
Citation: Heidari, S.M.; Paznikov,

A.A. Multipurpose Cloud-Based

Compiler Based on Microservice

Architecture and Container

Orchestration. Symmetry 2022, 14,

1818. https://doi.org/10.3390/

sym14091818

Academic Editor: Jan Awrejcewicz

Received: 10 August 2022

Accepted: 28 August 2022

Published: 2 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Multipurpose Cloud-Based Compiler Based on Microservice
Architecture and Container Orchestration
Sayed Moeid Heidari *,† and Alexey A. Paznikov *,†

Department of Computer Science and Engineering, ul. Professora Popova 5, 197022 St. Petersburg, Russia
* Correspondence: skheydari@stud.etu.ru (S.M.H.); apaznikov@gmail.com (A.A.P.)
† These authors contributed equally to this work.

Abstract: Compilation often takes a long time, especially for large projects or when identifying
better optimization options. Currently, compilers are mainly installed on local machines and used
as standalone software. Despite the availability of several online compilers, they do not offer an
efficient all-in-one package for private account management, command line interface (CLI), code
advisors, and optimization techniques. Today, the widespread usage of Software as a Service (SaaS) is
ever-growing, and compilers are not an exception. In this paper, we describe a symmetric approach to
compilation and how to compile code on distributed systems. Although some improvements in cloud
compilers have been made, it is possible to harness the potential of the most-modern technologies
and architecture patterns toward designing efficient, in-cloud compilers. In this paper, we propose an
architecture design of a cloud-based compiler that is fully compatible with orchestration technologies,
such as Kubernetes, providing a higher level of scalability, reliability, security, and maintainability.
Microservice architecture alongside containerization and orchestration technologies assist us in
making a scalable system that provides a high level of availability. We propose this architecture so
that the system can handle a higher workload as it receives a large number of compilation requests
per second. Distributed compilation is a prominent benefit of this approach, as each phase of the
compilation can be executed in a separate server, which supplies a kind of workload mitigation to
the whole system. In other words, we propose a new perspective for an intelligent way of advisor,
error detection, and optimization of compilers. We also propose an implementation example of
the developed architecture. Finally, we analyze the results from an experimental implementation,
proving that we can compile code from more than 100k requests concurrently on a cloud cluster with
one master node and three worker nodes.

Keywords: compilation; optimization; distributed systems; cloud computing; Kubernetes; microservice
architecture

1. Introduction

The amount of data to be processed, the complexity of algorithms, data collection to
feed neural network training [1], hardware resource restrictions, and new optimization
techniques for new microarchitectures lead us toward a new approach to data processing
and highly accessible computing resources. Thus, the idea of migrating compilers to the
cloud environment and deploying them as a microservice architecture is quite promising [2].

With the current situation (high complexity of centralized, monolithic, and standalone
applications) of compilers, the whole source code goes to the compilation pipeline as soon
as the compiler starts to compile.

The list below reveals some other restrictions with the current situation of compilers
as monolithic applications that the idea proposed in this paper is going to solve.

• Limited hardware resources;
• Parallel compilation (we can perform some compilation stages in parallel, but we do

not take advantage of this opportunity);

Symmetry 2022, 14, 1818. https://doi.org/10.3390/sym14091818 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14091818
https://doi.org/10.3390/sym14091818
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-4392-2489
https://orcid.org/0000-0002-3735-6882
https://doi.org/10.3390/sym14091818
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14091818?type=check_update&version=1

Symmetry 2022, 14, 1818 2 of 19

• New phases of compilation should happen inside the compiler;
• Microarchitecture-specific code generation and optimization;
• Compiler versioning;
• Testing limitations in compiler development: TDD (test-driven development) and

BDD (behavior-driven development)

We focus on these issues in Section 1.1.
The usage of cloud computing and cloud dependencies is ever-growing nowadays.

According to the Haptic [3] analysis, European countries have almost 26% of the share of
cloud computing use. With cloud computing, it is possible to automate software updates
and integration specifically in microservice architectures. Cloud computing also brings
efficiency, cost reduction, automated horizontal and vertical scalability, disaster recovery,
mobility, and data-loss prevention.

Bringing compilers to the cloud environment will provide a multi-purpose and reliable
system for different types of compilers. It will also make compiler development much
faster and easier to control.

To summarize, we make the following contributions:

• Provided a method to port compilers to a cloud environment;
• Containerize different modules and the compiler;
• Provide a network layer in front of the modules inside the container;
• Provide a CLI tool to communicate with the compiler on the cloud;
• Apply service discovery on the cloud cluster to facilitate services communication.

In Section 1.1, we describe the current state of compilers and their limitations. In
Section 2 we analyze related works. We introduce the proposed microservice approach in
Section 4. Then, the technical description of this approach is described in Section 5. The
implementation details of compiler deployment in a cloud environment are described in
Section 7. We present the results of our experiments in Section 8. We discuss the provided
approach in Section 6. Finally, in Section 9, we provide a conclusion and a discussion about
future work.

1.1. Limitations of the Current State

Hardware plays a crucial role in compilation and code execution, as more-powerful
hardware resources make the compilation process faster and more accurate. For example,
cache memory usage, pipelining, out-of-order execution, simultaneous multithreading,
vectorization, accelerators, and others technologies can be optimized by a compiler only
with the full awareness of the machine architecture.

As an example, 12th generation Intel Core i9 (Alder Lake) processors have the fol-
lowing most-highlighted technologies: Gaussian and Neural Accelerator, Thread Director,
Deep Learning Boost (Intel DL Boost), Optane Memory Support, Speed Shift Technology,
Turbo Boost Max Technology 3.0, Turbo Boost Technology, Hyper-Threading Technology,
Virtualization Technology (VT-x), Virtualization Technology for Directed I/O (VT-d), and
VT-x with Extended Page Tables (EPT).

