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1. Introduction

In 1969, R.L. Bishop et al. [1] defined the notion of warped product manifolds, by genera-
lizing the Riemannian product manifolds, in order to study manifolds of negative sectional
curvature. Since then, it has remained a topic of research due to its usefulness and links
to other fields, especially physics. Many research articles have been published in this
area [2–8].

In differential geometry, one of the fundamental problems is the immersibility of a
Riemannian manifold in a space form. According to the very famous Nash’s embedding the-
orem, every Riemannian manifold can be isometrically immersed in some Euclidean spaces
with sufficiently high codimensions. Starting from this theorem, B.-Y. Chen discovered a
method to study intrinsic and extrinsic invariants of a submanifold and provided many
applications. For example, for isometric warped product immersion ϕ : M1× f M2 → M(c)
into a Riemannian space form, the following inequality holds ([2]):

∆ f
f
≤ (n1 + n2)

2

4n2
‖H‖2 + n1c, (1)

where ni = dim Mi, i = 1, 2, ‖H‖2 is the squared mean curvature of the immersion ϕ, and
∆ is the Laplace operator of M1. In the same paper [2], the author discussed the equality
case of this inequality.

Motivated by the inequality (1), many researchers proved corresponding inequalities
for different classes of submanifolds in various space forms. In these papers, the space
forms are endowed with the Levi–Civita connection, which is torsion-free.

An important class of connections with non-vanishing torsion are the semi-symmetric
connections. They have many applications in affine differential geometry, information
geometry, etc.
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In the present paper, we consider complex space forms endowed with semi-symmetric
metric connections. We extend the above-mentioned result of Chen and prove a geometric
inequality for warped product pointwise semi-slant submanifolds M = M1 × f M2 in a
complex space form M(c) endowed with a semi-symmetric metric connection. We also
discuss the equality case and provide several applications in the compact case and the
minimal case, respectively.

2. Preliminaries

Let (M, J, g) be an almost Hermitian manifold, where J is an almost complex structure
and g a Hermitian metric. Then, M is a Kaehler manifold if (∇X J)Y = 0, for all X, Y ∈ TM,
where ∇ is the Levi–Civita connection of the Riemannian metric g.

A complex space form M(c) is a Kaehler manifold of constant holomorphic sectional
curvature c; its Riemannian curvature tensor R is given by

R(X, Y)Z =
c
4
{g(Y, Z)X− g(X, Z)Y}

+ g(X, JZ)JY− g(Y, JZ)JX + 2g(X, JY)JZ}, (2)

for all X, Y, Z ∈ TM.
Let M be an almost Hermitian manifold and M a submanifold of M with induced

metric g. Let ∇ be the Levi–Civita connection on the tangent bundle TM and ∇⊥ the
connection on the normal bundle T⊥M of M. Then, the Gauss and Weingarten formulae are

∇XY = ∇XY + h(X, Y),

∇X N = −AN X +∇⊥X N,

where X, Y ∈ TM, N ∈ T⊥M and h, AN are the second fundamental form and the shape
operator, respectively.

The relationship between the shape operator and the second fundamental form is

g(h(X, Y), N) = g(AN X, Y),

for vector fields X, Y ∈ TM and N ∈ T⊥M.
Let R and R be the Riemannian curvature tensors of M and M, respectively. We use

the notation R(X, Y, Z, W) = g(R(X, Y)Z, W), for any X, Y, Z, W ∈ TM. Then, the Gauss
equation is given by

R(X, Y, Z, W) = R(X, Y, Z, W)

+ g(h(X, Z), h(Y, W))− g(h(X, W), h(Y, Z)), (3)

for any X, Y, Z, W ∈ TM.
The notion of a semi-symmetric linear connection was introduced by Friedmann and

Schouten [9]. Let (M, g) be a Riemannian manifold with a Riemannian metric g. A linear
connection ∇̃ on M is called a semi-symmetric connection if its torsion tensor T

T(X, Y) = ∇̃XY− ∇̃YX− [X, Y]

satisfies
T(X, Y) = ω(Y)X−ω(X)Y,

for any vector fields X, Y on M, where ω is a 1-form. Denote by P its dual vector field, i.e.,
ω(X) = g(X, P). If a semi-symmetric connection satisfies

∇̃g = 0,

then it is said to be a semi-symmetric metric connection ∇̃.
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Further, with respect to a semi-symmetric metric connection ∇̃ on M, the curvature
tensor R̃ is given by

R̃(X, Y, Z, W) = R(X, Y, Z, W)− α(Y, Z)g(X, W)

+ α(X, Z)g(Y, W)− α(X, W)g(Y, W) + α(Y, W)g(X, Z), (4)

for any X, Y, Z, W ∈ TM, where α is the (0, 2)-tensor field defined by

α(X, Y) = (∇Xω)Y−ω(X)ω(Y) +
1
2

ω(P)g(X, Y), (5)

for all X, Y ∈ TM.
Let M be an n-dimensional submanifold of a complex space form M(c) of complex

dimension m. Then, we decompose

JX = TX + FX,

where TX and FX are the tangential and normal components of JX, respectively, for any
X ∈ TM.

