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Abstract: Load forecasting is a procedure of fundamental importance in power systems operation
and planning. Many entities can benefit from accurate load forecasting such as generation companies,
systems operators, retailers, prosumers, and others. A variety of models have been proposed so far
in the literature. Among them, artificial neural networks are a favorable approach mainly due to
their potential for capturing the relationship between load and other parameters. The forecasting
performance highly depends on the number and types of inputs. The present paper presents
a particle swarm optimization (PSO) two-step method for increasing the performance of short-
term load forecasting (STLF). During the first step, PSO is applied to derive the optimal types of
inputs for a neural network. Next, PSO is applied again so that the available training data is split
into homogeneous clusters. For each cluster, a different neural network is utilized. Experimental
results verify the robustness of the proposed approach in a bus load forecasting problem. Also, the
proposed algorithm is checked on a load profiling problem where it outperforms the most common
algorithms of the load profiling-related literature. During input selection, the weights update is held
in asymmetrical duration. The weights of the training phase require more time compared with the
test phase.

Keywords: clustering; load forecasting; metaheuristics; neural networks; particle swarm optimization

1. Introduction

Load forecasting forms the pillar that power systems operation and planning rely
on [1]. In day-ahead markets, the system operator provides the official forecasts so that the
generation companies will prepare the energy/price bids for the wholesale markets [2]. In
the long-term horizon, demand forecasting is vital for generation capacity expansion sce-
narios in the energy sector [3,4]. Also, in competitive energy markets demand forecasting
is vital for aggregators, retailers, and prosumers [5–7]. The importance of load forecasting
is reflected in the large number of research studies, pilot programs, and relevant applica-
tions [8]. In general terms, forecasting models can be classified into time series models,
computational intelligence-based models, and hybrid ones [9]. In time series models, the
structure of the model, i.e., a number of time lags, auto-regressive components and other
parameters should be known in advance. A special effort should be made to derive the
model’s structure by utilizing a set of statistical tests. Time series models include ARMA,
ARIMA, GARCH, and others. Historically, they were the first to have been proposed in
the literature [10–12]. On the other hand, in computational intelligence-based models like
neural networks, support vector machines, and others, there are no requirements for an a
priori definition of the structure [13–15]. The latter is derived from the training procedure.
Hybrid models usually refer to the advancement of the previous categories, where a time
series and computational-based model are combined, or a time series processing technique
or other method is applied prior to the application of the main forecaster [16–18].
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In the literature, there is no single model that outperforms all the rest. Therefore, in
order to provide more credible conclusions, a comparison of models takes place. However,
the superiority of hybrid models is reported by many researchers. In most cases, the fore-
caster is a feedforward neural network (FFNN). In the present research landscape, FFNNs
have become the most popular model for STLF due to their high prediction efficiency and
speed [19]. Also, FFNNs are available in many software packages, a fact that provides the
means for further experimentations with different FFNN structures and combinations. The
FFNN provides a mapping of the inputs and outputs patterns. The term pattern refers to
a vector that is composed of previous load values, external parameters, and the desired
load output. The training phase of the FFNN requires many patterns for better machine
learning. The mapping of inputs and outputs refers to the mathematical function that
describes the data of the scientific problem, whether a classification or regression task. In
forecasting problems, the function is nonlinear, i.e., the load is connected in a nonlinear
manner with its historical values and external parameters such as outdoor temperature.
FFNNs have gathered the attention of researchers in recent years due to their potential
for the simulation of complex mathematical functions [20]. However, in neural network
applications, special attention should be centered on the robust selection of the types and
number of inputs. Historical load data are always a candidate input. The influence of tem-
perature and other parameters should be carefully examined. Input selection can be made
based on expertise, literature, survey, trial and error, or a combination of these. A large
number of inputs is not preferred since it can lead to high training time and consequently,
increased requirements for computational resources. On the other hand, a low number may
result in insufficient training and poor performance [21]. In the literature, some studies
focus on input selection. According to [22] the input or feature selection techniques can
be categorized into stepwise, filter, correlation, mutual information, and optimization
algorithms. In [23] the selection is held with the mutual information criterion. The test
cases include the loads of the Australian Energy Market Commission, Pennsylvania-New
Jersey-Maryland, and North American electric utilities. With the feature selection method,
the prediction accuracy improves and outperforms the single application of radial basis
network, multi-layer perceptron, ARIMA, and others. In [24] the authors present a hybrid
