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Abstract: The difficulty of defecation seriously affects the quality of life of the bedridden elderly. To
solve the problem that it is difficult to know the defecation time of the bedridden elderly, this paper
proposed a human pre-defecation prediction method based on multi-domain features and improved
support vector machine (SVM) using bowel sound as the original signal. The method includes three
stages: multi-domain features extraction, feature optimization, and defecation prediction. In the stage
of multi-domain features extraction, statistical analysis, fast Fourier transform (FFT), and wavelet
packet transform are used to extract feature information in the time domain, frequency domain, and
time-frequency domain. The symmetry of the bowel sound signal in the time domain, frequency
domain, and time-frequency domain will change when the human has the urge to defecate. In
the feature optimization stage, the Fisher Score (FS) algorithm is introduced to select meaningful
and sensitive features according to the importance of each feature, aiming to remove redundant
information and improve computational efficiency. In the stage of defecation prediction, SVM is
optimized by the gray wolf optimization (GWO) algorithm to realize human defecation prediction.
Finally, experimental analysis of the bowel sound data collected during the study is carried out.
The experimental result shows that the proposed method could achieve an accuracy of 92.86% in
defecation prediction, which proves the effectiveness of the proposed method.

Keywords: bowel sound; feature extraction; gray wolf optimization; healthcare; support vector
machine

1. Introduction

With the increasing number of elderly [1], defecation care for the long-term bedridden
elderly has become a pressing social issue. The defecation care of the long-term bedridden
elderly is often accompanied by “dirty, messy and smelly” problems [2], which not only
make the caregivers miserable but also make it difficult to guarantee the privacy and dignity
of the elderly.

The existing methods of defecation care mainly include post-defecation treatment
and pre-defecation warning. At present, the most commonly used nursing methods are
post-defecation treatment, such as caregivers nursing, using diapers, using anal bags and
using intelligent nursing robots, etc., but this kind of method often causes the skin to come
into contact with excrement [3], which easily causes skin damage or even skin diseases in
the elderly, and is not comfortable. Although methods based on pre-defecation warning
can effectively solve the above problems, the existing methods are rare and difficult to be
used in long-term care. For example, Zan et al. [4] proposed a method for predicting bowel
intention based on rectal pressure signals monitored by biological parameter telemetry
capsules. However, one capsule can only be monitored for 24 h. Long-term monitoring
requires the long-term use of telemetry capsules, which is potentially risky and costly.
Therefore, there is an urgent need for a new, cost-effective, long-term, and simple method
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for predicting before defecation to improve the quality of life of the disabled elderly. In this
paper, based on the study of physiological signals related to human defecation, a machine
learning algorithm is used to identify the intention of defecation, and a defecation prediction
method is proposed.

The physiological signal of the human body reflects the electrical activities of specific
body parts [5], which is closely related to the health status and life process of the human
body. Therefore, this information is a valuable data source for disease detection, rehabilita-
tion, and treatment [6]. At present, physiological signals that have been widely studied
in the field of healthcare include electromyography (EMG), electroencephalogram (EEG),
electrocardiogram (ECG), and electrooculography (EOG). Among them, the EMG signal is
a typical clinical recording method for diagnosing and monitoring neuromuscular behavior,
which can be used to identify muscle injuries [7], neuroprosthetic control [8], and motor
intention decoding [9], etc. EEG is the electrical activity of the brain and is widely used
in sleep state recognition [10] epilepsy detection [11], and emotion recognition [12]. ECG,
as the main means to detect the electrical activity of the heart, is an important and harmless
means to predict and diagnose cardiovascular diseases [13,14]. EOG can detect eye move-
ments, and can be used for ophthalmic diagnosis [15] and sleep status monitoring [16].
Inspired by these studies, we set out to investigate the physiological signals associated with
defecation in humans.

A medical study shows that the human defecation intention is generated by the
feedback loop formed by the pressure receptors distributed around the periphery of the
rectum, nerve tissue, and brain [17]. Therefore, when the feces entering the rectum reaches
a certain volume, the human body will have an obvious defecation intention. In addition,
studies have shown that defecation is one of the important evaluation criteria reflecting
gastrointestinal motility [18]. Based on the above studies, we can speculate that there is
a high correlation between gastrointestinal status and human defecation activities, so it
is feasible to identify defecation intention by monitoring human gastrointestinal status.
Bowel sound (BS) is the sound produced when intestinal contractions push liquid and gas
through different parts of the intestine during digestion [19]. It is a simple and effective
physiological signal for evaluating the state of the gastrointestinal tract. Therefore, BS is
used to monitor gastrointestinal status. In addition, the rectum is normally empty [20],
but when feces stored in the colon are pushed into the rectum, the defecation center sends
defecation signals through the efferent nerves. We hypothesized that the process of feces
pushing into the rectum will be accompanied by more frequent BS, and the difference in
the number of feces stored in the bowel may also lead to differences in the quality of BS.

However, manual interpretation of BS is complex, not only requires expertise acquired
over many years of training, but is also time-consuming and labor-intensive. Therefore,
computer-aided methods are needed to automatically identify and analyze BS, reduce
human burden, and reduce errors caused by fatigue and internal variability [21]. The
existing research techniques in BS can be divided into two categories: statistics-based meth-
ods and machine-learning-based methods. Iterative kurtosis-based detection (IKD) [22]
is one of the classical statistics-based algorithms. It locates each BS event through point-
by-point estimation of the kurtosis value of BS record points. The points with kurtosis
values greater than the threshold are attributed to the existence of nearby BS events. How-
ever, IKD algorithms are acausal and cannot be implemented in real-time. On the other
hand, with the development of artificial intelligence technology, some advanced machine
learning technologies have been continuously used in BS clinical research, and have been
widely used in the diagnosis and identification of intestinal diseases. Machine learning
techniques conduct BS signal studies in a data-driven manner and are often more effective
than statistical-based methods. In 2008, Dimoulas et al. [23] used wavelet feature extraction
and multilayer perceptron (MLP) network classifier to analyze BS, which has high accu-
racy. In 2011, Kim et al. [24] used back propagation(BP) network to analyze BS, and their
results showed that there is a good correlation between BS and colonic transit. In 2014,
Ulusar et al. [25] proposed a method based on Naive Bayesian (NB) algorithm to confirm
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the recovery of bowel function in patients after major abdominal surgery by monitoring BS.
In 2018, Liu et al. [26] proposed a BS monitoring method based on Mel frequency cepstrum
coefficient (MFCC) features and long-short term memory (LSTM) neural networks. This
method can accurately distinguish BS and noises, and can be used for long-term detection
of gastrointestinal motility. In 2018, Yin et al. [27] improved the BS monitoring system and
proposed a BS recognition system based on Support Vector Machine (SVM) to identify
intestinal motility events. In 2019, Du et al. [28] proposed the feasibility of applying BS to
the diagnosis of irritable bowel syndrome based on a logistic regression algorithm.