The submanifold is called anti-invariant if T = 0.
The submanifold is called invariant if F = 0.
Let {e1, · · · , en} be an orthonormal basis of Tp M, p ∈ M. One is denoted by

‖T‖2 =
n

∑
i,j=1

g2(Jei, ej). (6)

Let p ∈ M and π ⊂ Tp M be a plane section.
If {e1, . . . , en} is an orthonormal basis of Tp M and {en+1, . . . , e2m} an orthonormal

basis of T⊥p M, then the sectional curvature K(π) is defined by K(π) = g(R(X, Y)X, Y),
where X, Y ∈ π are orthonormal, and the scalar curvature τ at p by

τ(p) = ∑
1≤i<j≤n

K(ei ∧ ej). (7)

The mean curvature vector field H of M is

H =
1
n

n

∑
i=1

h(ei, ei).

A submanifold is minimal if the mean curvature vector H vanishes identically, that is,
H = 0.

We recall the definition of pointwise slant submanifolds.

Definition 1 ([10]). Let M be an almost Hermitian manifold. Then a submanifold M of M is
called a pointwise slant submanifold if for each point p ∈ M and any non-zero vector X ∈ Tp M the
angle θ(X) between JX and Tp M is independent of the choice of X.

In [10], Chen and Garay obtained a necessary and sufficient condition for a submani-
fold to be a pointwise slant submanifold. They proved that a submanifold M of an almost
Hermitian manifold M̃ is pointwise slant if and only if

T2 = −(cos2 θ)I, (8)

for a real-valued function θ defined on M, where I is the identity transformation of the
tangent bundle TM of M.



Symmetry 2022, 14, 1747 4 of 8

On the other hand, Chen and the forth author generalized the above concept and
defined pointwise semi-slant submanifolds as follows [6].

Definition 2. Let M be an almost Hermitian manifold. Then a submanifold M of M is called a
pointwise semi-slant submanifold if a pair of orthogonal distributions D1 and D2
exist such that

(i) TM admits the orthogonal direct decomposition TM = D1 ⊕D2;
(ii) D1 is invariant;
(iii) D2 is pointwise slant with a slant function θ.

The submanifold M is called a proper pointwise semi-slant submanifold if both
distributions are non-trivial. Denote their dimensions by 2d1 and 2d2.

Let M be a proper pointwise semi-slant submanifold of a complex space form M(c).
We set the following

e1, e2 = Te1, · · · , e2d1−1, e2d1 = Te2d1−1,

e2d1+1, e2d1+2 = sec θTe2d1+1, · · · , e2d1+2d2−1, e2d1+2d2 = sec θTed1−1.

Then, we obtain

g2(Jei, ei+1) =

{
1, ∀ i = 1, 3, · · · , 2d1 − 1,
cos2 θ, ∀ i = 2d1 + 1, · · · , 2d1 + 2d2 − 1.

Hence, we have

‖T‖2 =
n

∑
i,j=1

g2(Jei, ej) = n1 + n2 cos2 θ, (9)

where n1 = 2d1 and n2 = 2d2.
Further, we state an algebraic lemma due to Chen.

Lemma 1 ([11]). Let n ≥ 2 and a1, · · · , an, b real numbers such that(
n

∑
i=1

ai

)2

= (n− 1)

(
n

∑
i=1

a2
i + b

)
.

Then 2a1a2 ≥ b and the equality holds if and only if

a1 + a2 = a3 = · · · = an.

Finally, we conclude this section with the following relation between sectional curva-
ture and the Laplacian of the warping function for warped products. Let {e1, e2, . . . , en,
en+1, . . . , e2m} be a local orthonormal frame such that e1, e2, . . . , en1 are tangent to M1,
en1+1, . . . , en are tangent to M2 and en+1 is parallel to the mean curvature vector H. Then,

∑
1≤i≤n1

∑
n1+1≤j≤n

K(ei ∧ ej) = n2
∆ f
f

= n2

(
‖∇(ln f )‖2 − ∆(ln f )

)
, (10)

where ∇(ln f ) is the gradient vector on M1.