ant colony optimization and genetic algorithm selection method. The candidate inputs
include the maximum and minimum temperature, day’s rainfall, maximum and minimum
humidity, indicators about the month, season, week, weekend, and holiday, and historical
loads. The test set refers to a period of 300 days and the area under study is Tehran, Iran.
In [25] the analysis focuses on loads of a North American utility. The test case involves
several months, i.e., January, April, July, and October. The PSO is employed for input
selection; the candidate inputs refer to historical loads, temperatures, and seasonal, daily,
and hourly indicators. An approach to building hybrid models is to combine a clustering
algorithm and a neural network or other supervised machine learning algorithm. By using
a training set that includes a complete annual load time series, the FFNN is trained with a
variety of load shapes and load magnitudes, i.e., working days, weekends, holidays, and
other loads of special interest. By splitting the training set into sets that include more similar
load patterns, the FFNN is trained with patterns of highest correlation and can more easily
recognize future demand patterns, i.e., test set patterns. The peak load forecasting problem
is the objective of [26]. Clustering is held with the simulated annealing algorithm and
the forecasting is held with an FFNN. The patterns for clustering are vectors that include
three elements, i.e., the peak load of the current day, the temperature of the test day and
the difference in temperatures between the current and the test days. The FFNN includes
three additional inputs, i.e., the minimum humidity value of the current day, the forecasted
mean temperature, and the forecasted indicator of comfort living. The authors highlight the
importance of the utilization of a low number of clusters. In [27] the authors study hourly
load forecasting. The paper proposes the use of a neural gas network for clustering and an
Elman neural network for the predictions. The inputs for clustering are the hourly loads of
the day prior to the test day. Through the self-organizing map (SOM) the yearly load of
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Korea in 1995 is clustered in [28]. For each cluster, an auto-regressive model is applied with
the mean three-hour temperature, and its square is used as dependent variables. In [29]
the combination involves SOM and a radial basis neural network for peak load forecasting
of a utility in Japan. The training set is composed of the peak loads of July to September
of years 1991–2000, whereas the test set refers to the same period of 2003. In [30] Fuzzy
C-means (FCM) is applied in vectors where their elements include temperature values and
day-type indicators. A neural network trained by the Levenberg–Marquardt is employed
for the peak load forecasting of 2002 of a region in China. The same problem is investigated
in [31] but the clustering algorithm is the unweighted pair group method with arithmetic
mean (UPGMA). In [32], K-means is combined with a support-vector machine (SVM). The
patterns include the load of the current day, the minimum and maximum temperatures of
the current and test days, and a four-digit number for categorizing the days into weekday,
holiday, Saturday, and Sunday. After clustering, the patterns that are selected for the SVM
are the ones that are calendrically closest to the test day. The test set includes the loads
of Shanghai, China in the year 2004, whereas the training test includes the loads of the
period 2001–2003. In [33] the SOM clusters the training set and for each cluster there are 24
SVMs, and one is utilized for each hour. The patterns used for clustering include hourly
loads, temperature and humidity values, mean wind speed, and day-type indicator; the
patterns used for forecasting include only load and temperature values. The methodology
is applied for two months, namely January and July of 2004. The same model is applied
in [34]. Here the test refers to peak loads. In [35], the FCM is combined with SVM for the
load forecasting of a city in China.

According to the literature survey, all the papers focus on an hourly load of regions or
an aggregated system load. The present paper deals with the presentation of a novel hybrid
model for day-ahead bus load forecasting. The bus is located in the city of Thessaloniki,
Greece, and serves a mix of residential, commercial, and industrial consumers. Due to the
rapid advancements of smart grids and microgrids, there is a need to develop accurate
forecasting models for small loads. Bus loads exhibit more volatilities and stochasticities
compared with aggregated system loads [36]. Thus, special attention should be placed to
develop models that can capture and simulate the volatilities. The candidate input data
set of the model considers the inputs of the FFNN that have been proposed for the Greek
interconnected system [37]. Employing a binary coded PSO, a variable selection phase is
manifested to select the most appropriate inputs from the initial set. Then, a real coded PSO
is combined with the k-medoids to cluster the training set into smaller training sets. For
each subset, a dedicated FFNN is employed. The input selection scheme is formulated as
an optimization problem, where the objective function refers to the squared error between
the desired output and the FFNN’s output. The decision variables are the weights that
connect the neurons of the hidden and output layers. The objective function includes two
terms, i.e., the errors during the training and test phases. The number of desired inputs is
set in advance; the optimization aims at the selection of the specific types. This fact leads
to increased flexibility; based on the available execution time and other characteristics of
the forecasting problem under study, the user can set the desired number of inputs and the
algorithm optimally selects from a pool of available ones, the inputs that minimize the error.