It can be seen that applying machine learning technology to BS signal analysis provides
a promising and effective method for gastrointestinal status-related diagnosis. However,
there is no relevant research on the application of BS to defecation prediction. In addition,
in previous studies, the distinction between types is mostly based on typical acoustic fea-
tures, including spectral centroid, sub-band normalized energy, value of envelope thoracic
coefficient, etc. [29], which are all single-domain features. Since BS has the characteristics of
asymmetry, weak signal, strong background noise, large individual differences, and strong
randomness [25], feature extraction based on single domain tends to ignore the information
of signals in other domains, and it is difficult to fully reflect the inherent characteristics
of the signal [30,31]. Moreover, in practical applications, the accuracy and generalization
ability of the method need to be guaranteed, but the high computational complexity will
hinder the applicability of the method in real-time continuous processing. Most previous
studies have failed to balance accuracy and computational complexity. To solve the above
problems, this paper proposes a new defecation prediction method based on multi-domain
features and gray wolf optimizer-based support vector machine (GWO-SVM). This method
is different from all previous methods. First of all, we extract the multi-domain features of
BS, and select the features that are sensitive to classification. As far as we know, this is the
first time in BS research. In addition, in feature extraction in time-frequency domain, we use
wavelet packet transform and entropy instead of discrete wavelet transform coefficients,
which can retain important information in high-frequency components. Finally, when we
use SVM as the prediction model, we use the gray wolf optimization (GWO) algorithm for
optimization, which can improve the recognition accuracy and generalization ability of the
model. The method proposed in this paper is an innovative application of machine learning
in the field of health care, and provides a promising and effective method for defecation
care of the bedridden elderly. Since the monitoring of BS is non-invasive in vitro, it can
avoid pain and inconvenience when applied to the human body. The proposed method has
high recognition accuracy, which can meet the detection function of actual use, assist the
bedridden elderly to get timely defecation care, and reduce the nursing cost and burden.

The research framework of the proposed method is shown in Figure 1, and the de-
tails are as follows. We firstly filter and denoise the collected BS signals, and then use
three methods (statistical analysis, fast Fourier transform (FFT), and wavelet packet trans-
form) to extract the features from multi-domain aspects (time domain, frequency domain,
and time-frequency domain) to construct high-dimensional datasets. We believe that the
multi-domain characteristics of normal human BS are distributed in a centrosymmetric
arrangement, and this symmetry will change after adding the human BS signals. There-
fore, the Fisher Score (FS) algorithm is used for feature selection of multi-domain features,
and sensitive features with large changes in symmetry and meaningful for classification
are selected to improve computational efficiency. After that, SVM which has a strong
generalization ability in small datasets and nonlinear data classification is used to establish
the defecation prediction model. In addition, the GWO algorithm is used to optimize SVM
to get better accuracy of defecation prediction. Finally, experimental analysis is carried
out based on the BS data collected in the experiment to verify the feasibility of defecation
prediction based on the BS signal. The rest of this paper is organized as follows. Section 2
introduces the BS collection system and dataset. Section 3 introduces the processing meth-
ods of the BS signals and specifically introduces the process of multi-domain features
extraction. Section 4 introduces the implementation process of GWO algorithm to optimize
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SVM classifier. Section 5 verifies the effectiveness of the proposed method through an
experimental case, and the conclusion is shown in Section 6.

Figure 1. Research framework.

2. Bowel Sound Collection System and Dataset
2.1. Bowel Sound Collection System

To realize the monitoring of BS data and other physiological parameter signals, we
build a BS collection system, as shown in Figure 2. The system includes a signal acquisition
module, a data receiving module, and a real-time display module. The signal acquisition
module includes a 3M™Littmann® 3200 electronic stethoscope for BS acquisition and a
Biosignalsplux physiological multipurpose recorder for EEG, EGG, ECG, and other physi-
ological parameter signals acquisition. The data receiving module adopts the industrial
computer KMDA-3921, connected with the signal acquisition module through Bluetooth.
The real-time acquisition module can display the physiological signals collected in real-
time. Among them, the Biosignalsplux physiological multipurpose recorder in the signal
acquisition module will be used for subsequent research.

Figure 2. BS collection system.
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2.2. Bowel Sound Data Acquisition

The sampling frequency of the BS stethoscope is 4000 Hz, which is the built-in sam-
pling frequency of the sensor. Since the typical BS frequency range is between 50 Hz
and 1500 Hz, according to the Nyquist sampling theory, when the sampling frequency is
greater than double the highest frequency in the signal, the digital signal after sampling
can completely retain the information of original signal. Therefore, the sampling frequency
of 4000 Hz can completely retain the information of the BS signal. Since BS is best col-
lected in the membrane-type auscultation mode (amplifying the 20–2000 Hz sound and
strengthening the 100–500 Hz sound), the auscultation mode of the stethoscope is set to
the membrane-type.

Figure 3 shows a schematic diagram of BS data collection locations. It can be seen
that the common collection locations of BS are the upper right, upper left, and lower left
positions of the abdomen. The lower left part of the abdomen is the sigmoid colon, which
is connected to the rectum. When the feces stored in the sigmoid colon are large or the
feces are pushed to the rectum from the sigmoid colon, humans will have a more obvious
defecation intention. Therefore, we believe that it is the most suitable to fix the stethoscope
in the lower left quadrant of the abdomen to collect BS in this paper.