Having the opportunity to use these technologies may not be possible for many
users or developers because they might not have the most-recent hardware. Thus, they
cannot compile their source code according to the hardware on which it will be exe-
cuted. With the proposed idea, the most-recent technologies can be provided to users in a
shared environment.

1.2. Parallelization of Compilation

The compilation process is naturally sequential (each phase happens just after the
previous one), as the input of each stage fully depends on the output of the previous one.
Further, it is almost impossible to use parts of a compiler concurrently with other tasks
when it is busy with other compilations by multiple users or applications. This means
when a compiler is processing code, practically speaking, we cannot use modules for other

Symmetry 2022, 14, 1818 3 of 19

purposes [4]. With architecture provided on the cloud, we can use each module of the
compiler at any time. As an example, when a lexical analyzer is parsing code and busy
with Abstract Syntax Tree (AST) generation, we can use code generation as an independent
microservice with another intermediate representation (IR) as input. Figure 1 below shows
such a scenario.

Figure 1. Compiler multi-usage.

1.3. Adding New Compilation Phases

If we add new plugins, passes, and modules for a compilation, we have to use the same
programming language that the compiler source code has been written in. For example, if
we want to create a new plugin for the GCC compiler, we have to use C or C++ to create a
shared library [5]. Thus, this is a restriction. In our method, however, any programming
language or technology can be used because it is going to act as a completely independent
microservice. In this approach, we can take the output of a pass and pass it as an input to
another microservice to do some processes, and then take its output and send it to another
microservice that is written in a completely different language and technology [6]. Later, in
Section 1.5, we talk about this technique in detail.

It is possible to add new phases to compilers by making new plugins or passes as
separate modules that can be loaded by a compiler. These plugins and passes need to
be used inside the main compilation process and, indeed, they are injected into the main
compilation pipeline. Figure 2 below shows a hierarchy of GCC plugin modules and
libraries that can be used to create custom plugins [7].

Figure 2. GCC plugin class hierarchy.

To produce such new passes, we need to have access to the source code of a compiler,
then rebuild it with the pass manager. This may be a time-consuming process causing
various issues (such as different versions of a compiler). This can be solved by a SaaS
(Software as a Service) approach, By introducing new pods (the smallest execution unit in
Kubernetes’s model) to the cluster worker nodes from a separate microservice. New passes
can be written in any programming language and independently, because microservices
are technology independent. Then, we can use the new microservice for any stage of the
compilation process. Thus, it is not limited to the functionalities of the compiler core.

1.4. Code Generation and Optimization

When source code is compiled on a local computer, the machine code is generated
by the compiler specifically for that machine’s architecture and operating system (OS) [8].
With our approach, this problem can be solved as a user can choose the most desirable
architecture or OS for which the code needs to be compiled. The cloud service can provide
a vast range of architectures and OS types based on account settings [9].

Symmetry 2022, 14, 1818 4 of 19

1.5. Technology Independence

Compilers are mostly written in low-level languages, and any contribution to them
should happen at the same level. The back-end of the compiler is responsible for generating
the actual machine code. Thus, any pass in the back-end should be written in a low-level
language due to the higher accessibility to the hardware and processor level. There are still
some parts of the compiler, specifically the front-end and middle-end, that can function in
a higher language or technology. For instance, suppose we need to add a new phase to the
compiler that can analyze an IR code, prepare a report, and generate advice, or we need to
apply some transformations.

With the current structure of compilers, it is not possible to involve a different technol-
ogy in the compilation process. One of the problems that hs been solved by our proposed
architecture is the possibility of using any low or high level technology in the compilation
time. By using such a microservice-based architecture, the modules of a compiler can
be written in different technologies. Consequently, the whole compiling system can be
expanded regardless of the technology or language.

LLVM, as a collection of modular and reusable compiler and tool-chain technologies,
helps us to create new front-ends for the specific language. The front-end reads the actual
source code and after lexical and syntax analysis, it generates the first IR for the middle-end.
Afterward, optimizer in the middle-end apply possible optimization techniques on the
IR-level and then generate the first and second transformed IRs. At the last stage, this
transformed IR code is passed to the back-end to generate the actual machine code. Figure 3
shows such a process.

Figure 3. LLVM compiler pipeline.

LLVM is quite flexible due to the separation of the front-end, middle-end, and back-
end. Due to this flexibility, it is quite possible to write a fully customized sanitizer for a
specific language. We can write a sanitizer as a pass in LLVM to modify or analyze IR
tuples. LLVM pass manager is responsible for attaching the newly written sanitizer as a
pass to the compilation process. Figure 4 shows such a process.

Figure 4. LLVM sanitizer pass.

As we can see, the sanitizer pass is tightly coupled with the LLVM tool-chain. With
the proposed architecture, we break down this dependency and make it possible to write
sanitizer passes by a fully separated microservice. Even though we have the pass in the
middle of the process, we simply use it to send the instruction to the out of the LLVM
tool-chain process. Then we return it to the compilation pipeline, as shown in Figure 5.

Symmetry 2022, 14, 1818 5 of 19

Figure 5. Sanitizer with microservice architecture.

According to this idea, it is possible to involve new microservices in the compiling
process and to use other languages rather than just low-level languages such as C/C++. As
another example, we can write new front-ends to parse a new language and generate the
AST based on grammar that is written in new technology, and introduce it to the LLVM
pass manager.

1.6. Testing Limitations in Compiler Development

Automated tests, one of the vital steps in CI/CD (Continuous Integration/Continuous
Deployment) of the software development process, may sometimes be quite difficult and
time-consuming with the current compilation process. To implement automated tests in
compilers, we need to always run them over the whole application. By porting compilers
from a monolithic architecture to microservice architecture, tests of a single microservice
need to be executed only over that single microservice and not over the whole application.
Because these two processes are completely independent.

