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Abstract: The dynamic equation of a mass point in the circular restricted three-body problem is
governed by Coriolis and centrifugal force, in addition to a co-rotating potential relative to the frame.
In this paper, we provide an explicit, symmetric integrator for this problem. Such an integrator is
more efficient than the symplectic Euler method and the Gauss Runge–Kutta method as regards this
problem. In addition, we proved the integrator is symplectic by the discrete Hamilton’s principle.
Several groups of numerical experiments demonstrated the precision and high efficiency of the
integrator in the examples of the quadratic potential and the bounded orbits in the circular restricted
three-body problem.

Keywords: high efficiency; symplectic; restricted three-body

1. Introduction

As space science advances, spacecraft orbit design missions become more complex,
and as a result the need for advanced and efficient algorithms has grown. For example,
the recently launched James Webb Space Telescope orbits the Halo orbit (Figure 1) near
the second Lagrangian point L2 of the Sun-Earth restricted three-body problem. Since this
Halo orbit is chaotic, the telescope needs to recalibrate the orbit after a timescale. The
circular restricted three-body problem is a non-canonical Hamiltonian system, which can
be transformed into canonical form. Explicit symplectic algorithms such as the symplectic
Euler method can be used to the canonical form, but we argue below that our proposed
method is more efficient. This paper provides a highly efficient algorithm for numerical
orbit design and recalibration of orbits to the circular restricted three-body problem.
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Figure 1. Halo orbit nearby the collinear libration point L2 of Sun-Earth system. The James Webb
Space Telescope is located in this Halo orbit.
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The canonical Hamiltonian system could be the most important physical systems and
a canonical Hamiltonian system in the variables z = (p, q) given in the form

ṗ = −Hq(p, q)
q̇ = Hp(p, q)

(1)

where p, q ∈ Rd. Or equivalently

ż = J−1∇H(z), J =
(

0 Id
−Id 0

)
, (2)

where Id is a d× d identity matrix. It has an outstanding property that the flow of Hamil-
tonian system is symplectic. It naturally finds those discrete systems that preserve the
properties of symplecticity and the inner symmetries of original Hamiltonian system.
Therefore, the symmetric, symplectic algorithms [1–5] are the standard methods to such
problems. In addition, efficient structure-preserving methods [6,7] are also a research focus.

The well-known Boris algorithm [8–13] in the plasma dynamics has some good ge-
ometric properties. Generally, it is symmetric, second-order, volume-preserving [9], and
not symplectic [10]. However, in special configuration of the homogeneous magnetic field,
the integrator is variational symplectic and preserves near-conservation of energy over
long-term evolution [10,14].

This paper is organized as follows. In Section 2, we gave a brief introduction to
co-rotating coordinate systems and the proposed explicitly symmetric integrator ψb. In
Sections 3 and 4, we analyzed long term energy behaviors for this integrator and proved its
symplectic property. In Section 5, two groups of numerical experiments were conducted to
check the precision and high efficiency of the integrator. Finally, we summarize this work
in Section 6.

2. Numerical Methods
2.1. The Co-rotating System

The circular restricted three-body problem [15,16] is a kind of co-rotating system,
which can be written as

ẍ + 2(Ω× ẋ) = −∇(U(x)− 1
2 ω2r2), (3)

where x = (x, y, z) is the position, Ω = (0, 0, ω) means the system rotates clockwise around
the z axis with rotation speed ω, U(x) is a potential energy, and r = (x, y, 0). It is a Euler–
Lagrange equation with Lagrangian L(x, ẋ) = 1

2 ẋ2 + Ω · (r × ṙ) − (U(x) − 1
2 ω2r2), the

conjugate momenta p = ∂L/∂ẋ = ẋ + (−ωy, ωx, 0) , ẋ + A(x) (conjugate to the position
variables x) derived by Legendre transform. The energy E = 1

