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Abstract: Effect algebras are the main object of study in quantum mechanics. Module measures
are those measures defined on an effect algebra with values on a topological module. Let R be a
topological ring and M a topological R-module. Let L be an effect algebra. The range of a module
measure µ : L→ M is studied. Among other results, we prove that if L is an sRDP σ-effect algebra
with a natural basis and µ : L→ R is a countably additive measure, then µ has bounded variation.
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1. Introduction

Effect algebras, as well as Boolean algebras, are examples of universal algebras lying
in between Monoid Theory and Order Theory. They have diverse origins. For example,
Boolean algebras have historically been involved in topology, measure theory, electronics,
computer sciences, etc. However, effect algebras originated from quantum mechanics [1].
More particularly, the first example of effect algebra is constituted by the positive selfadjoint
operators on an infinite-dimensional separable complex Hilbert space that lies below the
identity. These operators correspond to observable magnitudes. One can easily see that
every Boolean algebra can be endowed with the structure of effect algebra, but still effect
algebras were not apparently conceived as a generalization of Boolean algebras. This
generalization is strict in the sense that there can be found effect algebras which are not
isomorphic (in the category of effect algebras) to a Boolean algebra. We refer the reader
to [2,3] for a wide perspective on effect algebras and Boolean algebras, and to [4–12] for the
most recent studies on effect algebras.

Classical Measure Theory [13] deals with measures defined on Boolean algebras of
sets. In view of the famous Stone Representation Theorem for Boolean algebras [14], every
Boolean algebra is isomorphic (in the category of Boolean algebras) to a Boolean algebra
of sets. This way, Classical Measure Theory retained full generality when it came to the
domain of definition of classical measures until the birth of effect algebras. However, these
classical measures were always real or complex valued. In the remarkable book [15], vector
measures are deeply studied. These measures are again defined on a Boolean algebra of
sets; however, they are valued on a real or complex Banach space. After the irruption
of effect algebras, modern measures were no longer studied in Boolean algebras. In [1],
the authors consider measures on effect algebras with values on a commutative group,
introducing the interesting concept of “universal group” for an effect algebra. In [16,17],
measures on effect algebras with values on a commutative topological group are considered.
Later, in [18–21], the authors study vector-valued measures on effect algebras, that is, with
values on real or complex Hausdorff locally convex topological vector spaces. A few years
later, measures on effect algebras with values on a real or complex normed space were
considered in [22,23]. Finally, in the recent manuscript [24], measures on effect algebras
with values on a commutative normed group are studied.
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2. Objectives

This manuscript is a continuation of previous works, focusing on the geometry of the
range of a module measure, that is, measures defined on an effect algebra and valued on
a topological module over a topological ring. Since commutative topological groups can
be regarded as topological Z-modules, and every ring and every module can be endowed
with the discrete topology, our choice of studying measures on effect algebras valued on
topological modules over topological rings seems to be the most general setting so far. This
manuscript aims at achieving the following objectives:

1. Defining and studying measures on the most general setting possible: Defined on an
effect algebra and valued on a topological module over a topological ring.

2. Studying the range of a module measure.
3. Proving that countably additive real-valued measures defined on sRDP σ-effect alge-

bras with a natural basis have bounded variation (Corollary 4).
4. Endowing full unit segments with structure of effect algebra (Theorem 6).
5. Defining a measure with physical significance in a quantum mechanical system

(Proposition 1).
6. Constructing new module measures for quantum mechanical systems (Lemma 4).

Throughout this work, connections with Associative Ring Theory [25], Tropical The-
ory [26–28], and Operad Algebras [29] are established.

3. Preliminaries

A universal algebra [30] is a set endowed with multiary internal or external operations.
These operations can be partially or totally defined. Two universal algebras are compatible
when they have the same amount of operations of the same nature and size. An operator
of universal algebras is simply a map between compatible universal algebras preserving
the operations. Effect algebras and Boolean algebras are examples of universal algebras.

An effect algebra is a universal algebra (L,⊕, 0, 1, ⊥) where

⊕ : Σ ⊆ L× L → L
(p, q) 7→ p⊕ q

is a partially defined binary internal operation,

⊥ : L → L
p 7→ p⊥

is a unary internal operation (called orthocomplementation), and

0 : L → L
p 7→ 0

and
1 : L → L

p 7→ 1

are nullary internal operations satisfying the following conditions for all p, q, r ∈ L:

• Commutativity: Σ is a symmetric binary relation on L and if (p, q) ∈ Σ, then p⊕ q =
q⊕ p.

• Associativity: If (q, r), (p, q ⊕ r) ∈ Σ, then (p, q), (p ⊕ q, r) ∈ Σ and (p ⊕ q) ⊕ r =
p⊕ (q⊕ r).

• Orthocomplementation: p⊥ is the only element in L such that
(

p, p⊥
)
∈ Σ and p⊕

p⊥ = 1.
• Zero-One Law: 1 6= 0 and 0 is the only element in L such that (1, 0) ∈ Σ.