We have prepared a fully automated CI/CD pipeline for this purpose. Each microser-
vice is hosted on a separate repository. The repositories are connected to our builder system
(Jenkins) as multi-branch pipelines. With these multi-branch pipelines, we have different
pipelines for different branches. Overall, there are two major branches: Develop and Main.
Bypassing the Develop branch pipeline, we tag the containers as “develop” and push them
to a private Docker registry. From the other side, we deploy and version the containers from
the Main branch with the tag “stable” and deploy them in the production environment.
Figure 6 reveals such a process.

Figure 6. Deployment pipeline.

We produced containers containing LLVM modules with an HTTP front layer and
then prepared an automated CI/CD pipeline on Jenkins, so that by pushing new codes to
the repository, we hook the builder on Jenkins and start a pipeline for test and deployment
automation. Figure 7 is an example of such a pipeline.

Symmetry 2022, 14, 1818 6 of 19

Figure 7. CI/CD pipeline on Jenkins.

This pipeline has eight stages overall. The first tree stages fetch the code from the
repository and build the project. The fourth stage tries to run the tests over the built project
inside the container. Such separation of services and branches makes a safe environment
for testing, quality assurance, and reliable deployment. If any bug happens with one of
the services, we still have the latest stable version in the production environment, and we
simply catch the bug in the staging environment.

Afterward, the next stages try to push the tested container to the docker registry to
make it accessible for the production environments. After this process, all of the modules
are deployed on the Kubernetes cluster as an orchestration of the microservices. Figure 8 is
a schematic of such a resource map on Kubernetes.

Figure 8. Deployment resource map.

2. Related Works

The authors of [10] proposed deploying a compiler on a private cloud that can be
established and managed inside a company’s internal network. In this paper, the authors
proposed an architecture that takes the code from a client and, after compiling it, produces
an executable file and generates a direct link to it. Most users do not prefer to store their
execution files on a third-party server, and storage issues also appear. Storing executable
files or compilation history should be an option for the user, and the authors of this paper
did not point to such an option, which can also raise security and privacy issues.

The authors of [11] proposed an architecture of the compiler service and the deploy-
ment model. Their approach consisted of the same monolithic compiler installed on the

Symmetry 2022, 14, 1818 7 of 19

server, and there is no module destruction. In this paper, the authors provided an algo-
rithm to dedicate servers to incoming requests by a priority list. In this approach, if the
servers are all busy, then the user waits for a server to be free. In other words, there is no
vertical-scaling mechanism, and the servers are statically allocated for a compiler service.
The approach provided in this paper is completely monolithic, and there is no mechanism
for compiler module separation.

The authors of [12] introduced a theory in which a shared pool of configurable com-
puting resources is provided. The model is proposed based on a private cloud model
provisioned on Ubuntu Enterprise Cloud (UEC). It provides hosted services to a limited
number of clients, and the service is distributed in a heterogeneous manner [13]. In such
a model, the authors provided the resources of a cloud computing system (CCS) with
multi-state devices.

As a sufficient evaluation of such a system, the authors proposed a non-sequential
Monte Carlo simulation (MCS) with a traceable approach to assessment by iteratively
drawing many random samples and observing system behavior. After this assessment,
there is also a classification step of MCS, in which the requested and available system
resources with the device dimensions are compared. At the same time, the utilization of
each device is calculated.

M. Pabitha, T. Selvakumar, and S. P. Devi also proposed a compiler over a private
cloud on a Linux environment in [14]. In this paper, we can see how a cloud environment
can be prepared to serve a compiler as a service. Although it runs the compiler over a
cloud infrastructure, it still uses the same standalone monolithic compiler, and there are no
scalability or high-availability features. It is also accessible for only a limited number of
users. In addition, it does not provide a replication management system, and the whole
system dies if the compiler service stops responding for any reason.

S. Taherizadeh and M. Grobelnik [15] provided a set of key factors to consider in the
development of auto-scaling methods. In their paper, the three key influencing factors
including conservative constants, adaptation interval called control loop period (CLTP),
and stopping at a maximum of one container instance in each CLTP have been introduced.

The authors provided a method to tune the auto-scaling of containerized applications
under the condition of predictable bursting workloads. The CPU-based auto-scaling policy
of Kubernetes causes some container miss-instantiating problems with minor fluctuations
of the containers. The authors of this paper also provided one further step to be considered:
various adaptation intervals rather than a fixed period by the Kubernetes CLTP. Most cloud
auto-scaling practices are done according to infrastructure-level rules, such as CPU-based
auto-scaling policies which are related to the average of the CPU utilization threshold. For
example, if the threshold is set at 80%, a new replication will be created at 81% utilization.
The authors of this paper proposed an algorithm with a conservation constant (a) that is
the constant for auto-scaling.

The authors of [16] examined some compilers and evaluated the generated code from
each of them with respect to the ISA (instruction-set architecture). They examined some
parameters of the code generated by the compilers, including dynamic instruction count,
performance, generated code size, power consumption, and execution time. Using different
compilers can result in large performance values even on the same target machine. Thus,
selecting a compiler for system development is very important to get the highest perfor-
mance. The authors did a detailed comparison of LLVM and GCC with respect to code size
and dynamic instruction count for EISC-embedded processors. Afterward, they compared
different architectures, such as RISC, CISC, and EISC based on the EEMBC benchmark
(including representatives of various kinds of embedded applications). The experiments
were done with the “-O2” optimization option. Their results showed a best-case of LLVM
reducing dynamic instructions by about 80% in iirflt benchmark. For autocor, the dynamic
instruction count increased by 70%, and LLVM outperformed GCC in some benchmarks
such as iirflt and bezier-fixed. LLVM performs better in loop-unrolling. An innermost loop
is completely unrolled even if it has a loop unrolling factor of eight. Consequently, GCC

Symmetry 2022, 14, 1818 8 of 19

and LLVM are the most popular compilers, and the codes generated with them have the
highest performance.