2 ẋ2 + (U(x)− 1
2 ω2r2) is an

invariant along the flow of the system. It is special that different physical processes imply
similar physical laws. For the charged particle in the electromagnetic field, its dynamics are
governed by the Newton–Lorentz equation, which has a similar form to Equation (3). In
particular, Ω plays the role of the magnetic field, U(x)− 1

2 ω2r2 acts as the scalar potential.
We set ϕ(x) = U(x)− 1

2 ω2r2 and rewrite the co-rotating coordinate system (3) in the
form of z = (x, p). The motion equations of the mass point can be expressed as

ẋ = Hp(z) = p−A(x),

ṗ = −Hx(z) =
(∂A(x)

∂x

)>
(p−A(x))−∇ϕ(x),

(4)

where H(z) = 1
2 (p − A(x))2 + ϕ(x). Obviously, it is a canonical Hamiltonian system

ż = J−1∇H(z) with

J =
(

0 −I3
I3 0

)
.
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The antisymmetric matrix J provides a symplectic structure, which is defined by

wJ =
1
2

dz> ∧ Jdz.

An integrator ψ : zn 7→ zn+1 is called symplectic, when wJ is preserved by the flow of
the integrator, i.e., dz>n+1 ∧ Jdzn+1 = dz>n ∧ Jdzn.

2.2. The Explicitly Symmetric Integrator ψb

First, we take into account the Boris algorithm [8–13] to make discrete the system (3)
as the numerical integrator ψb:

xn+1 − 2xn + xn−1

∆t2 + 2Ω× xn+1 − xn−1

2∆t
= −∇ϕ(xn). (5)

The scheme is a second-order explicitly symmetric integrator. At the same time, we set the
conjugate momenta to be the form of

pn =
xn+1 − xn

∆t
− (xn+1 − xn)×Ω + A(xn) + ∆t∇ϕ(xn),

pn+1 =
xn+1 − xn

∆t
+ (xn+1 − xn)×Ω + A(xn+1).

(6)

The map (xn, pn) 7→ (xn+1, pn+1) is symplectic which will be verified in Section 4.
In the following sections, we analyze the energy errors over long times and the

symplectic property of the numerical integrator ψb.

3. Energy Error Analysis

In this section, we analyze the energy deviation of the integrators ψb over very long
times. First, we consider ψb and solve the modified differential equation whose solution
y(t) formally satisfies y(n∆t) = xn. Thus, y(t) must satisfy Equation (5), i.e.,

y(t + ∆t)− 2y(t) + y(t− ∆t)
∆t2 +

2Ω× y(t + ∆t)− y(t− ∆t)
2∆t

= −∇ϕ(y(t)).
(7)

We expand all terms into powers of ∆t at the time t then obtain the following modified
differential equation

(ÿ + ∆t2

12 y(4) + . . . )+

Ω× (2ẏ + ∆t2

3 y(3) + . . . ) = −∇ϕ(y).
(8)

Multiplying ẏ> in the two sides of the formula. Since ẏ>(Ω× ẏ) = 0, we derive

ẏ>(ÿ + ∆t2

12 y(4) + . . . )+

ẏ>Ω× (∆t2

3 y(3) + . . . ) = −ẏ>∇ϕ(y).
(9)

The left-hand side can be written as the full differential and ẏ>∇ϕ(y(t)) = d
dt ϕ(y(t)), so

the modified differential equation has a formal invariant, i.e.,

d
dt

(1
2

ẏ>ẏ + ϕ(y) +
∆t2

12
(ẏ>y(3) − 1

2
ÿ>ÿ

+ 4ẏ>(Ω× ÿ)) + . . .
)
= 0.

(10)

Thus, we obtain a new formal generalized energy Eh(y, ẏ) = E(y, ẏ) + ∆t2E2(y, ẏ) +
. . . , which is an invariant. We only consider the numerical integrator {(xn, ẋn)} in a
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compact set D. To estimate the energy error of the integrator ψb over a long time, we
truncate the Eh in N leading terms, and integrate over the time interval [0, n∆t],

EN
h (xn, ẋn)− EN

h (x0, ẋ0) = n∆tO(∆tN). (11)

The right-hand side in Formula (11) is a high order infinitesimal quantity, so

|E(xn, ẋn)− E(x0, ẋ0)| ≤ CN∆t2. (12)

where CN is directly dependent on the values of ẏ>y(3) − 1
2 ÿ>ÿ + 4ẏ>(Ω × ÿ) in the

compact set D.

