuristic function and ηij =
1

dij
(i = 1, 2, . . . n; j = 1, 2, . . . , k), dij represents

sample vi to cluster center xj. τij(t)(i = 1, 2, . . . n; j = 1, 2, . . . , k) represents the pheromone
concentration between sample vi and cluster center xj. The pheromone concentration is
distributed between the sample and the clusters, and the initial pheromone concentration is
1, t is the number of iterations, α is the pheromone importance factor, and β is the heuristic
importance factor. To increase the diversity of search and to speed up the convergence
speed, at the beginning, ants randomly select a sample vi as the starting point, and then
Formula (7) is used to calculate the probability p of the sample to each cluster center xj.
The cluster of sample vi is determined using roulette. The above process is repeated for
another sample until all the samples are traversed to form a solution.

In the ant colony algorithm, the objective function is used to evaluate the solution
formed by all ants after completing an iteration, and only the clustering results obtained by
the ants with the best objective function value are retained. We construct the fitness function
using the intra-cluster cohesion function and the inter-cluster dispersion function, so that
the objects in the same cluster are as similar as possible, and the objects in different clusters
are as different as possible. The intra-cluster cohesion function is defined as follows,

J =
k

∑
i=1

(ωicore ∑
xi∈icore

(‖vi −mk‖2) + (ωi f ringe ∑
xi∈i f ringe

(‖vi −mk‖2), (9)

where J represents the sum of the distance between each sample vi and cluster center xj,
which is used to evaluate the degree of cohesion. ωicore and ωi f ringe represent the weight
values of the core region and the fringe region, respectively. Dynamic adjustment ωicore
and ωi f ringe can effectively avoid the influence of a sample’s number change in the core
region and the fringe region, and can also avoid the influence of clustering centers due to
differences in distance distribution. In this paper, we assume that ωicore and ωi f ringe satisfy
the following equations.

ωicore + ωi f ringe = 1, (10)

ωicore
ωi f ringe

=
|ωicore|
|ωicore|

, (11)

ωicore and ωi f ringe where |ωicore| and |ωicore| are the number of samples in the core region
and the fringe region, respectively.

The quality of clustering results is determined by the intra-cluster distance and the
inter-cluster distance; when the intra-class distance is smaller, the inter-class distance is
larger, the value of the objective function is smaller, and the clustering result is better. The
inter-cluster dispersion function is defined as,
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D =
1
k
(

k

∑
i,j=1
‖xi − xj‖2), (12)

where xi and xj represent the cluster center of Ci and Cj, respectively.
Based on the intra-cluster cohesion function and the inter-cluster dispersion function

defined by (8) and (10), we construct the following fitness function to optimize three-way
k-means:

Fit =
1 + D
1 + J

. (13)

In the process of looking for food sources, ants release pheromones on the paths they
pass. The higher the pheromone concentration, the shorter the distance of the road. In this
way, the more ants walk, the higher the pheromone concentration on this path. Each ant
moves towards the direction with the highest pheromone concentration, and the contin-
uously strengthened pheromone attracts more ants, so a positive feedback mechanism is
formed. As time goes on, the pheromone on the poor path cannot be strengthened, and
as the pheromone volatilizes continuously, it loses its attraction, thus forming a negative
feedback mechanism.

The positive feedback mechanism attracts more ants to choose the current optimal
path, accumulates more pheromone, increases the probability of other ants choosing the
path, narrows the scope of ant search, and promotes the convergence of the clustering
algorithm. The negative feedback mechanism can eliminate the effect of the positive
feedback mechanism, effectively preventing more ants from being attracted to the optimal
path, and making the algorithm result fall into the local optimal solution. Using the positive
and negative feedback of pheromones, the ant colony algorithm avoids the algorithm
falling into a local optimal solution and increases the diversity of solutions.

Pheromone updating in the ant colony algorithm uses the overall information of the
ant colony. When the ant releases the pheromone, the pheromone remaining on the path
will gradually disappear. This is also to make the next generation of ants more robust both
globally and locally when choosing the path. Therefore, when all the ants have completed
a cycle, the global update of the residual pheromone is carried out. The pheromone update
formula in the ant colony algorithm is as follows:

τij(t + 1) = (1− ρ) ∗ τij(t) + ∆τij, (14)

∆τij = 0.1 ∗ τij, (15)

where, parameter 0 < ρ < 1 indicates the degree of volatilization of the pheromone, τij
represents the pheromone concentration, and ∆τij represents the increment in pheromone.