3. Cloud Infrastructure

Cloud computing architecture consists of a number of coupled distinct components.
Generally speaking, cloud architecture can be divided into two main parts: front-end and
back-end, which are connected through a network [17].

The front-end of the cloud architecture refers to the user side of the cloud computing
system. It is made up of an interface and applications that are useful for accessing and
managing the cloud platform (usually a web application) [18].

The back-end of a cloud system refers to the cloud system on the server. It has all the
resources required to provide cloud computing services. It comprises a huge amount of
data storage, virtual machines, services, security firewalls, deployments, pods, stateful sets,
and replica sets. It is worth noticing that the built-in security mechanism, traffic control,
and protocols are the responsibilities of the back-end of the cloud computing system. The
cloud server employs a set of protocols referred to as middleware that helps the services
communicate with each other.

3.1. Cloud Computing

Cloud computing is a kind of computation that involves several computers located in
different locations around the world connected to the main computer (accessible within
the network) through any accessible network [19]. Cloud computing provides on-demand
network access to a shared pool of configurable computing machines (e.g., computing
resources, networks, storage environments, and applications). Services on the cloud are
classified as Software as a Service (SaaS), Communication as a Service (CaaS), Platform as a
Service (PaaS), Infrastructure as a service (Iaas), or Network as a service (NaaS).

Deploying the services on a cloud infrastructure reduces the overhead and cost for the
end-user while increasing flexibility.

3.2. Virtualization Concept

Sharing a single physical instance of a machine or application among several users
is referred to as virtualization [20]. It happens by assigning a logical name to a dedicated
physical resource and providing a pointer to that physical resource on demand. A virtual
machine (VM) provides a virtual environment that is separated from the underlying
hardware logically. The machine hosting the virtual machine is called the “host machine”,
and the guest machine is referred to as the “virtual environment” on the host machine. The
technology that makes it possible to provision a virtual machine on a host machine is called
a hypervisor. Since hypervisors are a kind of software layer by which a host computer can
support multiple VMs simultaneously, they became a key element of the technology that
makes cloud computing possible.

In general, there are two different types of hypervisors: bare metal, which executes
on a bare system and handles virtualization tasks directly onto the hardware before the
system; and hosted, which runs within the operating system of the host machine and can
emulate the devices of a VM.

3.3. Containerization and Microservices

Today, encapsulation of an application as a single and independent package of software
that can bundle application codes together with all of the dependencies, libraries, and
configuration files needed to run is possible with containerization. To do so, run-time
engines (e.g., Docker) should be installed on each node of a cloud cluster (master and
worker nodes), which creates a condition for the containers to share a single operating
system kernel inside the same node (independent server) with all other containers. Figure 9
represents an example of a containerized application that contains several independent
microservices and open-source services.

Symmetry 2022, 14, 1818 9 of 19

Figure 9. Containerized microservices.

A containerized application can contain hundreds or thousands of containers. This
issue introduces overwhelming complexity if managed manually. Container orchestra-
tion handles this complexity and makes it more manageable, as it provides a declarative
approach to automation.

Finally, microservices are an architectural approach to software development that
structures software as a network of small and independent services that communicate with
one another [21].

In classical monolithic architectures, the whole application runs as a single service
so that all of its processes are tightly coupled [22]. Thus, if a process of an application
has an issue or a spike in demand, the entire architecture should be redesigned and
scaled. As the code base grows, improvement of a monolithic application’s features become
more convoluted, similar to current compilers installed on clients’ machines locally or
in the cloud. Based on microservice architecture, an application is built as small and
independent components that can execute each application process as a service. Each
service is responsible for business logic and performs a single functionality. Due to this
independence, each service can be updated, deployed, and scaled to meet the demand for
a specific feature [23].

The execution model in current compilers such as GCC is quite straightforward, and a
single application is responsible for all features of the compiler (Figure 10).

Figure 10. GCC as an example of a monolithic compiler model.

4. Proposed Approach

In the proposed approach, we represent the phases of compilation as different mi-
croservices plus include other microservices such as a linker, assembler, code advisor,
database controller, and user manager (Figure 11).

Symmetry 2022, 14, 1818 10 of 19

Figure 11. Microservice compiler model.

In this model, each phase of compilation is executed separately as an independent
service. The output of each microservice is transferred to the Kafka microservice (dis-
tributed event streaming platform). The aforementioned architecture focuses on Google
Kubernetes container orchestration technology [24]. Kubernetes is an open-source project
that provides container orchestration to provision multi-node cloud clusters. With this
technology, we deploy the microservices as independent containers using Docker as a
containerization platform. With this model, we can have hundreds or even thousands of
container replications (pods).

Each microservice can have many copies of one pod through a system called “replica
set”. If a pod dies, there are other replications of the same pod to handle the new incoming
requests. And another service called “Kubelet” raises a new pod to replace the died one.
These mechanism helps the system to improve the availability of the whole orchestra as
well as mitigate downtime.

4.1. Inter-Service Communication

In the monolithic style of current compilers, the application is tightly coupled, and
all the layers of the application are accessible to the user as a bottleneck. Thus, there is no
need for inter-service communication (Figure 12).

Symmetry 2022, 14, 1818 11 of 19

Figure 12. Current compiler architecture.

When it comes to microservice architecture, we need to divide the application into
multiple services, and each service has its own storage environment. In our architecture, we
use producer–consumer-based Kafka broker (Figure 13) as our microservice communication
technology so that each service has full connection with other services. Instead of sending
data between different modules of the compiler in shared memory, we send them through
a network protocol (TCP/UDP or HTTP/HTTPS). For each communication scenario, we
have a defined message pattern as illustrated in Figure 13.