4. The Symplectic Property

In canonical Hamiltonian system, a map φ : zn 7→ zn+1, z ∈ R2d is called symplectic if
its Jacobian matrix satisfies the symplectic condition,( ∂φ

∂zn

)>
J
( ∂φ

∂zn

)
= J. (13)

The equivalent form is that the map φ preserves a standard symplectic structure 1
2 dz> ∧ Jdz,

i.e., dz>n+1 ∧ Jdzn+1 = dz>n ∧ Jdzn.
In this subsection, we show that the numerical integrator ψb is symplectic. We choose

the discrete Lagrangian Lh as

Lh(xn, xn+1) =
1

2∆t (xn+1 − xn)2+
1
2 Ω · (rn + rn+1)× (rn+1 − rn)− ∆tϕ(xn).

(14)

The discrete form of
∫ tN

t0
L(x(t), ẋ(t))dt, i.e., the action Sh is

Sh(x0, . . . , xN) =
N−1

∑
n=0

Lh(xn, xn+1), (15)

where Lh is the discrete Lagrangian. According to the discrete Hamilton’s principle, the
discrete Euler–Lagrange equation reads

D2Lh(xn−1, xn) + D1Lh(xn, xn+1) = 0, (16)

pn = −D1Lh(xn, xn+1),
pn+1 = D2Lh(xn, xn+1),

(17)

where Di is the partial derivative with respect to the i-th argument. The corresponding for-
mula of the formulation (17) is the formula (6). By eliminating pn, the evolution formulation
of xn can be obtained, which is ψb, as follows

xn+1 − 2xn + xn−1

∆t
+ 2Ω× xn+1 − xn−1

2
= −∆t∇ϕ(xn). (18)

A straightforward calculation gives the equation of dpn+1 ∧ dxn+1 = dpn ∧ dxn (refer to
the Theorem 5.1 of Chapter 6 in Hairer [17]). It proves that the integrator ψb is symplectic
and defines a symplectic map (pn, xn) 7→ (pn+1, xn+1).

It is also well-known that the symplectic integrator has the property of near-conservation
of energy over a long time. The error expression (12) is estimated by taking into account
the formal energy of the modified equation [18].

5. Numerical Experiments

In this section, we numerically present the behaviors of the integrator ψb in two kinds
of potential energy, an extensive Quadratic potential and restricted three-body Earth-Moon
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system. At the same time, we compare our results with those of the well-known symplectic
Euler method ψsE and the highly efficient Gauss Runge–Kutta method in the canonical
form (4).

In the case of the canonical system, we make discrete the system (4) by the symplectic
Euler method ψsE:

(a) :

xn+ 1
2
= xn + ∆tHp(xn, pn+ 1

2
)

pn+ 1
2
= pn − ∆tHx(xn, pn+ 1

2
),

(19)

and

(b) :

xn+1 = xn+ 1
2
+ ∆tHp(xn+1, pn+ 1

2
)

pn+1 = pn+ 1
2
− ∆tHx(xn+1, pn+ 1

2
).

(20)

This numerical integrator ψsE is a 2nd order explicitly symmetric symplectic numerical
integrator for the canonical system (4). The explicit form of ψsE reads

(a) :

xn+ 1
2
= Dxn + ∆tpn+ 1

2

pn+ 1
2
= T(pn − ∆t∇U(xn)),

(21)

and

(b) :

xn+1 = T(xn+ 1
2
+ ∆tpn+ 1

2
)

pn+1 = Dpn+ 1
2
− ∆t∇U(xn+1).