3.2. The Improved Three-Way k-Means Algorithm

Because the clustering results of the standard three-way k-means algorithm depend
on the selection of initial centers they easily succumb to the problem of local optimization.
To overcome this problem, this paper presents an improved three-way k-means algorithm
by integrating the ant colony algorithm and three-way k-means. An original element of
this paper is the application of clustering centers obtained by the ant colony algorithm to
the three-way k-means, which makes up for the shortcomings of the three-way k-means
clustering algorithm due to the random selection of clustering centers. Figure 3 presents a
flowchart of the proposed algorithm.
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Figure 3. A flowchart of the proposed algorithm.

The ant colony algorithm simulates the foraging behavior of ants in nature, and initially
solves the problem of traveling salesman by analogy with a pheromone mechanism. Ants
randomly select a sample in the sample space as the starting point. The probability that
a sample is assigned to a cluster is obtained according to the amount of the pheromone
between the sample and the cluster center. The sample is allocated to a cluster by roulette.
Then the ant selects another sample until all samples are assigned, that is, when an iteration
is completed to form a solution. The optimal solutions are calculated using the value of
the objective function. The pheromone in the ant colony algorithm reflects the overall
information in the ant colony. When the ant releases the pheromone, the pheromone
remaining on the path will gradually disappear. This is also to make the next generation
of ants more robust globally and locally when choosing the path. The specific steps of the
algorithm are shown in Algorithm 2:

The detailed complexity of Algorithm 2 is as following: Line 3 to Line 11 are to find
the support of each cluster. The time complexity of this process is O(knm), where n and
m are the number of elements and attributes, respectively. Line 12 is to separate the core
regions from the support sets using centroid perturbation analysis. The time complexity of
this process is O(knm). Line 13 to Line 14 are to update the process. The time complexity
of Algorithm 2 is O(tknm) + O(knm), where t is the number of iterations.
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Algorithm 2: The improved three-way k-means based on ant colony algorithm.
Input: A set of points V = {v1, · · · , vn}, the number of clusters k, parameters

maxgen and q.
Output: C = {(Co(C1), Fr(C1)), (Co(C2), Fr(C2)), · · · , (Co(Ck), Fr(Ck))}.

1 randomly select k cluster centroids x1, · · · , xk;
2 For j = 1 : maxgen do
3 For i = 1 : n do
4 calculate the probability of the sample vi selected by each ant to each

cluster center to obtain the set p = p1, p2, ..., pk by Equation (8);
5 select the maximum probability pmax for vi and assign vi to the upper

bound of corresponding cluster Cu
max ;

6 calculate the differences ppoor between the pmax and the rest points in the
set p;

7 If ppoor < q
8 assign vi to the upper bound of corresponding cluster too;
9 End

10 calculate the new centroid for each cluster using Equation (7);
11 End
12 obtain the core region and the fringe region of each cluster by steps 13–25 of

Algorithm 1;
13 calculate the value of the fitness function by Equations (9), (12) and (13);
14 update pheromone by Equations (14) and (15);
15 End
16 If the algorithm reaches the maximum number of iterations maxgen
17 return the optimal solution
18 Else
19 maxgen = maxgen + 1
20 End
21 Return {(Co(C1), Fr(C1)), (Co(C2), Fr(C2)), · · · , (Co(Ck), Fr(Ck))}.

4. Experimental Analysis
4.1. Evaluation Indices

1. Accuracy (Acc) [47]

Acc =
1
n

k

∑
i=1

Ci (16)

In the above formula, n is the total number of samples in the dataset, Ci is the correct
number of samples divided into class clusters i, and k is the number of class clusters.
Acc represents the ratio between the number of correctly partitioned elements and the
total number. A greater ACC value implies a better clustering result. When ACC = 1,
the result of the clustering algorithm is consistent with the real result.

2. Davies–Bouldin index (DBI) [47].

DB =
1
c

c

∑
i=1

max
j 6=i

{
S(Ci) + S(Cj)

d(xi, xj)

}
(17)

where S(Ci) and d(xi, xj) are the intra-cluster distance and the inter-cluster separation,
respectively. S(Ci) is defined as follows:

S(Ci) =
∑v∈Ci

‖ v− xi ‖
| Ci |

. (18)
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As a function of the ratio of the within cluster scatter to the between cluster separation,
a lower value will mean that the clustering is better.