2. Methodology
2.1. General Description and Inputs

The case study refers to a mix of residential, commercial, and industrial consumers
supplied by a high (i.e., 150 kV) to medium (i.e., 20 kV) distribution transformer located
within the city of Thessaloniki, Greece. The available load data refer to the period 1 January
2006–31 December 2010. Among them, almost 80% were used as the training set and the
remaining 20% served as the test set. More specifically, the training set covers the period
from 7 January 2006 to 31 December 2009 and the test set the period between 7 January 2010
to 31 December 2010. Figure 1 shows the time series of the data set. In order to examine a
realistic test case, the inputs used by the neural network that provides the official forecasts
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of the Greek interconnected system were taken into account. The inputs were distinguished
into historical loads, temperature, and day-type coding. The load data were provided by
the Hellenic Independent Power Transmission Operator S.A. and the temperature data by
the Hellenic National Meteorological Service [38,39].
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Figure 1. Load time series of the bus under study.

The first task was to examine the short-term periodicity of the load. The scope was to
select the most correlated lagged load values. Let L(h, d) be the load of the current hour h
of day d. Utilizing the Pearson correlation index [40], the relationship between the current
load value with its previous values up to 9 days in the past, i.e., h-216, were drawn. The
corresponding curve is presented in Figure 2.

Symmetry 2022, 14, x FOR PEER REVIEW 4 of 19 
 

 

period from 7 January 2006 to 31 December 2009 and the test set the period between 7 

January 2010 to 31 December 2010. Figure 1 shows the time series of the data set. In order 

to examine a realistic test case, the inputs used by the neural network that provides the 

official forecasts of the Greek interconnected system were taken into account. The inputs 

were distinguished into historical loads, temperature, and day-type coding. The load data 

were provided by the Hellenic Independent Power Transmission Operator S.A. and the 

temperature data by the Hellenic National Meteorological Service [38,39]. 

 

Figure 1. Load time series of the bus under study. 

The first task was to examine the short-term periodicity of the load. The scope was to 

select the most correlated lagged load values. Let �(ℎ, �) be the load of the current hour 

ℎ of day �. Utilizing the Pearson correlation index [40], the relationship between the cur-

rent load value with its previous values up to 9 days in the past, i.e., ℎ-216, were drawn. 

The corresponding curve is presented in Figure 2. 

 

Figure 2. Correlation coefficient curve. 

It can be noticed that the current hour load shows a high correlation with load values 

of the hours ℎ-24 and ℎ-168. Outdoor temperature was the most influential external var-

iable of the demand. The inputs related to temperature contain statistical values (i.e., max-

imum and minimum) and temperature indices. The scope was to capture the chronologi-

cal temperature variation; load variation was analogous to the temperature one. Also, 

day-type identification coding was needed to train the neural network to capture the dif-

ference in the load variation between working days, weekends, and holidays. The hot en-

coder was used for the types of days (i.e., Monday–Sunday). The seasonal effect was mod-

eled through a pair of values obtained by periodic functions, i.e., sine and cosine. 

Lastly, the holidays are denoted as “1” and the non-holidays as “0” to the neural 

network. Let �, � − 1 and � − 7 be the indicators that refer to the target day the day prior 

to it and the day one week before, respectively. The inputs of the FFNN are: 

Figure 2. Correlation coefficient curve.