Effect algebra of sets are among the most representative examples of effect algebras.
An effect algebra of set is a subset L of the power set P(X) of a given nonempty set X such
that {∅, X} ⊆ L and (L,∪,∅, X) has effect algebra structure under the partial operation
A ∪ B defined on Σ := {(A, B) ∈ L× L : A ∩ B = ∅}.
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Two elements p, q of an effect algebra L are said to be orthogonal if p⊕ q exists; that is,
(p, q) ∈ Σ. Whenever we write p⊕ q, we will be assuming that they are orthogonal. For

every p, q, r ∈ L, it is easy to check that 1⊥ = 0, p⊕ 0 = p,
(

p⊥
)⊥

= p, and q = r whenever
p⊕ q = p⊕ r. A partial order can be defined in an effect algebra L:

p ≤ q⇔ ∃r with p⊕ r = q.

The following properties can be easily verified for p, q, r ∈ L:

• r is unique verifying p⊕ r = q and thus it is denoted by q	 p.
• 0 = min(L) and 1 = max(L); that is, L is a bounded poset.
• p⊥ = 1	 p.
• p ≤ q if and only if 1	 q ≤ 1	 p.
• If p ≤ q and p⊕ r and q⊕ r exist, then p⊕ r ≤ q⊕ r.
• If r ≤ p ≤ q, then p	 r ≤ q	 r.
• If p ≤ q ≤ r, then r	 q ≤ r	 p.

Notice that if L, G are effect algebras and f : L→ G is an effect algebra operator, then
f is clearly increasing.

If A = {a1, . . . , ak} is a finite subset of orthogonal elements of an effect algebra L, then
we will denote ⊕

A :=
k⊕

n=1

an := a1 ⊕ · · · ⊕ ak.

A subset B ⊆ L is said to be orthogonal provided that for every finite subset A ⊆ B,⊕
A exists. We will denote

⊕
B := sup{⊕ A : A ⊆ B is finite}, provided that this

supremum exists. It is easy to see that, if (an)n∈N is an orthogonal sequence such that⊕{an : n ∈ N} exists, then

⊕
{an : n ∈ N} = sup

{
k⊕

n=1

an : k ∈ N
}

.

We will often denote
⊕{an : n ∈ N} :=

⊕
n∈N an =

⊕∞
n=1 an. An effect algebra in

which every orthogonal sequence (an)n∈N verifies that
⊕

n∈N an exists is called an effect
σ-algebra or σ-effect algebra.

An effect algebra L is said to enjoy the Riesz Decomposition Property (RDP) [31]
if c ≤ a ⊕ b implies that c = c1 ⊕ c2 with c1 ≤ a and c2 ≤ b. Notice that the previous
condition easily extends to finite orthosums. In this sense, L is said to enjoy the strong Riesz
Decomposition Property (sRDP) if c ≤ ⊕n∈N an implies that c =

⊕
n∈N cn and cn ≤ an for

all n ∈ N.
An orthogonal sequence (bn)n∈N of an effect algebra L is called a natural basis of L

provided that 1 =
⊕

n∈N bn and bn is minimal in L \ {0} for every n ∈ N. We will say that
effect algebra L is natural if it has the sRDP and has a natural basis. In [24] Proposition 2.7,
it was proved that if L is an effect algebra with the sRDP and (bn)n∈N a natural basis of L,
then for every a ∈ L there exists a subsequence (bnk )k∈N of (bn)n∈N such that a =

⊕
k∈N bnk .

In particular, B :=
{

bi1 ⊕ · · · ⊕ bik : i1, . . . , ik ∈ N
}

is a generator of L (recall that a subset B
of a poset L is called a generator of L if, for every a ∈ L, there exists an increasing sequence
(bn)n∈N ⊆ B such that a =

∨
n∈N bn).

Module measures are those measures with values on a topological module. Let L be
an effect algebra, M a topological module over a topological ring R, and µ : L→ M a map.
We say that µ is a measure if it is an additive map; that is, µ(a⊕ b) = µ(a) + µ(b) for every
orthogonal a, b ∈ L. It is trivial to check that µ(0) = 0, µ(b	 a) = µ(b)− µ(a) for all a, b ∈
L, and if L is a distributive complemented lattice, then µ(a ∨ b) = µ(a) + µ(b)− µ(a ∧ b)
for all a, b ∈ L. Observe that the set of all measures on an effect algebra L with values on a
topological module M over a topological ring R is a submodule of ML.

In addition, a measure µ : L→ M is said to be:
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• σ-additive or countably additive if µ(
⊕

n∈N an) ∈ ∑n∈N µ(an) for every orthogonal
sequence (an)n∈N ⊆ L such that

⊕
n∈N an exists;

• Strongly additive if ∑n∈N µ(an) converges for every orthogonal sequence (an)n∈N ⊆ L;
• Exhaustive or strongly bounded if 0 ∈ limn→∞ µ(an) for every orthogonal sequence

(an)n∈N ⊆ L.

Notice that if µ is a σ-additive measure and M is Hausdorff, then ∑n∈N µ(an) is
unconditionally convergent for all orthogonal sequences (an)n∈N for which

⊕
n∈N an exists.