3. Average silhouette index (AS) [47].

AS =
1
n

n

∑
i=1

Si, (19)

where n is the total number of objects in the set and Si is the silhouette of object vi,
which is defined as,

Si =
bi − ai

max{ai, bi}
, (20)

ai is the average distance between xi and all other objects in its own cluster, and
bi is the minimum of the average distance between xi and objects in other clusters.
The range of the average silhouette index is [−1, 1]; a larger value means a better
clustering result.

4.2. Performances of Proposed Algorithm

To test the performances of our proposed algorithm, we employed 10 datasets from
the UCI Machine Learning repository, which were Wine, Class, Ecoli_Nor, Forest, Bank,
Iris, Contraceptive, Molecular Biology1, Libras_Nor, and Caffeine_consumption. Table 1
shows the details of these datasets.

Table 1. A description of dataset used.

ID Datasets Samples Attributes Classes

1 Wine 178 13 3
2 Class 214 9 6
3 Ecoli 366 7 8
4 Forest 523 27 4
5 Bank 1372 4 2
6 Iris 150 4 3
7 Contraceptive 1473 9 3
8 Molecular Biology 106 52 2
9 Libras 360 90 15
10 Caffeine Consumption 1885 12 7

Because the evaluation indices Acc, DBI and AS are only adopted for the hard clus-
tering results, three-way clustering cannot calculate these values directly. To present the
performances of our proposed algorithm, we use the core regions to form a clustering
result, then calculate the Acc, DBI and AS values using the core region to represent the
corresponding cluster. The average ACC, DBI and AS values are achieved by running
the process 30 times on all datasets. To compare clustering effects, the performances of
k-means [19], FCM [48], and three-way k-means [21] are also presented in Tables 2–4. The
best performance for each dataset is highlighted in bold.
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Table 2. The performances of average Acc value.

ID Data Sets k-Means FCM Three-Way k-Means Proposed Algorithm

1 Wine 0.6573 0.6692 0.6831 0.6911
2 Class 0.5981 0.6007 0.6112 0.6366
3 Ecoli 0.6339 0.6335 0.6652 0.6773
4 Forest 0.7795 0.7540 0.7807 0.8294
5 Bank 0.5758 0.5969 0.6123 0.6131
6 Iris 0.8866 0.8933 0.9040 0.9040
7 Contraceptive 0.2145 0.2179 0.2822 0.2826
8 Molecular Biology 0.6037 0.6226 0.6547 0.6659
9 Libras 0.8611 0.9162 0.9256 0.9240
10 Caffeine Consumption 0.2005 0.1960 0.2411 0.2422

Table 3. The performances of average DBI value.

ID Data Sets k-Means FCM Three-Way k-Means Proposed Algorithm

1 Wine 1.7835 1.6922 1.5542 1.5431
2 Class 1.0475 1.2233 0.7855 0.7596
3 Ecoli 1.1504 1.0273 0.9667 0.9425
4 Forest 1.2774 1.2253 1.200 1.1879
5 Bank 1.1913 1.1952 1.1332 1.1267
6 Iris 0.7609 0.7507 0.7236 0.7355
7 Contraceptive 1.2716 1.2539 1.2323 1.2220
8 Molecular Biology 4.9588 4.8236 4.6783 4.6689
9 Libras 1.9240 1.9126 1.9033 1.9023
10 Caffeine Consumption 1.9116 1.8072 1.6655 1.6048

Table 4. The performances of average AS value.

ID Data Sets k-Means FCM Three-Way k-Means Proposed Algorithm

1 Wine 0.3383 0.2337 0.3347 0.3574
2 Class 0.5309 0.5543 0.5887 0.6038
3 Ecoli 0.4419 0.4326 0.4433 0.4524
4 Forest 0.4029 0.4302 0.4559 0.4669
5 Bank 0.5000 0.4954 0.5111 0.5280
6 Iris 0.6959 0.7091 0.7114 0.7188
7 Contraceptive 0.4236 0.4309 0.4597 0.4672
8 Molecular Biology 0.0553 0.0538 0.0558 0.0585
9 Libras 0.3519 0.3000 0.3533 0.3556
10 Caffeine Consumption 0.3150 0.3491 0.3517 0.3563

To analyze the time comparison of different algorithms, Figure 4 lists the running time
of different algorithms on the 10 UCI datasets where the unit of measurement for time
is “second”.
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Figure 4. Time comparison of different algorithms on UCI datasets. (1) Wine. (2) Class. (3) Ecoli.
(4) Forest. (5) Bank. (6) Iris. (7) Contraceptive. (8) Molecular Biology. (9) Libras. (10) Caffeine
Consumption.