Figure 3. Schematic diagram of BS data collection.

Before BS data collection, it is necessary to shave off the excess hair where the BS
stethoscope is located and apply a scrub to remove dead skin. During the collection process,
to reduce unnecessary human error, the stethoscope is fixed on the lower left quadrant of
the volunteer’s abdomen with medical tape. The volunteers are asked to take a supine
position, minimize body movement, try to breathe evenly, avoid speaking, and stay awake.
The duration of each data point is 1 min. After data collection, the BS data within 10 min
before defecation are manually marked as label 1 (intention to defecate), and the rest are
marked as label 0 (no intention to defecate).

3. The Processing Methods of the Bowel Sound Signals
3.1. Filtering Method for Noise Reduction

BS is usually regarded as a non-stationary short-term signal with sudden character-
istics, which is easily polluted by noise caused by activities such as heartbeat, breathing,
and exercise. Therefore, the bowel sound signal needs to be filtered for noise reduction
before extracting features. A recent study confirmed that the largest part of the power
spectral density of BS is between 100 Hz and 500 Hz, and the power spectral density
above 1000 Hz only accounts for a very small part [32]. Therefore, we mainly retain the
information of the BS signal from 100 Hz to 1000 Hz in this paper.

By filtering the original BS signal with a second-order Butterworth-type high-pass filter
with a cut-off frequency of 100 Hz, a low-pass filter with a cut-off frequency of 1000 Hz,
and a notch filter of 50 Hz, the noise caused by breathing, heartbeat, electromagnetic
interference, and other activities can be effectively reduced [25]. Figure 4 shows the time
domain and frequency domain comparison diagram of the BS signal before and after
filtering. It can be seen that the signal before filtering is noisy and contains more noise
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below 100 Hz. After filtering, the noise is effectively suppressed. In addition, as shown by
the arrow in Figure 4, the location of BS can be more clearly seen in the filtered signal.

Figure 4. Comparison of before and after BS filtering.

Figure 5a,b are the time domain diagrams of typical BS signals after filtering with and
without defecation intention. From the figure, we can see that the frequency and amplitude
of BS are lower when there is no urge to defecate, while the frequency and amplitude of
BS will increase when there is an urge to defecate, especially when there is a strong urge
to defecate. This paper speculates that this phenomenon may be due to the movement of
feces from the colon to the rectum, accompanied by more pronounced intestinal peristalsis.

(a) (b)

Figure 5. (a) BS signal without defecation intention. (b) BS signal with defecation intention.
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3.2. Multi-Domain Features Eextraction

Due to the asymmetry, strong randomness, and wide dynamic range of BS signals, it
cannot be directly used for defecation intention prediction, and it is difficult to fully extract
suitable feature information only by linear correspondence or single-domain feature vector.
Therefore, it is necessary to extract multi-domain features of BS signals.

The BS collected in this paper can be expressed as xn = {x1, x2, . . . , xN} , where N is
the number of data points of the signal xn. Since the sampling frequency is 4000 HZ and
the duration of each acquisition is 1 min, N is 240,000 here. In this paper, three widely used
methods (statistical analysis, FFT, and wavelet packet transform) are used to extract the
multi-domain features of the filtered BS signals.

3.2.1. Time Domain Features Extraction

Statistical analysis is a research method that uses statistical methods to analyze the
research object from quantitative and qualitative. Using statistical analysis methods to
extract the time domain features of the signal, we can obtain a distribution of the signal,
which represents the waveform of the signal. When the human body has an obvious urge
to defecate, the amplitude and distribution of the signal may be different from that when
there is no urge to defecate. Therefore, this paper uses statistical methods to extract 16 time
domain features of BS signals, and their expressions are listed in Table 1. Among them, there
are 10 dimensional statistical parameters T1∼T10 such as mean, standard deviation, square
root amplitude, and six dimensionless statistical parameters T11∼T16 such as waveform
index, peak index, and pulse index [33].

Table 1. Time domain feature expressions.

Feature Name Feature Expression Feature Name Feature Expression

mean value T1 = 1
N ∑N

n=1 xn Minimum Value T9 = min|xn|
standard deviation T2 =

√
1

N−1 ∑N
n=1[xn − T1]2 peak-to-peak value T10 = T8 − T9

square root amplitude T3 = ( 1
N ∑N

n=1
√
|xn|)2 waveform index T11 = T2

T4

absolute mean value T4 = 1
N ∑N

n=1|xn| peak index T12 = T8
T2

skewness T5 = 1
N ∑N

n=1(xn)
3 pulse index T13 = T8

T4

kurtosis T6 = 1
N ∑N

n=1(xn)
4 margin index T14 = T8

T3

variance T7 = 1
N ∑N

n=1(xn)
2 skewness index T15 = T5

(
√

T7)3

maximum value T8 = max|xn| kurtosis index T16 = T6
(T7)2

3.2.2. Frequency Domain Features Extraction

FFT is a transform form that can transform a signal from the time domain to the
frequency domain. It has a wide range of applications in the fields of acoustics and signal
processing, because of its fast and efficient calculation algorithm, low computational cost,
and can meet the premise that digital systems can process. Using FFT to extract the
frequency domain features of the signal, the spectral information of the signal can be
obtained, such as amplitude or phase, and it is more feasible to identify signal changes or
patterns. The frequency domain analysis of the BS signal observes the characteristics of the
signal according to the frequency, which makes the analysis of the signal more profound
and convenient. When BS is frequent enough or occurs rarely, the collected signals will be
relatively concentrated in the frequency spectrum, and due to the urge to defecate, there are
more feces in the sigmoid colon, which may also affect the position of the main frequency
band of the BS. The frequency domain feature expressions of the 13 BS signals F1∼F13 are
shown in Table 2, and the definitions of the involved parameters are shown in Table 3.
Among them, the feature value F1 reflects the vibration energy of the BS signal in the
frequency domain, and the feature values F2∼F4, F6 and F10∼F13 reflect the concentration
and dispersion of the BS signal in the frequency spectrum. The feature values F5 and F7∼F9
reflect the positional change of the BS signal in the main frequency band [33,34].
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Table 2. Frequency domain feature expressions.