Moreover, if µ is a σ-additive and L is a σ-effect algebra, then µ is strongly additive.
Suppose now that M is a seminormed module over a seminormed ring R. We say that

a measure µ : L → M is absolutely additive if ∑n∈N ‖µ(an)‖ < +∞ for every orthogonal
sequence (an)n∈N ⊆ L.

Let L be an effect algebra, M a seminormed module over a seminormed ring R, and
µ : L→ M a measure. We say that π = {e1, e2, . . . , en} ⊆ L is a decomposition of e ∈ L if π
is an orthogonal set and e = e1 ⊕ · · · ⊕ en. The variation of µ in e ∈ L is defined as the map

|µ| : L → [0,+∞]
e 7→ |µ|(e) := sup

π∈Π
∑

ei∈π

‖µ(ei)‖,

where the supremum is taken over the family Π of all decompositions π = {e1, e2, . . . , en}
of e. We say that µ is of bounded variation if |µ|(1) < +∞. The set of measures of bounded
variation on L with values on M is denoted by ba(L, M). It is not difficult to check that
ba(L, M) is a submodule of ML.

4. Results

We will begin with a technical lemma, which extends classical properties of Boolean
algebras to the scope of effect algebras.

Lemma 1. Let L be an effect algebra. Consider a sequence (an)n∈N ⊆ L. Then:

1. If (an)n∈N is increasing and
∨

n∈N an exists, then∨
n∈N

an = a1 ⊕
⊕
n≥2

(an 	 an−1).

2. If (an)n∈N is decreasing and
∧

n∈N an exists, then (1	 an)n∈N is increasing,
∨

n∈N(1	 an)
exists, and ∨

n∈N
(1	 an) = 1	

∧
n∈N

an.

Proof.

1. Notice that a1 ≤
∨

n∈N an; therefore (
∨

n∈N an)	 a1 exists in L. Thus, it only remains
to show that (∨

n∈N
an

)
	 a1 =

⊕
n≥2

(an 	 an−1).

Observe that, for every k ≥ 2,

k⊕
n=2

(an 	 an−1) = ak 	 a1 ≤
(∨

n∈N
an

)
	 a1.
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Thus, (
∨

n∈N an) 	 a1 is an upper bound of
{⊕k

n=2(an 	 an−1) : k ≥ 2
}

. Consider

another upper bound d for
{⊕k

n=2(an 	 an−1) : k ≥ 2
}

; that is,

ak 	 a1 =
k⊕

n=2
(an 	 an−1) ≤ d

for every k ≥ 2. Then ak ≤ d⊕ a1 for every k ∈ N; hence∨
n∈N

an ≤ d⊕ a1,

and so (∨
n∈N

an

)
	 a1 ≤ d.

As a consequence,(∨
n∈N

an

)
	 a1 = sup

k≥2

k⊕
n=2

(an 	 an−1) =
k⊕

n=2
(an 	 an−1).

2. On the one hand,
∧

n∈N an ≤ an for all n ∈ N; thus 1	 an ≤ 1	∧n∈N an for all n ∈ N;
that is, 1	∧n∈N an is an upper bound for (1	 an)n∈N. Consider another upper bound
d for (1	 an)n∈N. Then 1	 an ≤ d for every n ∈ N, so 1	 d ≤ an for all n ∈ N; hence
1	 d ≤ ∧n∈N an, meaning that 1	∧n∈N an ≤ d. This shows that∨

n∈N
(1	 an) = 1	

∧
n∈N

an.

With the help of Lemma 1, we can prove the following theorem, which extends a
classical property of measures on Boolean algebras to the scope of effect algebras.

Theorem 1. Let L be an effect algebra, M a topological module over a topological ring R, and
µ : L → M a σ-additive measure. If (an)n∈N ⊆ L is an increasing sequence such that

∨
n∈N an

exists, then (µ(an))n∈N converges to

µ

(∨
n∈N

an

)
.

Proof. On the one hand, in virtue of Lemma 1 (1),∨
n∈N

an = a1 ⊕
⊕
n≥2

(an 	 an−1).

On the other hand, for every k ≥ 2,

k

∑
n=2

(µ(an)− µ(an−1)) = µ(ak)− µ(a1).
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Finally,

µ

(∨
n∈N

an

)
= µ

(
a1 ⊕

⊕
n≥2

(an 	 an−1)

)

= µ(a1) + µ

(⊕
n≥2

(an 	 an−1)

)

∈ µ(a1) +
∞

∑
n=2

(µ(an)− µ(an−1))

= µ(a1) + lim
n→∞

(µ(an)− µ(a1))

⊆ lim
n→∞

µ(an).

Corollary 1. Let L be an effect algebra, M a topological module over a topological ring R, and
µ : L → M a σ-additive measure. If (an)n∈N ⊆ L is a decreasing sequence such that

∧
n∈N an

exists, then (µ(an))n∈N converges to

µ

(∧
n∈N

an

)
.