(22)

In here, the matrices T and D are as follows

T =


1

1+(∆tw)2
∆tω

1+(∆tw)2 0
−∆tω

1+(∆tw)2
1

1+(∆tw)2 0
0 0 1

, D =

 1 ∆tω 0
−∆tω 1 0

0 0 1

.

In addition, the 2nd order symmetric symplectic integrator ψb is explicit, as follows

xn+1 = T(2xn − Dxn−1 − ∆t2∇ϕ(xn)). (23)

5.1. Quadratic Potential

We consider a homogeneous rotating top-hat density sphere with the quadratic poten-
tial of U(x) = 4(x2 + y2 + z2). We set the rotating speed ω = π/40 and the period is 80.
The initial position and velocity are x = (−1.9, 0, 0) and v = (0,−2.0, 0), respectively.

We integrate the initial value problem in a time interval [0, T] with T = 8× 104 with
different step-sizes ∆t = T/n. We denote the maximum energy variation by

errH(T/n) = max
k=1,...,n

∣∣∣∣∣H(zk)− H(z0)

H(z0)

∣∣∣∣∣. (24)

In Figure 2, we observe that the numerical integrators ψb, ψsE both give the accurate
orbit in the first rotation period and the 1000th rotation period. The work efficiency diagram
of maximum energy variation along the trajectory versus the CPU time (in seconds) is
displayed in Figure 3, both on the logarithmic scale. We observe that our integrator ψb is
more efficient than the integrator ψsE. In actually, with the same maximum energy variation,
the efficiency of ψb is increased by about 40% versus ψsE.
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Figure 2. The orbits are given by ψb and ψsE in the first rotation period (a,c) and the 1000th rotation
period (b,d).

Figure 3. Maximum energy variation errH(∆t) versus the CPU time in double logarithmic scale,
which are given by ψb and ψsE over the time interval [0, T].

5.2. Earth-Moon System

In the design of a spacecraft’s orbit, the earth and moon’s disturbances should be
taken into account, and the spacecraft can be seen as a mass point. In this case, the motions
of the earth, moon, and satellite form a circular restricted three-body problem. The circular
restricted three-body problem can be written in the form of (3) with potential

U(x) =− GM1√
(x− x1)2 + (y− y1)2 + z2

− GM2√
(x− x2)2 + (y− y2)2 + z2

,
(25)

which has been widely studied [15,16,19–21]. We expand into the component form of
(x, y, z), as follow

d2x
dt2 −xω2−2ω

dy
dt

= −GM1(x− x1)

R3
1

−GM2(x− x2)

R3
2

,

d2y
dt2 −yω2+2ω

dx
dt

= −GM1(y− y1)

R3
1

−GM2(y− y2)

R3
2

,

d2z
dt2 = −GM1z

R3
1
−GM2z

R3
2

,

where R1 = ((x− x1)
2 + (y− y1)

2 + z2)1/2, R2 = ((x− x2)
2 + (y− y2)

2 + z2)1/2 and the
coordinate origin is mass center of the system.

In this example of an Earth-Moon system, the unit of distance is an Astronomical
Unit (1.4959787 × 1013 cm), the time unit is an earth day (86,400 s), and the mass unit is
in kilograms. The corresponding normalized parameters GM1 = 0.8997011603631609 ×
10−9 (following the parameters in [22]), GM2 = 0.0123 GM1, the distance of between earth
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and moon R = 2.56267 × 10−3, r1 = −M2R/(M1 + M2) = −3.113784550034574 × 10−5,
r2 = M1R/(M1 + M2) = 2.531532154499654 × 10−3 and the rotation speed
ω =

√
G(M1 + M2)/R3. The earth position is (x1, y1) = (r1, 0) and the moon position

is (x2, y2) = (r2, 0). We set two groups of initial conditions to check the behaviors of the
numerical integrators ψb and ψsE.

Orbit 1: we set initial position of the mass point at x = (−r2/4, 0, 0), velocity
ẋ = (0, 1.69561 × 10−3, 0). The orbit of the mass point is numerically integrated over
a time interval [0, 4× 104].