Number Feature Expression Number Feature Expression

1 F1 = ∑K
k=1 yk
K

8 F8 =

√
∑K

k=1( f 4
k yk)

∑K
k=1( f 2

k yk)

2 F2 = ∑K
k=1[yk−F1]2

K−1
9 F9 = ∑K

k=1( f 2
k yk)√

[∑K
k=1( f 4

k yk)][∑K
k=1 yk ]

3 F3 = ∑K
k=1[yk−F1]3

K(
√

F2)3 10 F10 = F6
F5

4 F4 = ∑K
k=1[yk−F1]4

K(F2)2 11 F11 = ∑K
k=1[( fk−F5)3yk ]

K(F6)3

5 F5 = ∑K
k=1( fkyk)

∑K
k=1 yk

12 F12 = ∑K
k=1[( fk−F5)4yk ]

K(F6)4

6 F6 =

√
∑K

k=1[( fk−F5)2yk ]
K

13 F13 =
∑K

k=1[
√
| fk−F5|yk ]

K
√

F6

7 F7 =

√
∑K

k=1( f 2
k yk)

∑K
k=1 yk

— —

Table 3. The definitions of the involved parameters in Table 2.

Parameter Name Define

K The number of spectral lines
yk Frequency spectrum obtained by using FFT
fk The frequency value of the k-th spectral line

3.2.3. Time-Frequency Domain Features Extraction

Both the time domain features and the frequency domain features describe the state
information of the entire BS signal. It is not possible to analyze the BS signal locally, and it
is difficult to observe the information of the frequency of the non-stationary component in
the signal changing with time, that is, the time-frequency resolution is not high. With the
help of time-frequency domain analysis, the frequency information of the BS signal can
be observed in a small range, and the time-frequency resolution of the BS signal can be
improved. Wavelet packet transform [35] is developed based on wavelet transform, and it
is a modern time-frequency analysis and processing method that can effectively process
all kinds of non-stationary random signals. It overcomes the shortcomings of wavelet
transform with low resolution in the high-frequency part, and has better time-frequency
resolution. It has been widely used in language, image, seismic, mechanical vibration and
other fields.

In this paper, wavelet packet transform is used to extract the time-frequency domain
features, and the collected BS signal can be decomposed into multiple two-dimensional
parameters (time and frequency) to realize the feature decomposition in different frequency
bands and different times. The time-frequency domain features include wavelet energy
ratio P1∼P16, wavelet energy entropy EE, wavelet feature scale entropy PE1∼PE16 and
wavelet singularity entropy SE. The specific steps are as follows:

(1) BS signal xn is decomposed by a four-layer wavelet packet transform, and 16 sub-
bands are obtained. The j-th layer wavelet packet decomposition of the signal xn can
be written as:

xn =
2j

∑
i=1

xi
j(n), (1)

where xi
j(n) is the i-th sub-band signal decomposed by j-layer wavelet packet trans-

form, and the sub-band signal is reconstructed to be the same length as the signal xn.
(2) Extracting wavelet energy ratio P1∼P16 and wavelet energy entropy EE. After decom-

position by wavelet packet, the total energy Ex of the signal xn can be written as:

Ex =
2j

∑
i=1

Ei
j, (2)
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where Ei
j =

∫ +∞
−∞

[
xi

j(n)
]2

dn is the node energy of the i-th sub-band, so the wavelet
energy ratio and wavelet energy entropy P1∼P16 can be defined as [36]:

Pi =
Ei

j

Ex
, (3)

EE = −
2j

∑
i=1

Pi log Pi, (4)

(3) According to the wavelet packet coefficient sequence at each scale, extracting wavelet
feature scale entropy PE1∼PE16. After the wavelet packet transform is performed on
the signal xn, the wavelet packet coefficient sequence at each scale can be obtained
as: Cj =

{
cj(1), cj(2), · · · , cj(N)

}
(j = 1, 2, 3, 4), where N is the length of the sub-band

signal and cj can be regarded as a division of the signal xn. The measure of this
division is defined as:

Pjk =
cF(j)(k)

∑N
k=1 cF(j)(k)

, (5)

where cF(j)(k) is the FFT of cj(k), so the wavelet feature scale entropy of the j-th scale
of the signal xn can be defined as [37]:

PEj = −
N

∑
k=1

Pjk log Pjk, (6)

(4) Extracting the wavelet singular entropy SE. Wavelet singular entropy [38] makes full
use of the advantages of wavelet packet transform for adaptive time-frequency local-
ization, the extraction function of singular value decomposition for time-frequency
spatial feature patterns, and the statistical properties of information for signal uncer-
tainty and complexity. It can be used to effectively identify BS signals in different
states. The wavelet packet decomposition tree after the j-th layer wavelet packet
decomposition is performed on the signal xn is shown in Figure 6. The bottom p
nodes of wavelet decomposition coefficients of length q can form a time-frequency
distribution matrix Wp×q, which reflects the time-frequency space energy distribution
characteristics of the signal xn. According to the singular value decomposition theory,
Wp×q can be decomposed as:

Wp×q = Up×kΛk×kVk×q, (7)

where p = 2j, q = N/2j, and Λ = diag(λ1, λ2, · · · , λk) is the singular value diagonal
matrix, which satisfies the descending order: λ1 ≥ λ2 ≥ · · · ≥ λk. So the wavelet
singular entropy is defined as:

SE =
k

∑
i=1
∇Qi, (8)

∇Qi = −
(

λi

∑k
i=1 λi

)
ln

λi

∑k
i=1 λi

, (9)
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Figure 6. The j-layer wavelet packet decomposition tree.

Ultimately, by integrating the multi-domain features Di
data of each data sample, high-

dimensional feature sets Hdata can be constructed:

Hdata =



D1
data
...

Dp
data
...

Dq
data

 =



T1×16 F1×13 P1×16 EE1 PE1×16 SE1
...

...
...

...
...

...
Tp×16 Fp×13 Pp×16 EEp PEp×16 SEp

...
...