4.3. Experimental Results Analysis

The average Acc values of k-means, FCM, three-way k-means and the proposed
algorithm are reported in Table 2. Obviously, comparing with other three algorithms, the
proposed algorithm achieves a better ACC value on 8 data sets. Though the performances of
Acc value on Iris and Libras by three-way k-means algorithm are equal to or superior to the
results by the proposed algorithm, while the DBI and AS value of our proposed algorithm
are better than the results of three-way k-means. The increase of Acc value indicates that
the proposed algorithm assign more samples to right cluster than other algorithms.

The results of DBI and AS are listed in Tables 3 and 4, respectively. From Tables 3 and 4,
we can find that the proposed algorithm obtains better results than other algorithms in
terms of DBI and AS value on all data sets. Since DBI is the ratio of the within cluster
scatter to the between cluster separation, the improvement of DBI means that the clus-
tering results of proposed algorithm have a higher cluster separation. The results of AS
can also verify the fact that the clustering results of proposed algorithm have a lower intra
class distance and a higher inter class distance. This can be attributed to the fact that the
clustering result of the proposed algorithm is represented by core regions when calculate
the DBI value and AS value, which can increase the degree of separation between clusters
and reduce the degree of dispersion within clusters.

The running time of the proposed algorithm is much longer than k-means and FCM
on all the UCI datasets, as shown in Figure 4. This is because the time complexity of the
proposed algorithm is much more than that of k-means and FCM. Compared with the
three-way k-means method, the proposed algorithm takes slightly longer. This is because
the proposed algorithm integrates the ant colony algorithm into three-way k-means, which
adds to the running time of the proposed algorithm.

The above discussion suggests that the proposed algorithm can effectively improve
the results of three-way k-means, solving the clustering problem of uncertain elements
and maintaining improved clustering performance at the same time. Though the proposed
algorithm can achieve better clustering results than three-way k-means, it still has the
following two disadvantages:

1. Similar to the k-means algorithm, the proposed method can achieve good results for
convex datasets. If the dataset is non-convex, the proposed algorithm fails to give
good results.

2. The time complexity and computation complexity of the proposed algorithm are
higher than for k-means and three-way k-means, which means it is not suitable for
big data.

5. Conclusions and Future Work

Three-way clustering uses a core region and a fringe region to represent a cluster,
which divide the universe into three disjoint sets to reflect the three types of relationship
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between an object and a cluster. The samples in the core region are determined to belong
to this type of cluster, while the samples in the fringe region may belong to this type
of cluster. Three-way clustering assigns the samples with uncertainty information into
corresponding fringe regions, which reduces the risk of decision-making. However, the
standard three-way k-means algorithm does not always guarantee good results, as the
accuracy of clustering depends on the selection of the initial centroids and easily succumbs
to the problem of local optimization. Aiming to solving this problem, this paper presents an
improved three-way k-means algorithm by integrating the ant colony algorithm and three-
way k-means. The idea of this algorithm is to apply the clustering center obtained by each
iteration of the ant colony algorithm to the three-way k-means, which compensates for the
shortcomings of the three-way k-means clustering algorithm due to the random selection of
clustering centers. The proposed algorithm optimizes three-way k-means using a random
probability selection strategy in the ant colony algorithm and the positive and negative
feedback mechanism of pheromones to dynamically adjust the weight. The experiments
on UCI datasets show that the proposed algorithm can improve the performance of the
three-way k-means clustering results according to the comparison of ACC, DBI and AS.

Finally, we should point out that the standard three-way k-means algorithm has
two problems, the selection of the initial clustering centers and the determination of the
cluster number. This paper presents a method to improve the selection of the initial
clustering centers. The determination of cluster number is an interesting topic that requires
further investigation.
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