Orbit 2: we set initial position of the mass point at x = (−3r2/5, 0, 0), velocity
ẋ = (0, 1.35057 × 10−3, 0). The orbit is integrated over a time interval [0, 105].

We integrate the initial value problem with different step-sizes ∆t = T/n. Following
the numerical experiment 1, the maximum energy variation is as follows

errH(T/n) = max
k=1,...,n

∣∣∣∣∣H(zk)− H(z0)

H(z0)

∣∣∣∣∣. (26)

Figure 4 shows that for different initial values, the numerical integrators ψb, ψsE both
give the accurate orbit over a long time. Figure 5 shows that the work efficiency diagram
of maximum energy variation along the trajectory versus the CPU time (in seconds) in
double logarithmic scale with the initial values of orbit 1 and orbit 2. We conclude that our
integrator ψb is more efficient than the integrator ψsE.

Figure 4. Numerical orbits are given by ψb, ψsE with the initial values of orbit 1 (a,b) and orbit 2 (c,d),
respectively.

Figure 5. Maximum energy variation errH(∆t) versus the CPU time in double logarithmic scale,
which are given by ψb and ψsE with the initial values of orbit 1 (left) and orbit 2 (right).

5.3. High Order Composition Method

To show the strength of ψb, we construct the high order integrators ψ10
b and ψ10

sE by
composition method, at the same time, we check the work efficiency of ψ10

b by comparing
with ψ10

sE and the 10th order Gauss Runge–Kutta method ψgrk.
At first, we present the one step integrator of ψb [11] with the form of
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xn+ 1

2
= xn +

∆t
2

vn

vn+1 − vn

∆t
= −2Ω× vn+1 + vn

2
−∇ϕ(xn+ 1

2
)

xn+1 = xn+ 1
2
+

∆t
2

vn+1,

(27)

and 
xn+ 1

2
= xn +

∆t
2

vn

vn+1 = T(Dvn − ∆t∇ϕ(xn+ 1
2
))

xn+1 = xn+ 1
2
+

∆t
2

vn+1.

(28)

It is well-known that one can obtain a higher order symmetric integrator by composition
of the symmetric integrator. We derive the 10th order explicit, symmetric, symplectic
integrator ψ10

b (and ψ10
sE) by composition of the explicit, symmetric, symplectic integrator

ψb (and ψsE) using the best 35-stage method (Formula (17) in Sofroniou [23]). In addition,
one can obtain an arbitrary high order integrator by the composition skills [17].

In our numerical implementation of the implicit Runge–Kutta method ψgrk, we apply
fixed point iteration with starting values computed by extrapolation from the previous step.
Figure 6 shows that the work efficiency diagram of maximum energy variation along the
trajectory versus the CPU times (in seconds) in double logarithmic scale, which are given
by ψ10

b , ψ10
sE and ψgrk, the initial values are the orbit 1 and orbit 2 in the above numerical

experiment 2. We conclude that our integrator ψ10
b is more efficient than ψ10

sE and ψgrk.

Figure 6. Maximum energy variation errH(∆t) versus the CPU time in double logarithmic scale,
which are given by ψ10

b , ψ10
sE and ψgrk, the initial values are orbit 1 (left) and orbit 2 (right) in above

numerical experiment 2.

6. Conclusions

In this paper, for the circular restricted three-body problem, we investigated the
explicit symmetric numerical integrator ψb. In particular, the property of near-conservation
of energy for long-term evolution and the symplectic property are derived for the integrator
ψb. It is important that our 10th order explicit, symmetric, symplectic integrator ψ10

b is more
efficient than the 10th order symplectic Euler method ψ10

sE and the 10th order implicit Gauss
Runge–Kutta method ψgrk for the circular restricted three-body problem.

Two groups of numerical experiments, rotating quadratic potential and earth-moon
system, are carried out to verify our theoretical analysis. In addition, the work efficiency
comparison of the high order methods presented in Section 5.3 demonstrates the precision,
high efficiency, and advantages of easy generation of high order methods of our method.
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