...
...

...
...

Tq×16 Fq×13 Pq×16 EEq PEq×16 SEq

 (10)

where q represents the total number of data samples, and Dp
data represents the multi-

domain features of the p-th sample. The dimension of the matrix Hdata is 63, including
16-dimensional time domain features, 13-dimensional frequency domain features, 16-
dimensional wavelet energy ratio features, one-dimensional wavelet energy entropy fea-
ture, 16-dimensional wavelet feature scale entropy features, and one-dimensional wavelet
singular spectrum entropy feature.

3.3. Fisher Score Algorithm

We believe that the multi-domain features of normal human BS signals are distributed
in centrosymmetric, which will change after adding the BS signals of having an urge to
defecate. The multi-domain features of BS signals constitute a high-dimensional dataset
Hdata, which can reveal the state information and intrinsic properties of BS more broadly,
but also brings some redundant and negative information. So before the model training,
it is necessary to reduce the dimensionality of the high-dimensional dataset, which can
select sensitive features with large changes in symmetry and meaningful for classification,
and improve computational efficiency. FS algorithm is a typical filtering feature selection
method [39]. It selects features that are effective for classification according to the score of
candidate features, especially the features with the most distinguishing ability as candidate
features. In the data space spanned by the selected features, the distance between data
points in different classes is as large as possible, and the distance between data points in
the same class is as small as possible. It can be considered that the higher the score of the
feature, the greater the change in symmetry, and the more meaningful it is for classification.
For a given high-dimensional dataset Hdata, a widely used heuristic strategy is to calculate
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the score of each feature independently according to the F criterion, then the FS value of
the j-th feature is calculated as follows:

F(xj) =
∑c

k=1 nk(µ
j
k − µj)2

(σj)2 , (11)

where (σj)2 = ∑c
k=1 nk(σ

j
k)

2, c is the number of classes, nk is the number of the sample of

the k-th class, µ
j
k and σ

j
k are the mean and standard deviation of the j-th feature in the data

of the k-th class, µj and σj are the mean and standard deviation of the entire dataset of the
j-th feature. After calculating the FS value of each feature in the multi-domain features of
BS, according to the experimental test result, the top m features with the highest scores are
selected as sensitive features, and a new low-dimensional feature set is established.

4. Support Vector Machine Optimized by Gray Wolf Optimization Algorithm
4.1. Support Vector Machine

There is a nonlinear mapping between the peristaltic mechanism of the intestine and
the feature vectors of BS signal, and in general, the frequency of defecation in healthy people
is about 1.2 times per 24 h [40]. Affected by this physiological characteristic, the number of
BS data samples that can be collected during the experiment is limited, and it is necessary
to consider the prediction of defecation intention based on small samples. SVM [41] is a
machine learning method based on the principle of structural risk minimization, and its
wide and successful application in the engineering and biomedical field in recent years has
proved that it is an excellent classification model with strong generalization ability [42–44].
Therefore, this paper selects the SVM model to predict defecation intention.

Given a training set M =
{
(xi, yi) | xi ∈ RN , yi ∈ {−1, 1}, i = 1, 2, · · · , n

}
, where xi

are the sample data and yi is the sample category, the basic principle of SVM is to find
the optimal separation hyperplane, as shown in Figure 7. The solution of its optimal
hyperplane can be transformed into the following constrained minimization problem:{

min 1
2‖ω‖

2

s.t.yi(ωxi + b) ≥ 1
, (12)

where ω ∈ RN is the coefficient or weight vector, and b is the bias term.
To improve the generalization ability of SVM, a slack variable θi ≥ 0, i = 1, 2, · · · , n is

introduced, and Equation (12) is rewritten as: . . .
min 1

2‖ω‖
2 + c ∑n

i=1 θi(θi ≥ 0)

s.t.

{
yi(ωxi + b) ≥ 1− θi

c ≥ 0(i = 1, 2, · · · , n)

, (13)

where c represents the penalty factor, and its value can weigh the empirical risk and
the structural risk. By using the Lagrange multiplier method on the above equation,
the Lagrange function of the optimization problem can be obtained:

L(ω, b, α, θ, µ) =
1
2
‖ω‖2 + c

n

∑
i=1

θi +
n

∑
i=1

αi

(
1− θi − yi

(
ωTxi + b

))
−

n

∑
i=1

µiθi, (14)

where α = (α1; α2; · · · ; αn) and µ = (µ1; µ2; · · · ; µn) are Lagrange multipliers, among them,
αi ≥ 0, µi ≥ 0. Then the kernel function G

(
xi, xj

)
=
〈

ϕT(xi)ϕ(xi)
〉

is introduced, where 〈·〉
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represents the inner product operation. According to the KKT condition, Equation (14) can
be described as the following dual optimization problem:{

max L(α) = ∑n
i=1 αi − 1

2 ∑n
i=1 ∑n

j=1 αiαjyiyjG
(
xi, xj

)
s.t. ∑n

i=1 αiyi(0 ≤ αi ≤ c; i = 1, 2, · · · , n)
, (15)

Common kernel functions in SVM include linear kernel function, polynomial kernel
function, Gaussian kernel function, and radial basis function (RBF). Choosing different
kernel functions, the classification accuracy may be very different. To better approximate
any nonlinear function, the RBF is selected as the kernel function in this paper, which is
defined as:

G
(

xi, xj
)
= exp

(
−
∥∥xi − xj

∥∥2

2g2

)
, (16)

where g is the kernel parameter, which reflects the distribution complexity of the data
samples in the high-dimensional space. Finally, the classification decision function of SVM
can be defined as:

f (x) = sign

(
n

∑
i=1

αiyiG
(
xi, xj

)
+ b

)
, (17)

Figure 7. The optimal hyperplane for binary classification.

4.2. Gray Wolf Optimization Algorithm

In the study, the choice of penalty factor c and kernel parameter g has a great influence
on the classification accuracy of SVM, therefore, it is necessary to study the setting of SVM
parameters [45]. Because GWO algorithm has a convergence factor that can be adaptively
adjusted and an information feedback mechanism, it can achieve a balance between local
optimization and global search. Besides, GWO has strong convergence and is easy to
implement, so in this paper, GWO algorithm is used to optimize the penalty factor c and
the kernel parameter g of the RBF kernel function of SVM.