Proof. In accordance with Lemma 1 (2), (1	 an)n∈N is an increasing sequence such that∨
n∈N(1	 an) = 1	∧n∈N an exists. Therefore, by Theorem 1, (µ(1	 an))n∈N converges to

µ

(∨
n∈N

(1	 an)

)
= µ

(
1	

∧
n∈N

an

)
= µ(1)− µ

(∧
n∈N

an

)
.

Finally, it suffices to observe that µ(1	 an) = µ(1)− µ(an) for all n ∈ N.

Recall that a subset A of a topological module M over a topological ring R is said to be
bounded provided that for each 0-neighborhood U ⊆ M there exists an invertible u ∈ U(R)
such that A ⊆ uU. It is not difficult to prove that if A is bounded, then cl(A) is bounded
as well.

Corollary 2. Let L be an effect algebra, M a topological module over a topological ring R, and
µ : L→ M a σ-additive measure. Then µ(L) is bounded in M if and only if µ(B) is bounded in M,
for B a generator of L.

Proof.

⇒ If µ(L) is bounded in M and B is a generator of L, then µ(B) is trivially bounded
because µ(B) ⊆ µ(L).

⇔ Assume that there exists a generator B of L such that µ(B) is bounded in M. Fix an
arbitrary a ∈ L and choose, by hypothesis, an increasing sequence (bn)n∈N ⊆ B such
that a =

∨
n∈N bn. In accordance with Theorem 1, we have that (µ(bn))n∈N converges

to µ(a). As a consequence, µ(a) ∈ cl(µ(B)). The arbitrariness of a ∈ L shows that
µ(L) ⊆ cl(µ(B)). Finally, since µ(B) is bounded in M, we have that cl(µ(B)) is
bounded in M as well, hence so is µ(L).

The next theorem shows that, under somehow restrictive conditions on the semi-
normed module, σ-additive measures on σ-effect algebras are absolutely additive.

Theorem 2. Let L be an effect algebra, M a seminormed module over a seminormed ring R, and
µ : L→ M a measure. Then:
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1. If L is a σ-effect algebra, R = R, M is finite-dimensional and normed, and µ is σ-additive,
then µ is absolutely additive.

2. If M is complete and µ is absolutely additive, then µ is strongly additive.
3. If µ is absolutely additive and L satisfies the sRDP and has a natural basis (bn)n∈N, then

µ(L) is seminorm-bounded.

Proof.

1. Let (an)n∈N ⊆ L be an orthogonal sequence. Since L is a σ-effect algebra, we have
that

⊕
n∈N an exists in L. Next, µ is σ-additive and M is Hausdorff, so µ(

⊕
n∈N an) =

∑n∈N µ(an). Notice that ∑n∈N µ(an) is unconditionally convergent. Finally, since
M is a finite-dimensional real normed space, we have that every unconditionally
convergent series in M is absolutely convergent, meaning that ∑n∈N µ(an) is abso-
lutely convergent.

2. Let (an)n∈N ⊆ L be an orthogonal sequence. By hypothesis, ∑n∈N ‖µ(an)‖ < +∞.
This means that ∑∞

n=1 an is absolutely convergent. Since M is complete, ∑∞
n=1 an is

convergent. This proves that µ is strongly additive.
3. Since (bn)n∈N is orthogonal, by hypothesis we can consider K := ∑n∈N ‖µ(bn)‖ < +∞.

In virtue of [24] Proposition 2.7,

B :=
{

bi1 ⊕ · · · ⊕ bik : i1, . . . , ik ∈ N
}

is a generator of L. According to Corollary 2 adapted to seminorm boundedness, it
only suffices to show that µ(B) is seminorm-bounded. For each bi1 ⊕ · · · ⊕ bik ∈ B,

∥∥µ
(
bi1 ⊕ · · · ⊕ bik

)∥∥ =

∥∥∥∥∥ k

∑
j=1

µ
(

bij

)∥∥∥∥∥ ≤ k

∑
j=1

∥∥∥µ
(

bij

)∥∥∥ ≤ K.

As a consequence, µ(B) is seminorm-bounded.

Theorem 3. Let L be an effect algebra, M a seminormed module over a seminormed ring R, and
µ : L→ M a measure. Let e, f ∈ L be orthogonal. Then:

1. |µ|(e) + |µ|( f ) ≤ |µ|(e⊕ f ).
2. If L is RDP, then |µ|(e⊕ f ) ≤ |µ|(e) + |µ|( f ).

Proof.

1. Fix an arbitrary ε > 0 and let {e1, . . . , en} and { f1, . . . , fm} be decompositions of e and
f , respectively, such that

|µ|(e)−
n

∑
i=1
‖µ(ei)‖ <

ε

2

and

|µ|( f )−
m

∑
i=1
‖µ( fi)‖ <

ε

2
.

Then {e1, . . . , en, f1, . . . , fn} is a decomposition of e⊕ f ; therefore,

|µ|(e) + |µ|( f ) <
n

∑
i=1
‖µ(ei)‖+

m

∑
i=1
‖µ( fi)‖+ ε ≤ |µ|(e⊕ f ) + ε.