Figure 13. Kafka structure.

Further, we divide the front-end and back-end of the compiler into two different
namespaces in the cloud environment. Each namespace has its own responsibility, and
the results of the first namespace go to the next namespace through the Kafka broker. An
internally accessible service with a cluster IP type (a service that is accessible internally)
associated with a defined IP is dedicated to a group of pod replications. Each deployment
can be served to a large number of users.

In our microservice architecture, communication between services plays a crucial
role on performance. Thus, according to our requirements, we need to choose the right
approach for inter-service communication.

4.2. Services Routing

We use Nginx as our reverse proxy in the implementation of Kubernetes. ingress [25]
acts as a load balancer in the front line of the cluster. The first destination of the incoming
requests will be our API gateway, which takes the requests, passes them through a security
layer, and spreads them among the microservices.

Figure 14 shows the approach in detail.

Symmetry 2022, 14, 1818 12 of 19

Figure 14. Cloud compiler inter-service communication model.

5. Technical Description

In this article, we use LLVM as a collection of modular and reusable compiler and
tool-chain technologies for our implementation and experiments. To develop such a system,
we need to have a front layer for each LLVM (compiler infrastructure as a collection of
modular and reusable compiler and tool-chain technologies) tool that is going to provide
services to the end-user in HTTP protocol. By providing APIs for each feature, the gateway
layer of our microservice implementation makes a command request in the background to
the appropriate LLVM tool and sends back the result as an HTTP response to the requesting
service. Figure 15 below provides a scheme of this mechanism.

Figure 15. Compile LLVM tools.

LLVM provides several tools separately for each phase of the compilation. For this
purpose, we can build each part of LLVM with its appropriate object files and shared
libraries as shown below in Figure 16.

Figure 16. HTTP front layer.

After building a tool with LLVM (each tool will be a different compilation phase) we
prepare an HTTP layer that acts as a front layer for incoming HTTP requests by listening
on a specific port. As an example, an HTTP layer can take a request from a service that
transforms an input file containing human-readable LLVM assembly language, translates it
to LLVM bitcode, and writes the result into a file or to standard output. We can do such an
operation using llvm-as (LLVM assembler tool) [26].

Symmetry 2022, 14, 1818 13 of 19

Below is a short list of available LLVM tools that can be packaged as Docker containers
to be deployed as pods inside a Kubernetes cluster.

• dsymutil—manipulate archived DWARF debug symbol files
• llc—LLVM static compiler
• lli—directly execute programs from LLVM bitcode
• llvm-as—LLVM assembler
• llvm-config—Print LLVM compilation options
• llvm-cov—emit coverage information
• llvm-cxxmap—Mangled name remapping tool
• llvm-diff—LLVM structural ‘diff’
• llvm-dis—LLVM disassembler
• clang-tidy syntax analyzer
• llvm-dwarfdump—dump and verify DWARF debug information
• llvm-lib—LLVM lib.exe compatible library tool
• llvm-libtool-darwin—LLVM tool for creating libraries for Darwin
• llvm-link—LLVM bitcode linker
• llvm-lipo—LLVM tool for manipulating universal binaries
• llvm-mca—LLVM Machine Code Analyzer
• llvm-otool—Mach-O dumping tool
• llvm-profdata—profile data tool
• llvm-readobj—LLVM Object Reader
• llvm-remark-size-diff—diff size remarks
• llvm-stress—generate random .ll files
• llvm-symbolizer—convert addresses into source code locations
• opt—LLVM optimizer
• llvm-addr2line—a drop-in replacement for addr2line
• llvm-ar—LLVM archiver
• llvm-cxxfilt—LLVM symbol name demangler
• llvm-bcanalyzer—LLVM bitcode analyzer
• FileCheck—Flexible pattern matching file verifier
• llvm-ifs—shared object stubbing tool
• llvm-profgen—LLVM SPGO profile generation tool
• llvm-tli-checker—TargetLibraryInfo vs. library checker

6. Discussion and Limitations

As compilers, and specifically LLVM/Clang, are not naturally microservice-based, we
need to consider the complexity of the conversion. The proposed approach describes how
it would be possible to migrate the compiler to a cloud environment. With the compiler
as a microservice, we have the opportunity to scale up and down the replicas of the
microservices (Vertical Scaling). However, Horizontal Scaling also can bring some benefits.
With Horizontal Scaling, we can improve the power of the nodes or join new nodes to the
system (as worker nodes); we can maintain the compiler as a service with high availability.

Deploying such a system containing a large number of containers leads to an elabo-
rated CI/CD (continuous integration and continuous delivery) pipeline, and the existence
of a fully automated deployment pipeline is undeniable. To make such a pipeline, we re-
quire a container registry to be accessible from the both testing and production environment.
A full path is necessary from the development environment (where we write the actual
code for a new microservice) to the production environment, so that we can go through the
pipeline to ensure that the whole system is working by adding a new microservices [27].
As we are porting a compiler from a monolithic approach to a microservice approach, it is
quite possible to apply such a pipeline. Another benefit of the provided approach is that
it will be possible to package a single module of a compiler with all its dependencies and
configurations and transfer it to the release environment [28].

Symmetry 2022, 14, 1818 14 of 19

Additionally, by having access to the IR of the compiled code in each microservice, it is
possible to conduct different analyses on the IRs during the compilation process or to even
apply new optimization techniques. By the nature of the microservice pattern, we have
enough freedom to involve different technologies and different programming languages in
the compilation pipeline. By increasing the number of requests and the workload on the
microservices, we benefit from the Canary deployment strategy and divide the network
traffic among compiler microservices logically. Suppose we just added a microservice to
the compilation chain and we need to test the workload or get feedback from users. In such
a situation, by applying Canary deployment to the system, we can dedicate a percentage of
the traffic to that specific service and prevent the whole system to going down in case of
an exception in the new microservice. As a final benefit, it is possible to support several
different compilers for different languages.