The GWO algorithm was proposed by Mirjalili et al. [46] in 2014, which was inspired
by the predation behavior of gray wolves and simulated the population structure and
hunting behavior of wolves. The highest-ranking leader in the group becomes wolf A,
who is mainly responsible for various decision-making matters in the group. Wolf B ranks
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second only to wolf A in the wolf pack and is mainly responsible for assisting wolf A in
decision-making. When wolf A’s position becomes vacant, wolf B will become the new
leader. Wolf C is the third level of the wolf pack and mainly follows the decisions of
wolf A and wolf B, and wolf A and wolf B with poor fitness will also be downgraded
to wolf C. Wolf Z is the lowest rank of wolves and is mainly responsible for the balance
of relationships within the population. The GWO algorithm regards wolf A, wolf B and
wolf C in the wolf pack as the three optimal solutions of the algorithm, and the rest of the
wolves, including Z, revolve around wolf A, wolf B or wolf C to update the position.

The hunting process of gray wolves includes three parts: stalking and approaching
prey, chasing and surrounding prey, and attacking prey. The behavior of gray wolves to
update distance and position during stalking and approaching prey is defined as follows:

~D =
∣∣∣~C× ~Xp(t)− ~X(t)

∣∣∣, (18)

~X(t + 1) = ~Xp(t) + ~A× ~D, (19)

where ~D is the distance between the gray wolf and the prey, t is the number of iterations,
~Xp is the position of the prey, ~X is the position of the gray wolf, and its initial position
coordinate is defined as (c, g). ~A and ~C represent coefficients, and the calculation formula
is as follows:

~A = 2~a×~r1 −~a, (20)

~C = 2~r2, (21)

where~a is the convergence factor, which decreases linearly from 2 to 0 as the number of
iterations increases.~r1 and~r2 are random values of [0, 1] respectively. As shown in Figure 8,
when

∣∣∣~A∣∣∣ > 1, it represents a global search, that is, the gray wolves expand the search

range to find better prey, when
∣∣∣~A∣∣∣ ≤ 1, it represents a local search, the gray wolves will

narrow the surrounding area to search for nearby prey.

Figure 8. Gray wolf looking for and attacking prey.

When the gray wolves recognize the location of the prey, wolf B and wolf C surround
the prey under the leadership of wolf A. Because wolves A, B, and C are closest to the prey,
the positions of these three are used to determine the location of the prey. At the same time,
the candidate wolves (including wolf Z) update their positions according to the positions
of the three, and gradually approach the prey. The update mechanism of the individuals in
the wolf group is shown in Figure 9.
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Figure 9. Gray wolf location update diagram.

Among them, the distance between wolf A, wolf B and wolf C and other individuals
is expressed as: 

~Da =
∣∣∣~C1 × ~Xa(t)− ~X(t)

∣∣∣
~Db =

∣∣∣~C2 × ~Xb(t)− ~X(t)
∣∣∣

~Dc =
∣∣∣~C3 × ~Xc(t)− ~X(t)

∣∣∣ , (22)

where ~Xa, ~Xb and ~Xc represent the current positions of wolf A, wolf B and wolf C respec-
tively, ~C1, ~C2 and ~C3 are random variables, and ~X(t) represents the current position of the
gray wolf. The step size and direction that wolf Z advances toward wolves A, B, and C are
defined by Formula (23), and the final position of wolf Z is defined by Formula (24):

~X1 = ~Xa − ~A1 × ~Da
~X2 = ~Xb − ~A2 × ~Db
~X3 = ~Xc − ~A3 × ~Dc

, (23)

~X(t + 1) =
~X1 + ~X2 + ~X3

3
, (24)

Then, the position of the gray wolf is updated again until there is the best optimal
solution. At that time, the prey stops moving, and the gray wolf completes the hunting
process by attacking. The position coordinate value corresponding to the best optimal
solution is defined as (bestc, bestg). The calculation flowchart of GWO-SVM is shown
in Figure 10. In the optimization process, this paper sets the population size M = 20,
the maximum number of iterations tmax = 30, and defines the fitness function as:

f =
y f

yt + y f
, (25)
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where y f and yt represent the number of misclassified and correctly classified samples
after 10-fold cross-validation, respectively. The smaller the fitness value, the higher the
classification accuracy, that is to say, the parameter optimization process of SVM can be
described as the solution to the fitness function minimization problem. GWO algorithm is
used to optimize the penalty factor c and kernel function parameters g of SVM, which can
effectively improve classification accuracy.

Figure 10. The flow chart of GWO-SVM.

5. Validation of the Proposed Method

All the data processing algorithms in this experiment are compiled in MATLAB R2019b,
and the machine learning algorithm is implemented based on Scikit-Learn machine learning
library. The operating environment is as follows: Intel(R) Xeon(R) CPU, 96 GB RAM and
Windows 10 system.

5.1. Explanation of the Experimental Data

A total of 16 volunteers are recruited for the experiment. They have normal gas-
trointestinal function and did not take any medication that affected bowel motility in the
recent period before data collection. And all the volunteers read the relevant precautions
and signed the informed consent. According to the method in Section 2.2, we establish a
dataset, and a total of 232 groups of BS data are collected. The duration of each group of
BS data is 1 min. Among them, 117 groups of the data are marked as having the intention
to defecate, and 115 groups of the data are marked as not having the intention to defe-
cate. The data were collected from Beijing Bo’ai Hospital and South China University of
Technology during November 2020 to February 2022. Among them, the data of bedridden
elderly are all from Beijing Bo’ai Hospital, which is affiliated with the China Rehabilitation
Research Center. The volunteers here are between 40 and 75 years old, both male and



Symmetry 2022, 14, 1763 16 of 23

female, and each volunteer’s condition is somewhat different. For example, there are
those who have had a stroke, those who could not speak, those who have a broken bone,
and those who are not able to take care of themselves. In addition, in order to obtain
more experimental data and increase the generalizability of the experimental data, we
also conducted data collection at South China University of Technology. The volunteers
here are between 22 and 35 years old. Therefore, the experimental data contains data from
different age groups, different genders, and different physical conditions, which ensures
the generalizability of the experimental data. Although the size of the BS dataset is limited
by time and recruitment conditions, similar dataset sizes have been successfully used in
proof-of-concept studies in the past [28,47]. Furthermore, we also plan to collect more
BS data.