The arbitrariness of ε implies that |µ|(e) + |µ|( f ) ≤ |µ|(e⊕ f ).
2. If L is RDP, given a decomposition e ⊕ f = a1 ⊕ a2 ⊕ · · · ⊕ an, since e ≤ e ⊕ f =

a1 ⊕ a2 ⊕ · · · ⊕ an, there exist e1, e2, . . . , en ∈ L such that e1 ≤ a1, e2 ≤ a2, . . . en ≤ an
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and e = e1 ⊕ e2 ⊕ · · · ⊕ en. There exist f1, . . . , fn ∈ L such that ei ⊕ fi = ai for all
i ∈ {1, . . . , n}. Then

e⊕ f = a1 ⊕ a2 ⊕ · · · ⊕ an

= (e1 ⊕ f1)⊕ (e2 ⊕ f2)⊕ · · · ⊕ (en ⊕ fn)

= (e1 ⊕ e2 ⊕ · · · ⊕ en)⊕ ( f1 ⊕ f2 ⊕ · · · ⊕ fn),

so f = f1 ⊕ f2 ⊕ · · · ⊕ fn and fi ≤ f for all i ∈ {1, . . . , n}. This shows that {e1, . . . , en}
and { f1, . . . , fn} are decompositions of e and f , respectively. Thus,

n

∑
i=1
‖µ(ai)‖ =

n

∑
i=1
‖µ(ei ⊕ fi)‖ =

n

∑
i=1
‖µ(ei) + µ( fi)‖

≤
n

∑
i=1
‖µ(ei)‖+

n

∑
i=1
‖µ( fi)‖

≤ |µ|(e) + |µ|( f ),

Since this inequality is valid for every decomposition of e⊕ f , we conclude that

|µ|(e⊕ f ) ≤ |µ|(e) + |µ|( f ).

A direct consequence of Theorem 3 (1) is the fact that, if µ : L → M is a measure
on an effect algebra L with values in a seminormed module M over a seminormed ring
R, then |µ| : L → [0,+∞] is an increasing function; that is, if a, b ∈ L with a ≤ b, then
|µ|(a) ≤ |µ|(b).

Corollary 3. Let L be an effect algebra and M a seminormed module over a seminormed ring R. If
L is an RDP effect algebra, then the variation of a measure µ : L→ M is also a measure on L.

Theorem 4. Let L be an effect algebra and M a seminormed module over a seminormed ring R. Let
µ : L→ M be a measure. Then:

1. If µ has bounded variation, then µ(L) is seminormed bounded.
2. If M is complete and µ has bounded variation, then µ is absolutely additive and strongly

additive.
3. If M = R and µ(L) is bounded, then µ has bounded variation.

Proof.

1. Fix an arbitrary a ∈ L. Then

‖µ(a)‖ ≤ ‖µ(a)‖+
∥∥∥µ
(

a⊥
)∥∥∥ ≤ |µ|(1).

2. If (an)n∈N ⊆ L is an orthogonal sequence, then

k

∑
n=1
‖µ(an)‖ ≤ |µ|

(
k⊕

n=1

an

)
≤ |µ|(1)

for each k ∈ N. Thus, ∑n∈N ‖µ(an)‖ ≤ |µ|(1) < ∞, so ∑n∈N µ(an) is absolutely
convergent, hence convergent.
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3. Fix an arbitrary decomposition π = {e1, e2, . . . , en} of 1. Let us denote I+ := {i ∈
{1, . . . , n} : µ(ei) ≥ 0} and I− := {1, . . . , n} \ I+. Then

n

∑
i=1
|µ(ei)| = ∑

i∈I+
µ(ei)− ∑

i∈I−
µ(ei)

= µ

(⊕
i∈I+

ei

)
− µ

(⊕
i∈I−

ei

)
≤ sup µ(L)− inf µ(L).

As a consequence, |µ|(1) ≤ sup µ(L)− inf µ(L).

Corollary 4. Let L be an sRDP σ-effect algebra with a natural basis. If µ : L→ R is a countably
additive measure, then µ has bounded variation.

Proof. Since L is a σ-effect algebra and µ is σ-additive, we conclude, by means of Theorem 2
(1), that µ is absolutely additive. According to Theorem 2 (3), µ(L) is bounded. Finally,
Theorem 4 (3) assures that µ has bounded variation.

We will conclude this manuscript by proving that the variation of a measure induces
a seminorm.

Theorem 5. Let L be an effect algebra and M a seminormed module over a seminormed ring R.
The map

‖ ‖1 : ba(L, M) → [0,+∞)
µ 7→ ‖µ‖1 := |µ|(1)

defines a seminorm in ba(L, M).

Proof. Take µ, ν ∈ ba(L, M) and r ∈ R. Fix an arbitrary partition {e1, . . . , en} of 1. Notice that

n

∑
i=1
‖(µ + ν)(ei)‖ ≤

n

∑
i=1
‖µ(ei)‖+

n

∑
i=1
‖ν(ei)‖ ≤ |µ|(1) + |ν|(1).