3. An Inequality for Warped Product Pointwise Semi-Slant Submanifolds

The following theorem is the main result of this article; it gives an estimate of the
squared mean curvature in terms of the warping function.
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Theorem 1. Let M(c) be a complex space form endowed with a semi-symmetric metric connection
∇̃ and M = M1 × f M2 a warped product pointwise semi-slant submanifold of M(c). Then
we have

n2
∆ f
f
≤ (n1 + n2)

2

4
‖H‖2 +

c
4

n1n2 + v− 3c
8
(
n1 + n2 cos2 θ

)
, (11)

where v denotes the trace of α, θ is the slant function on M2 and dim Mi = ni, i = 1, 2.
The equality case holds if and only if M is a mixed totally geodesic submanifold and n1H1 = n2H2,

where H1 and H2 are the partial mean curvature vectors corresponding to M1 and
M2, respectively.

Proof. From (2)–(4) we have

R(X, Y,Z, W) + g(h(X, Z), h(Y, W))− g(h(X, W), h(Y, Z))

=
c
4
{g(Y, Z)g(X, W)− g(X, Z)g(Y, W)}

+
c
4
{g(X, JZ)g(JY, W)− g(Y, JZ)g(JX, W) + 2g(X, JY)g(JZ, W)}

− α(Y, Z)g(X, W) + α(X, Z)g(Y, W)− α(X, W)g(Y, W) + α(Y, W)g(X, Z). (12)

We consider the orthonormal frame defined in the previous section. For X = W = ei,
Y = Z = ej, i, j = 1, ..., n, summing after 1 ≤ i, j ≤ n, one obtains

2τ =
c
4

n
(
n− 1

)
− ‖h‖2

+
c
4
(
3n1 + 3n2 cos2 θ

)
+ 2(n− 1)v + n2‖H‖2. (13)

We denote

δ = 2τ − c
4

n
(
n− 1

)
− c

4
(
3n1 + 3n2 cos2 θ

)
− 2(n− 1)v− n2

2
‖H‖2. (14)

Then, from (13) and (14) we derive that

n2‖H‖2 = 2(δ + ‖h‖2), (15)

which can be written as( n

∑
i=1

hn+1
ii

)2
= 2

{
δ +

n

∑
i=1

(hn+1
ii )2 + ∑

i 6=j
(hn+1

ij )2 +
2m

∑
r=n+2

n

∑
i,j=1

(hr
ij)

2
}

, (16)

where hr
ij = g(h(ei, ej), er), i, j = 1, ..., n; r = n + 1, ..., 2m.

If we put a1 = hn+1
11 , a2 = ∑n1

i=2 hn+1
ii and a3 = ∑n

t=n1+1 hn+1
tt , the above equation is

reduced to ( 3

∑
i=1

ai

)2
= 2

{
δ +

3

∑
i=1

a2
i + ∑

1≤i 6=j≤n
(hn+1

ij )2 +
2m

∑
r=n+2

n

∑
i,j=1

(hr
ij)

2

− ∑
2≤j 6=k≤n1

hn+1
jj hn+1

kk − ∑
n1+1≤s 6=t≤n

hn+1
ss hn+1

tt

}
. (17)



Symmetry 2022, 14, 1747 6 of 8

It follows that a1, a2, a3 satisfy Lemma 1 for n = 3; then, 2a1a2 ≥ b, with equality
holding if and only if a1 + a2 = a3. This means

∑
1≤j<k≤n1

hn+1
jj hn+1

kk + ∑
n1+1≤s<t≤n

hn+1
ss hn+1

tt

≥ δ

2
+ ∑

1≤α<β≤n
(hn+1

αβ )2 +
1
2

2m

∑
r=n+2

n

∑
α,β=1

(hr
αβ)

2. (18)

We have the equality if and only if

n1

∑
i=1

hn+1
ii =

n

∑
t=n1+1

hn+1
tt . (19)

From the Gauss equation we obtain

n2
∆ f
f

= τ − ∑
1≤j<k≤n1

K(ej ∧ ek)− ∑
n1+1≤s<t≤n

K(es ∧ et). (20)

Combining (10), (18) and (20), we derive

n2
∆ f
f

= τ − c
8

n1
(
n1 − 1

)
− 3c

4
n1 − (n1 − 1)v

−
2m

∑
r=n+1

∑
1≤j<k≤n1

(
hr

jjh
r
kk − (hr

jk)
2)