It can be noticed that the current hour load shows a high correlation with load values
of the hours h-24 and h-168. Outdoor temperature was the most influential external variable
of the demand. The inputs related to temperature contain statistical values (i.e., maximum
and minimum) and temperature indices. The scope was to capture the chronological
temperature variation; load variation was analogous to the temperature one. Also, day-
type identification coding was needed to train the neural network to capture the difference
in the load variation between working days, weekends, and holidays. The hot encoder
was used for the types of days (i.e., Monday–Sunday). The seasonal effect was modeled
through a pair of values obtained by periodic functions, i.e., sine and cosine.
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Lastly, the holidays are denoted as “1” and the non-holidays as “0” to the neural
network. Let d, d− 1 and d− 7 be the indicators that refer to the target day the day prior
to it and the day one week before, respectively. The inputs of the FFNN are:

1. Inputs 1–24: hourly load of the day d− 1, L(h, d− 1).
2. Inputs 25–48: hourly load of the day d− 7, L(h, d− 7).
3. Inputs 49–50: maximum and minimum daily forecasted temperature of day d, Tmax(d)

and Tmin(d).
4. Inputs 51–52: maximum and minimum daily temperature of day d− 1, Tmax(d− 1)

and Tmin(d− 1).
5. Input 53: the square value of the deviation of daily minimum and maximum tempera-

ture from the region of the cooling and heating threshold temperatures, CT(d):

CT(d) =


(Tmax(d)− Tc,min)

2, i f Tmax(d) < Tc,min
0, i f Tc,min ≤ Tmax(d) ≤ Tc,max

(Tmax(d)− Tc,max)
2, i f Tmax(d) > Tc,max

 (1)

where Tc,min = 17
◦
C and Tc,min = 25

◦
C are the cooling and heating threshold

temperatures, respectively.
6. Input 54: same as input 54 for day d− 1, CT(d− 1).
7. Input 55: the difference between the maximum daily temperatures of days d and

d− 1, Tmax(d)− Tmax(d− 1).
8. Inputs 56–57: the seasonality within the year of day d expressed as a pair of values

{sin(2π/d), cos(2π/d)}.
9. Inputs 58–64: Encoded day-type indicator of the target day d, DTI(d), i.e., 10000000

for Monday, 01000000 for Tuesday and so on.
10. Input 65: Holiday indicator, 1 for holidays and 0 for working days and weekends, HI(d).

The vector that contains the inputs and outputs for the FFNN is referred to as a pattern.
During training, the target outputs are known, i.e., the loads of the target day d, LTrain(h, d).
Let yTrain(d) be the training vector for target day d of the training set. It has the following form:

yTrain(d) = [LTrain(h, d− 1), LTrain(h, d− 7), TTrain
max (d), TTrain

min (d), TTrain
max (d− 1), TTrain

min (d− 1), CTTrain(d),
CTTrain(d− 1), TTrain

max (d)− TTrain
max (d− 1), sinTrain(2π/d), cosTrain(2π/d), DTITrain(d), HITrain(d), LTrain(h, d)]T

(2)

In (2) all the parameters with the Train indicator refer to the respective 65 inputs of the train-
ing set. The set of the training patterns is denoted as YTrain =

{
yTrain

mTrain , mTrain = 1, . . . , MTrain
}

,

where mTrain = 1, . . . , MTrain is the indicator denoting the number of days in the training
set. In the test phase, the outputs are the loads that the model is utilized to predict, i.e., the
target loads LTest(h, d) are not known. Accordingly, let yTest(d) be the training vector for
target day d of the test set. It is given by:

yTest(d) = [LTest(h, d− 1), LTest(h, d− 7), TTest
max(d), TTest

min (d), TTest
max(d− 1), TTest

min (d− 1), CTTest(d),
CTTest(d− 1), TTest

max(d)− TTest
max(d− 1), sinTest(2π/d), cosTest(2π/d), DTITest(d), HITest(d)]T

(3)

where the Test indicator refer to the respective 65 inputs of the test set. The set of the test
patterns is denoted as YTest =

{
yTest

mTest , mTest = 1, . . . , MTest
}

, where mTest = 1, . . . , MTest is
the indicator denoting the number of days in the test set.
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2.2. Input Selection Phase

Given a set of candidate inputs, the scope was to derive a reduced set of outputs in
order to result in, ideally, both reductions in required training time and prediction error. A
binary coded PSO was formed to indicate the optimal inputs. The flowchart of the input
selection phase is presented in Figure 3. Let LTrain

a
(
dTrain, h

)
and LTrain

f
(
dTrain, h

)
be the

actual and the forecasted load values of day dTrain of the training set, respectively, and let
LTest

a
(
dTest, h

)
and LTest

f
(
dTest, h

)
be the actual and the forecasted load values of day dTest of

the test set, respectively. The normalized mean square errors (NMSEs) of the training and
test sets are given by the following equations, respectively:

NRMSETrain =
1

MTrain
1
H

DTrain

∑
dTrain=1

H

∑
h=1

(
LTrain

a
(
dTrain, h

)
− LTrain

f
(
dTrain, h

))2

LTrain
a LTrain

f

(4)

NRMSETest =
1

MTest
1
H

DTest

∑
dTest=1

H

∑
h=1

(
LTest

a
(
dTest, h

)
− LTest

f
(
dTest, h

))2

LTest
a LTest

f

(5)

where MTrain and MTest are the total number of days in the training and test sets, respec-
tively, H is the number of hours, and LTrain

a , LTrain
f , LTest

a and LTest
f are the mean values of

LTrain
a

(
dTrain, h

)
, LTrain

f
(
dTrain, h

)
, LTest

a
(
dTest, h

)
and LTest

f
(
dTest, h

)
, respectively. The NMSE

is an estimator of the overall deviations between predicted and measured values. The
decision variables of the optimization project are those inputs of the FFNN that minimize
the following objective/fitness function:

J(W) = WTrain
km ×NRMSETrain + WTest

km ×NRMSETest (6)

The weight matrices of the FFNN of the training and the test phases, respectively:

WTrain =
{

wTrain
kn , k = 2, 4, . . . , 30, n = 1, 2, . . . , 24

}
(7)

WTest =
{

wTest
kn , k = 2, 4, . . . , 30, n = 1, 2, . . . , 24

}
(8)

where k denotes the k-th neuron in the hidden layer and n denotes the n-th neuron in the
output layer. The selection of the number of neurons in the hidden layer was a subject
of a sensitivity analysis. In the present study, the number of neurons in the hidden layer
varied between 2 and 30, with an increasing step equal to 2. The decision variables of the
optimization problem were the weight matrices during training and testing. The weight
values indirectly refer to the neurons that would be selected or not to form the reduced
set of inputs. Figure 3 illustrates the operation of the input selection process. Regarding
Figure 3, xi is the current position of the particle i, vi is the current velocity of the particle i,
Xbesti is the personal best solution of the particle i, t is the current iteration of the algorithm
and tmax is the pre-defined maximum number of iterations. The PSO minimizes (5) via an
iterative process. The number of desired outputs is set by the user in advance. The swarm’s
size equals the desired number of inputs. The output of the algorithm is a sequence of
integers denoting the number of the selected inputs. Figure 3 presents the flow-chart of the
input selection phase. It should be noted that the training phase weights update require
more time compared with the weights update of the test phase. This relation between the
two durations are asymmetrical, i.e., the durations are not proportional.
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2.3. Training Set Formation Phase

The scope was to derive a reduced set of outputs to result in, ideally, both reductions
in required training time and prediction error. A binary coded PSO was formed to indicate
the optimal inputs. After the selection of the inputs, the K-medoids/PSO algorithm was
applied to split the training set into smaller subsets. The flowchart of the clustering phase
is illustrated in Figure 4. PSO is a metaheuristics algorithm that mimics the collective
behavior of swarms in search of their food [41]. The term “food” in optimization terms
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models the solution of the problem. K-medoids is a partitional clustering algorithm that
has a similar operation to the K-means; the difference lies in the centers of gravity of the
clusters. K-medoids employs the medoids of the clusters, i.e., the patterns whose average
dissimilarity to all the patterns in the same cluster is minimal [42]. K-medoids and PSO
algorithms are both influenced by their initialization phase. The selection of the load curves
that will serve as initial centroids is crucial since they form the initial clusters and define
the subsequent clustering procedure.
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The default forms of the K-medoids and PSO are based on a random selection. Dif-
ferent executions of the algorithms lead to different clustering outcomes. Thus, it is not
always guaranteed that the algorithm will reach the optimal solution every time, i.e., the
algorithm will converge in local optima. To deal with this situation, a new approach was
proposed. For each daily load curve, the Shannon entropy was calculated. The aim was
to initialize K-medoids with centroids that are highly dissimilar to one another so that a
better partitioning of the load data would be manifested. Shannon entropy is a measure of
the randomness of the data. In time series modeling, it is a measure of the volatilities of
the curves. Thus, load curves that present large differences in the Shannon entropy values
correspond to highly dissimilar shapes and can serve as different centroids. Let j be a value
within a time series and pj the probability that this value will appear in the series. The
Shannon entropy H is expressed as [43]:

H = −∑
J

pj log pj (9)

Low entropy values refer to less volatile series. A time series with high entropy contains
hourly load values that are repeated, i.e., they are present in more than one instance within
the period that a time series refers to. Therefore, the volatility is relatively low.