In a cloud environment, we need to somehow prepare an automatic scaling mechanism
so that the cluster can grow horizontally and vertically based on demand. The provided
approach is quite appropriate for such a mechanism, as services can be scaled up and down
as they run independent pods and can increase the number of replications and spread them
among the worker nodes.

However, we also see several limitations and hardships in migration. As current com-
pilers have modules tightly coupled as one service, their separation and containerization is
quite complex. We need to have a network layer in front of each module in the container,
and each module has a different list of commands and flags. The front-line network layer
needs to be aware of all of these and provide different TCP or HTTP APIs and then execute
the most appropriate command to manage a service running in the background. A con-
tainer with a module inside should be fully compatible with the compiler service running
in the background in terms of microarchitecture design and limitations.

7. Deployment

The end-user has two possibilities to work with the service: CLI (Command line
interface) and a Web application.

CLI (Command Line Interface)

To use the CLI, the user needs to get authenticated for the first usage by the system
through a 256-SHA access token coupled with the user name and password. Users will get
access to the compilation service only after system authentication. Listing 1 below provides
a list of commands with appropriate flags that can be activated through the CLI.

Listing 1. CLI usage.

root@user : cloud −compiler −h
usage : cloud −compiler [OPTIONS] COMMAND
A multi −language cloud −based compiler

opt ions :
−u upload the code
−c compile the code
−o output
−v vers ion
−h help
−w watch
−o1 opt imizat ion l e v e l 1
−o2 opt imizat ion l e v e l 2
−03 opt imizat ion l e v e l 3
−r download the repor t
−s get the intermedia te r e p r e s e n t a t i o n
−d d e l e t e a code or a p r o j e c t

Symmetry 2022, 14, 1818 15 of 19

−a a c t i v a t e the advisor
command
−−auth a u t h e n t i c a t e the user
−−switch switch between accounts
−−plugin a c t i v a t e a compiler plugin
−−language s p e c i f y the des ired language
−−processor type of the processor
−−advisor get the appropriate advice
−−logout logout from the account

As an example, a CLI code to run a C++ program with code advisor activated and
level 3 optimization will look like Listing 2.

Listing 2. Uploading the code.

root@user : cloud −compiler −c source . cpp −o r e s u l t −o3 −a −w −u −s
uploading the code . . .
. 6 0 %

Figure 17 is a real deployment graph of the compiler as a cloud service on a Kubernetes
cluster. The system as provided has a front-line gateway that takes the requests from the
users and routes them to the back-end layer through the message broker. Then, all the
compiler modules as well as new modules communicate through the same message broker.
After compilation, the result of each pass can be transferred to the gateway and sent to the
end-user as an HTTP response.

Figure 17. Deployment graph.

8. Experiments

A large part of overall cloud server performance comes from storage and read–write
speed. In this research, we use the Fio benchmark, which is an I/O benchmarking and
stress-test tool available on multiple platforms [29].

The specifications of the cloud service to run the experiments with one master node
and two worker nodes are as follows:

Symmetry 2022, 14, 1818 16 of 19

• Processor: 2 × Intel Xeon Processor E5-2680 (20 M Cache, 2.70 GHz, 8.00 GT/s Intel(R)
QPI) (16 Cores 32 Threads)

• Operating System: Ubuntu 20.0.4
• Storage: 2 × 300 GB 10K RPM SATA Hot Plug Hard Drive : Raid 1
• RAM: 32 GB RAM

In addition to the Fio benchmark, we also estimate the time for compiling an 8 × 8
matrix multiplication program written in C++ with LLVM/Clang compiler. We compare
compilation time for a different number of worker nodes joined to the master node in the
cluster. According to the experiment, we compile the code with level 3 optimization and
code advisor activated. Then, we compare the time taken to send the code to the server and
get the result. As provided in the plot, increasing the number of worker nodes decreases
the compilation time accordingly.

The experiment is done with 10 replications per deployment in the cluster. The results
are shown in Figure 18.

Figure 18. Compilation time.

Another experimental result is provided in Figure 19. By increasing the number of
worker nodes joined to the cluster, the number of concurrent requests grows, and the
number of concurrent users that the server can handle also increases. Server downtime
decreases, and compilation speed increases.

Symmetry 2022, 14, 1818 17 of 19

Figure 19. Concurrent users and requests.

9. Conclusions

Cloud computing is now quite ubiquitous, and the migration of standalone appli-
cations from local machines to cloud environments is undeniable. As the demand for
Internet is increasing among users, it is necessary to provide centralized applications to
users. Cloud computing in the software industry plays an important role in this modern
technology. Providing applications as a collection of small units such as microservices
makes auto-scaling easier and improves application accessibility.

In this paper, we have provided a new approach to deploying compilers on cloud
infrastructure as a microservice-based architecture. According to the provided approach,
we split the compiler from a monolithic service into several discrete, small services in
different namespaces (front-end, middle-end, and back-end). Then, we proved we can have
a service up and running with high availability on the cloud and provide a remote compiler
for users to support many languages alongside other services such as an optimizer and an
advisor. Additionally, experimental results showed much better compilation performance,
as we were able to compile the program on more powerful hardware resources and generate
the machine code in a short time and with a higher number of concurrent users.

To continue this research, we plan to add new optimization microservices to conduct
the optimization at the IR level, and also implement an intelligent advisor that can produce
useful advises for the programmer based on the CFG (control flow graph), generated
IR, and machine code. With the data gathered from different code blocks, optimized
algorithm implementation, and code-base designs, we plan to train a set of neural networks
to recommend better optimized and higher-performance code to the programmer.