5.2. Experimental Results and Analysis

According to the method proposed in Section 3.2, multi-domain features extraction is
performed on the filtered BS data. The 63 features extracted from each sample are combined
to form a high-dimensional feature set with a size of 232 × 63, and then normalized,
and the normalized interval is [0, 1]. After normalization, FS algorithm is used to select
the candidate multi-domain features. According to the importance of different features,
the multi-domain features are reordered as follows:

FS31 > FS32 > FS8 > FS10 > FS36 > FS33 > FS48 > FS25 > FS14 > FS13 > FS50 >

FS21 > FS12 > FS44 > FS6 > FS23 > FS16 > FS53 > FS37 > FS11 > FS61 > FS40 >

FS45 > FS57 > FS19 > FS18 > FS20 > FS43 > FS47 > FS30 > FS62 > FS2 > FS17 >

FS49 > FS22 > FS27 > FS7 > FS29 > FS9 > FS35 > FS15 > FS54 > FS5 > FS3 >

FS58 > FS56 > FS55 > FS34>FS4 > FS38 > FS42 > FS51 > FS60 > FS24 > FS59 >

FS28 > FS63 > FS46 > FS39 > FS41 > FS52 > FS26 > FS1

To study the contribution of FS algorithm, Figure 11 plots the classification accuracy
of the proposed method under different feature dimensions selected by the FS algorithm. It
can be seen from the figure that when the 19-dimensional feature set is selected by the FS
algorithm, the highest classification accuracy rate is 92.86%. After continuing to increase
the feature dimension, the classification accuracy rate does not increase but decreases.
In addition, the higher the input feature dimensions, the longer the algorithm calculation
time. Therefore, this paper adopts FS algorithm for feature selection, which can also balance
the calculation efficiency and accuracy, and verifies the effectiveness of the FS algorithm.

The first 19 features with the highest scores after sorting by FS algorithm are used
as sensitive features, and a new low-dimensional feature set with a size of 232 × 19 is
constructed. Finally, the resulting low-dimensional feature set is fed into GWO-SVM
classifier, and Figure 12 plots the relative curve between the number of iterations and the
test accuracy. It can be seen from the figure that when the penalty factor c and the kernel
parameter g are optimized to 306.6857 and 0.049902, respectively, the proposed method
can achieve the best accuracy of 92.86% in predicting human defecation intention, which
verifies the effectiveness of the proposed method.

To study the influence of parameters (c, g) on the results of the proposed method,
the parameters c and g of SVM are adjusted according to the literature and some empirical
values [34,48], and the corresponding test results are shown in Table 4. As can be seen from
Table 4, using GWO algorithm to optimize the parameters (c = 306.6857 and g = 0.049902)
achieves higher accuracy than using the six combined parameters listed in Table 3, that
is to say, an inappropriate combination parameters (c, g) will reduce the classification
performance of SVM, which illustrates the necessity and effectiveness of using GWO
algorithm to optimize SVM.
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Figure 11. Classification accuracy under different feature dimensions.

Figure 12. The optimization curve of GWO algorithm.
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Table 4. Classification accuracy of SVM with different parameters.

Parameter Value Accuracy

c = 10/g = 10 87.14%
c = 10/g = 4 90.00%

c = 42.1/g = 1.24 87.14%
c = 53.2/g = 2.6 82.86%

c = 28.6/g = 0.88 90.00%
c = 100/g = 0.01 91.43%

c = 306.7/g = 0.05 92.86%

5.3. Comparison between Different Methods

In this subsection, a research comparison of different methods is carried out to verify
the effectiveness and superiority of the proposed method. In this comparison, the proposed
method is compared with methods in similar studies. These methods are KNN, NB, SVM,
and LR. KNN is used by Saini et al. [14] to identify arrhythmia ECG signals, and it can
ensure the simplicity and effectiveness of information in the classification process. NB is
used by Ulusar [25] to evaluate the recovery of intestinal function of patients after surgery,
and has a high accuracy rate. SVM is one of the classic machine learning methods with
excellent generalization ability, and Yin et al. [27] used this model when recognizing BS. LR
is the model used by Du et al. [28] to verify the feasibility of BS signals in the diagnosis of
irritable bowel syndrome.

We take the extracted 16 time domain features, 13 frequency domain features, 34 time-
frequency domain features, and 19 multi-domain features selected by FS algorithm as four
different feature sets. The different input features are then combined with five classifiers
(GWO-SVM, SVM, NB, KNN and LR). Table 5 shows the classification accuracy of different
classifiers with different domain features. Table 6 shows the classification accuracy of
different classifiers with different domain feature combinations. As can be seen from
Tables 5 and 6, the method proposed in this paper (combination of multi-domain features
and GWO-SVM) has the highest testing accuracy (92.86%) of all the combinations, which
proves the superiority of the proposed method. It can also be seen in Tables 5 and 6
that combining GWO-SVM classifier with different types of features achieve an average
test accuracy of 85.71% and 90.36%, respectively, which is higher than other classifiers.
The effectiveness and superiority of GWO-SVM classifier is proved. In addition, we can also
see in Table 5 and 6 that the combination of multi-domain features and different classifiers
can achieve a higher average test accuracy (86.57%) than other input features. This shows
that the extraction of multi-domain features can improve the classification accuracy, that is,
multi-domain features have obvious advantages in classification. Further, we can see that
the average test accuracy of the other input features in Table 6 is higher than that of the other
input features in Table 5. This can be explained by the fact that richer feature information
can be obtained with additional domain features extracted, which is helpful to obtain
features sensitive to classification. Finally, we can also see from Table 6 that the average
test accuracy decreases after removing any single-domain features from multi-domain
features. This shows that the features of each domain are meaningful in multi-domain
feature extraction. Further, we can see that the feature combination of time and frequency
domains achieved an average test accuracy of 82.00%, which is lower than the combination
of frequency and time-frequency domains (82.29%), and also lower than the combination of
time and time-frequency domains (83.71%). This shows that among multi-domain features,
time-frequency domain features provide more classification-sensitive information, which
indicates the effectiveness of using wavelet packet transform to extract time-frequency
features. This result is also consistent with the ranking result of the importance of different
features by the FS algorithm in Section 5.2. Among the 19 sensitive features selected by us,
there are 10 features in time-frequency domain, which are more than those in time domain
(six features) and frequency domain (four features).
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Table 5. Classification accuracy of different classifiers with different domain features.