The arbitrariness of the partition {e1, . . . , en} of 1 shows that |µ + ν|(1) ≤ |µ|(1) +
|ν|(1). This proves the triangular inequality. Next,

n

∑
i=1
‖(rµ)(ei)‖ =

n

∑
i=1
‖rµ(ei)‖ ≤ ‖r‖

n

∑
i=1
‖µ(ei)‖ ≤ ‖r‖|µ|(1).

Again, the arbitrariness of the partition {e1, . . . , en} of 1 shows that |rµ|(1) ≤ ‖r‖|µ|(1).
We then conclude that ‖ ‖1 is a seminorm on ba(L, M). Finally, if R is absolutely semivalued,
for every ε > 0, we can fix a partition {e1, . . . , en} of 1 satisfying that

|µ|(1)− ε <
n

∑
i=1
‖µ(ei)‖,

meaning that

|r|(|µ|(1)− ε) ≤ |r|
n

∑
i=1
‖µ(ei)‖ =

n

∑
i=1
‖rµ(ei)‖ ≤ |rµ|(1),

which implies that |r||µ|(1) = |rµ|(1) by bearing in mind the arbitrariness of ε > 0.
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5. Examples

In [25] Definition 3.2, a new concept in Associative Ring Theory was introduced, the
notion of “unit segment”. Let R be a topological ring. A subset B+ ⊆ R is called a unit
segment if it verifies that 0, 1 ∈ B+, B+B+ = B+, B+ ∩ B− = {0}, and 1 + B− = B+. Here,
B− := −B+ is called negative unit segment. The previous definition remains equivalent if
the second condition is substituted by B+B+ ⊆ B+ or if the last condition is changed to
1 + B− ⊆ B+. A trivial example of unit segment is the real interval [0, 1]. In [30] Lemma 53,
it is shown that a topological ring has a unit segment if and only if the ring has characteristic
differences from 2. Basic properties of unit segments are presented in the next lemma.

Lemma 2. Let R be a topological ring. Let B+ ⊆ R be a unit segment. Then:

1. (1 + B+) ∩ B+ = {1}.
2. If r1, . . . , rk ∈ B+ with r1 + · · ·+ rk = 1, then r1 + · · ·+ rk−1 ∈ B+.

Proof.

1. If a, b ∈ B+ satisfies that 1 + a = b, then 1− b = −a ∈ B+ ∩ B− = {0}.
2. Simply notice that r1 + · · ·+ rk−1 = 1− rk ∈ 1 + B− = B+.

Lemma 2 (2) motivates the following definition.

Definition 1. Let R be a topological ring. A unit segment B+ ⊆ R is called full if for every
r1, . . . , rk ∈ B+ with r1 + · · ·+ rk ∈ B+, then r1 + · · ·+ rk−1 ∈ B+.

Notice that full unit segments satisfy that if r1, . . . , rk ∈ B+ with r1 + · · ·+ rk ∈ B+,
then ∑j∈J rj ∈ B+ for every J ⊆ {1, . . . , k}. According to [25] Theorem 3.3, if R is a totally
ordered ring, then B+ := [0, 1] is a unit segment of R. We will show next that full unit
segments can be endowed with a partial order in such a way that they form an interval
[0, 1].

Lemma 3. Let R be a topological ring. Let B+ ⊆ R be a full unit segment. The binary relation
on B+ given by a ≤ b⇔ ∃c ∈ B+ with a + c = b is a partial order on B+ whose maximum and
minimum elements are 1 and 0, respectively.

Proof. For every a ∈ B+, a + 0 = a, so a ≤ a and the relation is transitive. Next, if a, b ∈ B+

with a ≤ b and b ≤ a, then we can find c, d ∈ B+ such that a + c = b and b + d = a;
hence a + c + d = a, so c = −d ∈ B+ ∩ B− = {0}, reaching that a = b; thus the relation is
antisymmetric. Finally, if a, b, c ∈ B+ with a ≤ b and b ≤ c, then we can find r, t ∈ B+ such
that a + r = b and b + t = c; hence a + (r + t) = c with r + t ∈ B+ due to the fullness of
B+, so a ≤ c and the relation is transitive.

Notice that, in Lemma 3, the fullness of the unit segment has only been used to show
the transitive property of the order relation. In fact, full unit segments can be endowed
with structure of effect algebra. This is our next theorem.

Theorem 6. If R is a topological ring and B+ ⊆ R is a full unit segment, then the universal
algebra (B+,+|Σ, c, 0, 1) becomes an effect algebra, where the ring addition has been restricted
to the symmetric binary relation on B+ given by Σ := {(r, s) ∈ B+ × B+ : r + s ∈ B+} and the
orthocomplementation is defined as

c : B+ → B+

r 7→ rc := 1− r.

Proof. Notice that +|Σ is clearly associative whenever it is defined. Indeed, if a, b, c ∈ B+

with b + c ∈ B+ and a + (b + c) ∈ B+, then a + b ∈ B+ due to the fullness of B+ and
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(a + b) + c = a + (b + c) ∈ B+. In a similar way, +|Σ is commutative whenever it is
defined. The uniqueness of the orthocomplement is also inferred from the uniqueness
of the opposite. Finally, the Zero-One Law is also trivially verified by bearing in mind
Lemma 2 (1).