Author Contributions: Conceptualization, S.M.H. and A.A.P.; methodology, A.A.P.; software, S.M.H.;
validation, S.M.H. and A.A.P.; formal analysis, A.A.P.; investigation, S.M.H.; resources, S.M.H. and
A.A.P.; data curation, S.M.H.; writing—original draft preparation, S.M.H. and A.A.P.; writing—review
and editing, A.A.P.; visualization, S.M.H.; supervision, A.A.P.; project administration, S.M.H.; funding
acquisition, A.A.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by Russian Science Foundation (RSF) project 22-21-00686,
https://rscf.ru/en/project/22-21-00686 accessed on 9 August 2022.

Institutional Review Board Statement: Not applicable.

https://rscf.ru/en/project/22-21-00686

Symmetry 2022, 14, 1818 18 of 19

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CLI command-line interface
SaaS Software as a Service
TDD Test-Driven Development
BDD Behavior-Driven Development
EPT Extended Page Tables
AST Abstract Syntax Tree
GCC GNU Compiler Collection
CI/CD Continuous Integration and Continuous Delivery
CaaS Containers as a Service
PaaS Platform as a Service
IaaS Infrastructure as a Service
NaaS Network as a Service
VM Virtual Machine
LLVM Low-Level Virtual Machine
UEC Ubuntu Enterprise Cloud
CFG Control Flow Graph

References
1. Mohammed, O.T.; Heidari, S.M.; Paznikov, A.A. Using OpenMP to Optimize Model Training Process in Machine Learn-

ing Algorithms. In Proceedings of the II International Conference on Neural Networks and Neurotechnologies (NeuroNT),
Saint-Petersburg, Russia, 16 June 2021; pp. 21–24. [CrossRef]

2. De Lauretis, L. From Monolithic Architecture to Microservices Architecture. In Proceedings of the IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW), Berlin, Germany, 27–30 October 2019; pp. 93–96. [CrossRef]

3. Haptic. Available online: https://www.haptic.ro/ict-usage-in-enterprises-in-2018-12-of-enterprises-reported-analysing-big-
data-and-4-used-3d-printing/ (accessed on 26 August 2022).

4. Chiplunkar, N.N.; Neelima, B.; Deepak. Multithreaded programming framework development for gcc infrastructure. In
Proceedings of the 3rd International Conference on Computer Research and Development, Shanghai, China, 11–13 May 2011;
pp. 54–57. [CrossRef]

5. Ghica, L.; Tapus, N. Optimized retargetable compiler for embedded processors—GCC vs. LLVM. In Proceedings of the IEEE
International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 3–5 September
2015; pp. 103–108. [CrossRef]

6. Waseem, M.; Liang, P. Microservices Architecture in DevOps. In Proceedings of the 24th Asia-Pacific Software Engineering
Conference Workshops (APSECW), Nanjing, China, 4–8 December 2017; pp. 13–14. [CrossRef]

7. Mulla, F.; Nair, S.; Chhabria, A. Cross Platform C Compiler. In Proceedings of the 24th Asia-Pacific Software Engineering
Conference Workshops (APSECW), Pune, India, 12–13 August 2016; pp. 1–4. [CrossRef]

8. Chebolu, N.A.B.; Sankar; Wankar, R. A novel scheme for Compiler Optimization Framework. In Proceedings of the International
Conference on Advances in Computing, Communications and Informatics (ICACCI), Kochi, India, 10–13 August 2015; pp. 983–986.
[CrossRef]

9. Bokan, D.; Ðukić, M.; Popović, M.; Četić, N. Adjustment of GCC compiler frontend for embedded processors. In Proceedings of
the 22nd Telecommunications Forum Telfor (TELFOR), Belgrade, Serbia, 25–27 November 2014; pp. 983–986. [CrossRef]

10. Aamir, N.A.; Patil, S.; Navada, A.; Peshave, A.; Borole, V. Online C/C++ compiler using cloud computing. In Proceedings of the
International Conference on Multimedia Technology, Hangzhou, China, 26–28 July 2011; pp. 3591–3594. [CrossRef]

11. Chandan, B.; Anirban, K.; Rana, D. SaaS Oriented Generic Cloud Compiler. Procedia Technol. 2013, 10, 253–261. [CrossRef]
12. Zhang, C.; Green, R.; Alam, M. Reliability and Utilization Evaluation of a Cloud Computing System Allowing Partial Failures.

In Proceedings of the IEEE 7th International Conference on Cloud Computing, Anchorage, AK, USA, 27 June–2 July 2014;
pp. 936–937. [CrossRef]

13. Boyer, F.; Etchevers, X.; de plama N.; Tao, X. Poster: A Declarative Approach for Updating Distributed Microservices. In
Proceedings of the IEEE/ACM 40th International Conference on Software Engineering: Companion (ICSE-Companion), New York,
NY, USA, 27 May–3 June 2018; pp. 392–393.

http://doi.org/10.1109/NeuroNT53022.2021.9472809
http://dx.doi.org/10.1109/ISSREW.2019.00050
https://www.haptic.ro/ict-usage-in-enterprises-in-2018-12-of-enterprises-reported-analysing-big-data-and-4-used-3d-printing/
https://www.haptic.ro/ict-usage-in-enterprises-in-2018-12-of-enterprises-reported-analysing-big-data-and-4-used-3d-printing/
http://dx.doi.org/10.1109/ICCRD.2011.5764244
http://dx.doi.org/10.1109/ICCP.2015.7312613
http://dx.doi.org/10.1109/APSECW.2017.18
http://dx.doi.org/10.1109/ICCUBEA.2016.7859982
http://dx.doi.org/10.1109/ICACCI.2015.7275973
http://dx.doi.org/10.1109/TELFOR.2014.7034571
http://dx.doi.org/10.1109/ICMT.2011.6002124
http://dx.doi.org/10.1016/j.protcy.2013.12.359
http://dx.doi.org/10.1109/CLOUD.2014.131