As an example of load curves with different entropy values, Figure 5 shows three
daily load curves of the test set. The load curve with H = 4.58 displays high volatility in
comparison with the rest. The load curves of Figure 5 can serve as the initial centroids for
the K-medoids if the clustering was applied only to the load data set. The K-medoids/PSO
is applied in the set YTrain. The outputs of clustering are the cluster labels, i.e., integer values
that are assigned to each training pattern. Let CTrain =

{
cTrain

kTrain , kTrain = 1, . . . , KTrain
}

be

the centroids of the training set, where kTrain = 1, . . . , KTrain is the indicator denoting the
number of clusters in the training set. The fitness function of the PSO JTrain refers to the
sum of squared errors between patterns yTrain

mTrain and centroids cTrain
kTrain :

JTrain =
MTrain

∑
mTrain

yTrain
mTrain ∈ STrain

d2
Eucl

(
yTrain

mTrain , cTrain
kTrain

)
(10)

where STrain is the subset of CTrain that includes the population of the k-th cluster and d2
Eucl

is the square of the Euclidean distance.
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2.4. Training Phase

The clustering split the initial training set into training subsets/clusters. Then, for each
cluster, separate FFNNs were trained. After a series of experimentations, one hidden layer
had been selected for the FFNN. The training algorithm was the Levenberg–Marquardt [44].
For both the neurons of the hidden and the output layers, the hyperbolic tangent sigmoid
activation function had been chosen [45]. The maximum number of iterations for training
was set to 500. A training epoch or iteration refers to a full cycle of presenting all patterns
to the FFNN. The training process ended either when the FFNN reaches the predefined
number of epochs or when the improvement of the training error between two subsequent
iterations was below a predefined threshold. The latter condition corresponded to the
convergence of the training process.

2.5. Test Phase

After training, the actual application of forecasting on the target set was held. In order
to select the appropriate neural network for a specific test pattern, the following procedure
was followed: The last 24 values of the centroids of the clusters were removed. Next, using
the Euclidean distance metric, the distances among the patterns of the set YTest and the
centroids of the set CTrain were calculated. For each pattern, the selected neural network
corresponded to the cluster where its centroid had the closest distance to the pattern. The
removal of the last 24 values was done so that the calculation of the Euclidean distance would
be feasible, i.e., the vectors (test patterns and centroids) should be of equal length. The number
of neural networks is equal to the number of clusters. Thus, the test set pattern was fed to the
specific FFNN that had been trained with similar patterns to the test set pattern.

2.6. Summary

The proposed method included two distinct phases, namely the input selection and
the formation of the training subsets. In summary, it consisted of the following steps:

Step#1: Formation of the initial data set. The formation can be taken into account: (i) Expertise
knowledge, (ii) literature, and (iii) expertise knowledge and literature. Employing
expert knowledge refers to a problem-specific approach. The initial data set is held
via trial and error. In the present paper, the literature approach was followed. The
inputs that have been proposed in the previous study were regarded [37]. The
specific study refers to the aggregated system of Greece. In the present paper, the
scope was to regard the same inputs with the model that had been proposed for
the aggregated system to a bus load forecasting problem.

Step#2: Execution of the PSO. Based on a pre-defined desired number of reduced inputs,
the PSO was applied to an initial neural network training. The optimal inputs were
drawn based on the minimization of the error function (Equation (6)). If the results
were not satisfactory, the PSO was re-executed by considering different parameters.

Step#3: Formation of training set clusters with the K-medoids/PSO algorithm. Both the
conventional forms of the K-medoids and PSO refer to random initialization of
initial populations. This fact may lead to poor clustering results. To overcome the
K-medoids limitation, a new approach was proposed to select the initial centroids
based on their randomness as quantified by the Shannon entropy index. The initial
centroids should differ in terms of randomness as much as possible. Next, the K-
medoids were executed and provided an initial clustering. The obtained centroids
were used as the initial ones for the PSO. The latter provided the final centroids. It
should be noted that the patterns that were used for clustering represent the vectors
that contain the reduced set of inputs.