Different
Classifiers

The Testing Accuracy Obtained Using
Classification Method with Different Features (%) Average

Accuracy (%)Multi-Domain
Features

Time Domain
Features

Frequency
Domain Features

Time-Frequency
Domain Features

GWO-SVM 92.86% 82.86% 81.43% 85.71% 85.72%
SVM 87.14% 75.71% 72.86% 80.00% 78.93%
NB 82.86% 72.86% 68.57% 75.71% 75.00%

KNN 84.28% 71.43% 70.00% 72.86% 74.64%
LR 85.71% 72.86% 74.29% 78.57% 77.86%

Average
accuracy (%) 86.57% 75.14% 73.43% 78.57% —

Table 6. Classification accuracy of different classifiers with different domain feature combinations.

Different
Classifiers

The Testing Accuracy Obtained Using
Classification Method with Different Features Combinations (%)

Average
Accuracy (%)Multi-Domain

Features
Time and Frequency

Domain Features

Time and
Time-Frequency
Domain Features

Frequency and
Time-Frequency
Domain Features

GWO-SVM 92.86% 91.43% 87.14% 90.00% 90.36%
SVM 87.14% 88.57% 85.71% 82.86% 86.07%
NB 82.86% 75.71% 80.00% 81.43% 80.00%

KNN 84.28% 77.14% 81.42% 74.29% 79.28%
LR 85.71% 77.14% 84.28% 82.86% 82.50%

Average
accuracy(%) 86.57% 82.00% 83.71% 82.29% —

To demonstrate the generality of the experimental results, we input the multi-domain
features into different classifiers for five different tests, and the results are shown in
Figure 13. As can be seen from the figure, GWO-SVM used in this paper has higher
classification accuracy than other classifiers (SVM, NB, KNN and LR) in five tests, which
verifies the generalization and superiority of the proposed method. There are several
reasons for this phenomenon. On the one hand, compared with standard SVM, GWO-SVM
optimizes the parameters c and g, so the classification ability is better. On the other hand,
compared with other classifiers, SVM can make more reliable decisions on a small number
of data samples and has stronger generalization ability. It should be noted that the parame-
ters of other comparison classifiers such as SVM, KNN, NB, and LR are chosen empirically,
which may lead to a decrease in accuracy.

During the above experiment, we divided all data into training set and test set in a ratio
of 7:3. Only the data in the training set is used for model training. After the model training
is completed, the model is tested and verified on an unseen test set. Therefore, the obtained
results are generalizable and can be applied to general situations. And compared with
other methods, the accuracy of the proposed method reaches 92.86%, which is better than
other methods.Therefore, we can conclude that the method proposed in this paper is more
effective than traditional classification models. Since there is no related method proposed in
the field of defecation prediction, this paper does not compare with other existing methods.
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Figure 13. Five test results of using multi-domain features for different classifiers.

6. Conclusions, Limitations, and Future Research

This paper proposes a new defecation prediction method based on multi-domain fea-
tures and GWO-SVM, so that nursing staff can know the defecation needs of the bedridden
elderly in advance, better provide defecation care, reduce the dirty, messy, and smelly
phenomenon in the defecation nursing process, and relieve the pain of the bedridden
elderly in their later years.

To improve the quality of life of the bedridden elderly in their later years, a human
defecation prediction method based on multi-domain features and GWO-SVM is proposed,
so that nursing staff could know the defecation needs of the bedridden elderly in advance
and provide better defecation care. In this method, the BS is used as the original signal,
and three methods of statistical analysis, FFT and wavelet packet transform are applied to
the filtered BS to extract the time domain, frequency domain and time-frequency domain
features for building a high-dimensional feature set. In addition, feature selection is per-
formed on high-dimensional feature sets, and FS algorithm is used to select meaningful and
sensitive features according to the importance of each feature which can remove redundant
information and construct low-dimensional feature sets. In this paper, the detailed process
of defecation intention prediction based on GWO-SVM is designed, and the actual BS
signals collected during the study are used as experimental data for experimental anal-
ysis, which verified the defecation intention prediction method proposed in this paper.
The result shows that the proposed method can achieve a defecation prediction accuracy
of 92.86%. Compared with the traditional classification method, the proposed method
achieves better recognition results, and has more stable performance and higher reliability.

The innovations and contributions of this paper mainly include:

(1) The possibility of defecation prediction based on BS signals is proposed, and the cor-
relation between BS signals and defecation intention is verified through experiments,
which provide a new idea of defecation prediction;

(2) A BS monitoring system is established, and data were collected in Beijing Bo’ai
Hospital affiliated to the China Rehabilitation Research Center, and a BS dataset for
defecation prediction is established;
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(3) Based on multi-domain features and GMO-SVM, we propose a new, cost-effective,
and non-invasive method for human defecation prediction, which is an innovative
application of machine learning in the field of healthcare.

Although the study in this paper has achieved good classification results, there are
some aspects that need to be improved. On the one hand, the number of volunteers and
the sample size are not sufficient, while more and higher quality data are necessary for
future research. On the other hand, due to the noise in the data collection process, a further
research of the noise reduction algorithm is needed.

To solve the above problems, the next research can start with the acquisition of more
available BS data and data augmentation. At the same time, optimizing the noise reduction
algorithm for the BS signals is also needed. Currently, research based on data augmentation
is a popular direction.
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