Symmetry 2022, 14, 1818 19 of 19

14. Pabitha, M.; Selvakumar, T.; Punitha, D.S. An Effective C, C++, PHP, Perl, Ruby, Python Compiler using Cloud Computing. Int. J.
Comput. Appl. 2013, 69, 20–25. [CrossRef]

15. Taherizadeh, S.; Grobelnik, M. Key influencing factors of the Kubernetes auto-scaler for computing-intensive microservice-native
cloud-based applications. J. Adv. Eng. Softw. 2020, 140, 102734. [CrossRef]

16. Park, C.; Han, M.; Lee, H.; Kim, S.W. Performance comparison of GCC and LLVM on the EISC processor. In Proceedings of the
International Conference on Electronics, Information and Communications (ICEIC), Kota Kinabalu, Malaysia, 15–18 January 2014;
pp. 1–2. [CrossRef]

17. Sill, A. The Design and Architecture of Microservices. IEEE Cloud Comput. 2016, 3, 76–80. [CrossRef]
18. Amanatullah, Y.; Lim, C.; Ipung, H.P.; Juliandri, A. Toward cloud computing reference architecture: Cloud service management

perspective. In Proceedings of the International Conference on ICT for Smart Society, Jakarta, Indonesia, 13–14 Jun 2013;
pp. 983–986. [CrossRef]

19. Haber, M.J.; Chappell, B.; Hills, C. Cloud Computing, 1st ed.; Apress: Berkeley, CA, USA, 2022; pp. 9–25.
20. Al-Debagy, O.; Martinek, P. A Comparative Review of Microservices and Monolithic Architectures. In Proceedings of the IEEE

18th International Symposium on Computational Intelligence and Informatics (CINTI), Budapest, Hungary, 21–22 November
2018; pp. 149–154. [CrossRef]

21. Petrasch, R. Model-based engineering for microservice architectures using Enterprise Integration Patterns for inter-service
communication. In Proceedings of the 14th International Joint Conference on Computer Science and Software Engineering,
Nakhon Si Thammarat, Thailand, 12–14 July 2017; pp. 1–4. [CrossRef]

22. Kurnosov, M.; Paznikov, A. Efficiency analysis of decentralized grid scheduling with job migration and replication. In Proceedings
of the the 7th International Conference on Ubiquitous Information Management and Communication, Kota Kinabalu, Malaysia,
17–19 January 2013; pp. 1–7. [CrossRef]

23. Sun, C.; Le, V.; Su, Z. Finding and Analyzing Compiler Warning Defects. In Proceedings of the IEEE/ACM 38th International
Conference on Software Engineering (ICSE), Austin, TX, USA, 14–22 May 2016; pp. 203–213. [CrossRef]

24. Datta, A.; Paul, A.K. Online compiler as a cloud service. In Proceedings of the IEEE International Conference on Advanced
Communications, Control and Computing Technologies, Ramanathapuram, India, 8–10 May 2014; pp. 149–154. [CrossRef]

25. Muddinagiri, R.; Ambavane, S.; Bayas, S. Self-Hosted Kubernetes: Deploying Docker Containers Locally With Minikube. In
Proceedings of the IEEE International Conference on Innovative Trends and Advances in Engineering and Technology (ICITAET),
Shegaon, India, 27–28 December 2019; pp. 239–243. [CrossRef]

26. Castro-Lopez, O.; Vega-Lopez, I.F. Multi-target Compiler for the Deployment of Machine Learning Models. In Proceedings of the
IEEE/ACM International Symposium on Code Generation and Optimization (CGO), Washington, DC, USA, 16–20 February
2019; pp. 280–281. [CrossRef]

27. Górski, T. Towards Continuous Deployment for Blockchain. J. Appl. Sci. 2021, 11, 11745. [CrossRef]
28. Poniszewska-Marańda, A.; Czechowska, E. Kubernetes Cluster for Automating Software Production Environment. Sensors 2021,

21, 5. [CrossRef]
29. github. Available online: https://github.com/axboe/fio (accessed on 22 August 2022).

http://dx.doi.org/10.5120/11854-7619
http://dx.doi.org/10.1016/j.advengsoft.2019.102734
http://dx.doi.org/10.1109/ELINFOCOM.2014.6914394
http://dx.doi.org/10.1109/MCC.2016.111
http://dx.doi.org/10.1109/ICTSS.2013.6588059
http://dx.doi.org/10.1109/CINTI.2018.8928192
http://dx.doi.org/10.1109/JCSSE.2017.8025912
http://dx.doi.org/10.1145/2448556.2448600
http://dx.doi.org/10.1145/2884781.2884879
http://dx.doi.org/10.1109/ICACCCT.2014.7019416
http://dx.doi.org/10.1109/ICITAET47105.2019.9170208
http://dx.doi.org/10.1109/CGO.2019.8661199
http://dx.doi.org/10.3390/app112411745
http://dx.doi.org/10.3390/s21051910
https://github.com/axboe/fio

	Introduction
	Limitations of the Current State
	Parallelization of Compilation
	Adding New Compilation Phases
	Code Generation and Optimization
	Technology Independence
	Testing Limitations in Compiler Development

	Related Works
	Cloud Infrastructure
	Cloud Computing
	Virtualization Concept
	Containerization and Microservices

	Proposed Approach
	Inter-Service Communication
	Services Routing

	Technical Description
	Discussion and Limitations
	Deployment
	Experiments
	Conclusions
	References