Step#4: Neural network training. For each cluster, a separate neural network was trained.
Step#5: Neural network application. A specific neural network was selected for each target

day of the test day. The STLF is a day-ahead forecasting process. The aim was to
forecast the daily load of a complete year.
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3. Results
3.1. Input Selection

The input selection phase allows the user to enter the desired number of inputs. As
two test cases, two different numbers of inputs were set, namely 42 and 48. Recall that
the initial number was 65. 45s 1 and 2 present the selected inputs for numbers 48 and 42,
respectively. The scope is to compare the performance of the FFNN of the original 65 inputs
with the ones that use a reduced set.

The comparison refers to the forecasting accuracy and the required training time. From
Tables 1 and 2 it can be observed that inputs from all three types have been selected. Most
inputs correspond to historical loads, i.e., inputs 1–48 of the original set. The input selection
process does not include all the inputs related to temperature and day-type indicators. In
both cases, the parameters Tmax(d) and Tmin(d− 1) are selected by the PSO. In addition,
the deviations from the thermal comfort are selected, i.e., CT(d) and CT(d− 1). These two
parameters express the temperature ranges from two thresholds that correspond to high
electricity consumption, i.e., low and high temperatures. Also, among the two periodic
trigonometric functions only sin(2πd/365) is selected, leading to the conclusion that one
trigonometric function is enough to express the periodicity of the day within the year.
Regarding the day-type indicator, five digits are selected instead of the original seven. The
holidays indicator, i.e., input 65 is considered significant and it is selected in both cases.

Table 1. Selected 42 inputs.

Input Variable Input Variable

2 L(2, d− 1) 37 L(13, d− 7)
3 L(3, d− 1) 38 L(14, d− 7)
5 L(5, d− 1) 40 L(16, d− 7)
6 L(7, d− 1) 41 L(17, d− 7)
9 L(9, d− 1) 42 L(18, d− 7)

12 L(12, d− 1) 44 L(20, d− 7)
13 L(13, d− 1) 46 L(22, d− 7)
15 L(15, d− 1) 47 L(23, d− 7)
16 L(16, d− 1) 48 L(24, d− 7)
18 L(18, d− 1) 49 Tmax(d)
19 L(19, d− 1) 52 Tmin(d− 1)
20 L(20, d− 1) 53 CT(d)
23 L(23, d− 1) 54 CT(d− 1)
24 L(24, d− 1) 55 Tmax(d)− Tmax(d− 1)
26 L(2, d− 7) 56 sin(2πd/365)
27 L(3, d− 7) 59 day-type indicator
29 L(5, d− 7) 61 day-type indicator
30 L(6, d− 7) 62 day-type indicator
31 L(7, d− 7) 63 day-type indicator
33 L(9, d− 7) 64 day-type indicator
36 L(12, d− 7) 65 HI(d)

Table 2. Selected 48 inputs.

Input Variable Input Variable

1 L(1, d− 1) 33 L(9, d− 7)
2 L(2, d− 1) 35 L(11, d− 7)
3 L(3, d− 1) 37 L(13, d− 7)
5 L(5, d− 1) 38 L(14, d− 7)
6 L(6, d− 1) 39 L(15, d− 7)
7 L(7, d− 1) 40 L(16, d− 7)
8 L(8, d− 1) 43 L(19, d− 7)
9 L(9, d− 1) 44 L(20, d− 7)
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Table 2. Cont.

Input Variable Input Variable

10 L(10, d− 1) 46 L(22, d− 7)
11 L(11, d− 1) 47 L(23, d− 7)
12 L(12, d− 1) 48 L(24, d− 7)
14 L(14, d− 1) 49 Tmax(d)
15 L(15, d− 1) 51 Tmax(d− 1)
17 L(17, d− 1) 52 Tmin(d− 1)
18 L(18, d− 1) 53 CT(d)
19 L(19, d− 1) 54 CT(d− 1)
21 L(21, d− 1) 55 Tmax(d)− Tmax(d− 1)
22 L(22, d− 1) 56 sin(2πd/365)
23 L(23, d− 1) 58 day-type indicator
24 L(24, d− 1) 59 day-type indicator