− c
8

n2
(
n2 − 1

)
− 3c

4
n2 cos2 θ − (n2 − 1)v

−
2m

∑
r=n+1

∑
n1+1≤s<t≤n

(
hr

sshr
tt − (hr

st)
2). (21)

Taking into account (18) and (21), we find

n2
∆ f
f
≤ τ − c

8
n
(
n− 1

)
+

c
4

n1n2

− (n− 2)v− 3c
4

(
n1 + n2 cos2 θ

)
− δ

2
. (22)

Using (14) in the previous inequality, we derive

n2
∆ f
f
≤ n2

4
‖H‖2 +

c
4

n1n2 + v− 3c
8

(
n1 + n2 cos2 θ

)
, (23)

which represents the inequality to prove.
For the equality case, from (19) it follows that n1H1 = n2H2.
Moreover, from (18) we obtain

hr
αβ = 0, ∀ 1 ≤α ≤ n1, n1 + 1 ≤ β ≤ n, n + 1 ≤ r ≤ 2m, (24)

i.e., M is a mixed totally geodesic submanifold.
The converse is trivial, and the proof is achieved.

In the following subsections, we derive certain consequences of Theorem 1.
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3.1. The Compact Case

It is well-known that if M is a compact oriented Riemannian manifold without bound-
ary, one has ∫

M
∆ f dV = 0, (25)

where f is a smooth function on M and dV denotes the volume element of M.

As a consequence of Theorem 1, we prove the following result.

Theorem 2. Let M = M1 × f M2 be a compact oriented warped product pointwise semi-slant
submanifold in a complex space form M(c) endowed with a semi-symmetric metric connection.
Then M is a Riemannian product if and only if

‖H‖2 ≥ 3c

2(n1 + n2)
2

(
n1 + n2 cos2 θ

)
− n1n2

(n1 + n2)
2 c− 4v

(n1 + n2)
2 . (26)

Proof. By using (10), the inequality (11) reduces to

n2(∆(ln f )− ‖∇(ln f )‖2)

≤ n2

4
‖H‖2 +

c
4

n1n2 + v− 3c
8

(
n1 + n2 cos2 θ

)
. (27)

Let assume that M is a Riemannian product, i.e., f is constant on M. Then, we
obtain (26).

Conversely, suppose that the inequality (26) holds; then, integrating (27) and using
(25), we obtain

0 ≤
∫

M
(n2‖∇(ln f )‖2)dV ≤ 0,

from where ∇(ln f ) = 0, which implies that f is a constant function on M.

3.2. The Minimal Case

In this subsection, we obtain obstructions to the minimality of warped product point-
wise semi-slant submanifolds in a complex space form endowed with a semi-symmetric
metric connection.

An immediate consequence of Theorem 1 is the following:

Theorem 3. Let M = M1 × f M2 be a warped product pointwise semi-slant submanifold in a
complex space form M(c) endowed with a semi-symmetric metric connection. If there exists a point
p ∈ M such that

n2
∆ f
f

>
c
4

n1n2 + v− 3c
8

(
n1 + n2 cos2 θ

)
,

at p, then M cannot be minimal.

As with special cases of Theorem 3, we state the following corollaries.

Corollary 1. There does not exist any minimal warped product pointwise semi-slant subman-
ifold M = M1 × f M2 in a complex space form M(c) endowed with a semi-symmetric metric
connection if

n2
∆ f
f

>
c
4

n1n2 + v− 3c
8

(
n1 + n2 cos2 θ

)
.
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Corollary 2. Let M = MT × f M⊥ be a warped product CR-submanifold of a complex space form
M(c) endowed with a semi-symmetric metric connection, where MT and M⊥ are holomorphic and
totally real submanifolds of M, respectively. If the following inequality

n2
∆ f
f

>
c
4

n1n2 + v− 3cn1

8

holds at a point p ∈ M, then M cannot be a minimal submanifold.

Also from Theorem 2, we obtain

Corollary 3. Let M = M1 × f M2 be a compact oriented warped product pointwise semi-slant
submanifold in a complex space form M(c) endowed with a semi-symmetric metric connection. If

c <
3
(
n1 + n2 cos2 θ

)
n1n2

− (n1 + n2)
2

n1n2
v,

then M cannot be a minimal submanifold of M.

4. Conclusions

By using the above methods, one can obtain corresponding inequalities for other
classes of warped product submanifolds in complex space forms endowed with semi-
symmetric connections.
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