6. Quantum Mechanics

Let H be an infinite-dimensional separable complex Hilbert space. A linear operator
T ∈ B(H) is called selfadjoint provided that T∗ = T; that is, T coincides with its adjoint,
which is equivalent to the fact that (T(x)|y) = (x|T(y)) for all x, y ∈ H. Selfadjoint
operators trivially satisfy that (T(x)|x) ∈ R for all x ∈ H. A selfadjoint operator is called
positive, written T ≥ 0, provided that (T(x)|x) ≥ 0 for all x ∈ H. A partial order can be
easily defined on the set of all selfadjoint operators: T ≤ S⇔ S− T ≥ 0.

Let us recall now the first two postulates of quantum mechanics [32]. We will not
follow the classical quantum mechanics notation (the bra-ket notation), but the classical
functional analysis notation to keep consistency with the notation in the rest of the paper:

1. First Postulate of Quantum Mechanics: To every quantum mechanical system corre-
sponds an infinite-dimensional separable complex Hilbert space H.

2. Second Postulate of Quantum Mechanics: Every observable magnitude of the quan-
tum mechanical system H is represented by a selfadjoint operator T : H → H.

A pure state of a quantum mechanical system H in a fixed instant of time t is repre-
sented by a unit ray SCx with x ∈ H and ‖x‖ = 1. An element of the previous ray is called
a state vector or a ket.

On the other hand, the correspondence between observable magnitudes and selfad-
joint operators is not in general bijective; that is, not all selfadjoint operators represent an
observable magnitude. The existence of observable magnitudes represented by selfadjoint
unbounded operators implies that the Hilbert space H representing the quantum mechan-
ical system is infinite-dimensional, since every linear operator on a finite dimensional
Banach space is compact and thus bounded. If an observable magnitude is represented
by a selfadjoint bounded operator T : H → H, then ‖T‖ measures the intensity of the
observable magnitude.

According to [33–36], in a quantum mechanical system H, a selfadjoint bounded
operator T ∈ B(H) such that 0 ≤ T ≤ I corresponds to an effect for the quantum
mechanical system. Effects are of significance in representing unsharp measurements or
observations on the quantum mechanical system. Effect-valued measures play an important
role in stochastic quantum mechanics [37–39]. The set of all effects for H can be organized
into an effect algebra. In other words, as mentioned in the introduction, the first example of
effect algebra is constituted by the positive selfadjoint operators on an infinite-dimensional
separable complex Hilbert space that lie below the identity.

Example 1. The first example of effect algebra [1] is E(H) := {T ∈ B(H) : T∗ = T, 0 ≤ T ≤ I}
with addition restricted to T ⊕ S := T + S⇔ T + S ∈ E(H) and orthocomplementation defined
by T⊥ := I − T.

An important effect in a quantum mechanical system H is the probability density
operator [40]. Recall that a probability density matrix represents a partial state of knowledge
of a finite-dimensional quantum mechanical system [41–43] Section 6:

ρ(•) =
n

∑
i=1

wi(•|ψi)ψi.

Based on that information we conclude that with probability wi the system may be in
a pure state ψi. For quantum mechanical systems represented by infinite-dimensional sepa-
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rable complex Hilbert spaces (for instance, those with unbounded observable magnitudes),
the probability density matrix is in fact an operator defined as follows:

D : H → H
x 7→ D(x) := ∑∞

i=1 ρn(x|en),
(1)

where (en)n∈N is a previously fixed orthonormal base of H and ∑∞
n=1 ρn is a convex series;

that is, ρn ≥ 0 for all n ∈ N and ∑∞
n=1 ρn = 1. In accordance with [40] Subsection 6.1,

D ∈ E(H).
As an application of our results, we introduce a new measure defined on E(H): the

weighted trace. Recall that the trace of an effect represents the expectation value of energy.

Definition 2. Let H be an infinite-dimensional separable complex Hilbert space. Let (en)n∈N be
an orthonormal base of H. The weighted trace is defined as the following map:

trw : E(H) → [0, 1]
T 7→ trw(T) := ∑∞

i=1
1

2n (T(en)|en).
(2)

Proposition 1. Let H be an infinite-dimensional separable complex Hilbert space. Let (en)n∈N be
an orthonormal base of H. The weighted trace is a measure on E(H).

Proof. In the first place, trw is well defined since ∑∞
i=1

1
2n (T(en)|en) is a convergent convex

series. Indeed, 0 ≤ (T(en)|en) ≤ ‖T‖ for all n ∈ N, so

trw(T) =
∞

∑
i=1

1
2n (T(en)|en) ≤

∞

∑
i=1

1
2n ‖T‖ = ‖T‖

∞

∑
i=1

1
2n = ‖T‖.

Next, for every T, S ∈ E(H) such that T + S ∈ E(H), we have that

trw(T + S) =
∞

∑
i=1

1
2n ((T + S)(en)|en) =

∞

∑
i=1

1
2n [(T(en)|en) + (S(en)|en)]

=
∞

∑
i=1

1
2n (T(en)|en) +

∞

∑
i=1

1
2n (S(en)|en) = trw(T) + trw(S).

Another example of effect algebra in this setting is the effect algebra of orthogonal
subspaces of a Hilbert space.

Example 2. Let H be an infinite-dimensional separable complex Hilbert space. Then V(H) :=
{P ⊆ H : P is a closed subspace of H} with addition restricted to P⊕ Q := P + Q ⇔ Q ⊆ P⊥

and orthocomplementation defined by the orthogonal subspace.

A very interesting module measure can be defined on V(H).

Lemma 4. Let H be an infinite-dimensional separable complex Hilbert space. The following map is
a module measure on V(H):

π : V(H) → B(H)
P 7→ πP,

(3)

where πP : H → H is the orthogonal projection of range P.

Proof. Let P, Q ∈ V(H) such that P⊕ Q exists; that is, Q ⊆ P⊥. We have to show that
πP+Q = πP + πQ. Bear in mind that (P + Q)⊥ = P⊥ ∩ Q⊥. Indeed, fix an arbitrary
x ∈ H. Notice that x = πP(x) + πP⊥(x). Since Q ⊆ P⊥ and πP⊥(x) ∈ P⊥, πP⊥(x)
can be decomposed into the summation of an element of Q and an element of P⊥ ∩ Q⊥;
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that is, πP⊥(x) = πQ(πP⊥(x)) + π(P+Q)⊥(πP⊥(x)). Finally, Q ⊆ P⊥, so πQ(πP⊥(x)) =

πQ(x); hence

x = πP(x) + πP⊥(x) =
[
πP(x) + πQ(πP⊥(x))

]
+ π(P+Q)⊥(πP⊥(x))

=
[
πP(x) + πQ(x)

]
+ π(P+Q)⊥(πP⊥(x)),

meaning that πP+Q(x) = πP(x) + πQ(x).

The physical interpretation of the module measure (3) is still unclear.

7. Discussion

The main novelty of this work is to consider measures defined on effect algebras and
valued on a topological module over a topological ring. As we already mentioned in the
introduction, the range of a measure has been deeply studied in less general settings, such
as measures defined on Boolean algebras or with values in a vector space. In our work, we
study module measures, that is, measures with values on a module, which makes it harder
since the level of abstraction is even higher.

Effect algebras are a proper generalization of Boolean algebras. Indeed, there can
be found examples of effect algebras which are not isomorphic (in the category of effect
algebras) to any Boolean algebra. On the other hand, commutative groups can be seen
as Z-modules. Since Z is an absolutely valued ring, the triangular inequality allows to
conclude that every normed commutative group trivially becomes a normed Z-module
(‖ng‖ ≤ |n|‖g‖), which is in fact a topological module. This way, studying measures
defined on an effect algebra and valued on a topological module over a topological ring is
the most general setting so far.

We have provided several examples of effect algebras and module measures that serve
to compare our approach with the rest of the literature. The first one (Theorem 6) is original
from this work and connects effect algebras with Associative Ring Theory. The second
one (Example 1) is the classical example of effect algebra given in [1] but endowed with a
particular measure (2) that provides an insight of all the possible applications to quantum
mechanics. The third example (Lemma 4) is a module measure very natural to define, but
whose physical meaning is still unclear.

8. Conclusions

The main conclusions derived from this work are the following:

1. Module measures are probably the most general version of a measure in mathematics.
As far as we know, this work is pioneering in defining and studying measures on the
most general setting possible, that is, with domain of definition on an effect algebra
and valued on a topological module over a topological ring. This way, we have
accomplished a series of results that can be hardly generalized to other settings.

2. The classical result that asserts that the measure of a countable union of measur-
able subsets is the limit of the measures of the sets still holds for module measures
(Theorem 1 and Corollary 1).

3. The classical result that states that countably additive real-valued measures defined
on a Boolean algebra of sets have bounded variation also holds for sRDP σ-effect
algebras with a natural basis (Corollary 4).

4. The classical result stating that the variation of a measure induces a seminorm still
holds for module measures (Theorem 5).

5. The concept of unit segment was already known [25]. Here we introduced a new class
of unit segments, called full unit segments, which have been endowed with structure
of effect algebra (Theorem 6). Furthermore, strong connections with Associative Ring
Theory were established in Theorem 6.

6. Based on the linearity of the trace, a new real-valued measure with physical significance
in a quantum mechanical system is introduced (Example 1 and Proposition 1). Moreover,
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it is interesting to study connections between abstract generalizations of Example 1 to
C∗-algebras and ∗-rings.

7. A new module measure for quantum mechanical systems has been constructed whose
physical meaning is still unclear (Lemma 4). It is very interesting to deeply study other
measures similar to the one defined in Equation (2), such as, for instance, measures
provided by the probability density operator [40,44] that describes the quantum state
of a physical system.

It remains to provide a general classification of effect algebras, or at least, a characteriza-
tion of effect algebras isomorphic (in the category of effect algebras) to a Boolean algebra.
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