3.2. Clustering

To verify the superiority of the K-medoids/PSO algorithm over other clustering
algorithms, a load profiling experiment was formulated, i.e., the clustering of the daily
load curves of the test set. The proposed algorithm was compared with the K-means [32],
FCM [30,35], SOM [28,29,33,34] and UPGMA [31]. The scope is to partition the load data
set of the year 2018 into a number of clusters and extract the load profiles. A daily load
curve is expressed as a 24-element vector:

x(m) =
[

x(m)
1 , . . . , x(m)

24

]T
(11)

The load set of data is denoted as X =
{

x(p), p = 1, . . . , 365
}

where p = 1, 2, . . . , 365
denotes the day of the year. The elements of the vector refer to hourly load values normal-
ized in [0, 1] range. This is necessary for clustering since it focuses on the similarities of the
load curve shapes and not on the load magnitude. The base value for the normalization is
the maximum value of the set X, i.e., the peak load of the bus. The centroid of a cluster is
the average of all load curves that belong to it:

c(k) =
{

c(k)j , . . . , c(k)D

}
=

1
MK

∑M
m = 1

x(m) ∈ Ck

x(m) (12)

where MK is the number of daily load curves that belong to the cluster CK. The set of
the clusters is denoted as C =

{
c(k), k = 1, . . . , K

}
. The centroids are actually artificial

curves and not real measured values; they are statistical parameters and more precisely,
the averages of clusters. Validity indicators are needed to assess the clustering errors.
These indicators are based on Euclidean distance-based metrics that measure the degree of
similarity of patterns in the same clusters, centroids, and patterns of the same cluster and
centroids of different clusters. The following metrics are defined [46]:

(i) The Euclidean distance between two vectors x(s) and x(t), with
(

x(s), x(t)
)
∈ X, is:

d
(

x(s), x(t)
)
=

√
1
D ∑D

h=1

(
x(s)h − x(t)h

)2
(13)
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(ii) The subset of X that belong to the CK cluster is denoted as SK. The Euclidean distance
between the centroid c(k) of the k-th cluster and the subset SK is the geometric mean
of the Euclidean distances d

(
c(k), Sk

)
between c(k) and each member x(k) of SK:

d
(

c(k), Sk

)
=

√
∑Mk

i=1 x(k) ∈ Skd2
(
c(k), x(k)

)
Mk

(14)

(iii) The geometric mean of the inner distances between the featured members of the
subset SK is:

d(Sk) =

√
1

2Mk
∑ x(k) ∈ Skd2

(
x(k), x(m)

)
(15)

The clustering dispersion indicator (CDI), which is the ratio of the mean infra-set
distance between the input vectors in the same cluster and the infra-set distance between
the cluster’s centroids:

CDI =

√
1
K ∑K

k=1 d2(Sk)√
1

2K ∑K
k=1 d2(ck, Ck)

(16)

The Calinski–Harabasz index (CH) or minimum variance criterion (VRC), which refers
to the ratio of the dispersion among the different clusters and the dispersion within the
same cluster:

CH =
M− K
K− 1

·
∑K

k=1 Mk·
(

c(k) − p
)
·
(

c(k) − p
)t

∑K
m.k=1 ∑x(m)∈X

(
x(k) − c(k)

)
·
(
x(k) − c(k)

)t (17)

where p is the arithmetic mean of the input vectors. The nominator in (17) refers to
the dispersion within the same cluster whereas the denominator refers to the dispersion
between the clusters. The Davies–Bouldin index (DBI) is expressed as the ratio of the sum
of the most similar clusters to the distance of their centroids:

DBI =
1
K∑K

s,t=1max
s 6=t

{
d(Ss) + d(St)

d
(
c(s), c(t)

) } (18)

where centroids c(s), c(t) ∈ C.
Let ak be the be the mean distance between the pattern x(k) that belongs to the k-th

cluster Ck and all other patterns that belong to Ck :

ak =
1

Mk − 1 ∑
x(l)∈Ck ,x(k) 6=x(l)

d
(

x(k), x(l)
)

(19)

where x(k) ∈ Ck. Let bk be the mean dissimilarity between x(k) and a cluster Cm, Ck 6= Cm.
It refers to the mean distance between x(k) and all members of Cm :

bk = min
x(m) 6=x(k)

1
Mm

∑
x(m)∈Cm

d
(

x(m), x(k)
)

(20)

where x(m) ∈ Cm and Mm is the number of patterns that belong to the cluster Cm. The
silhouette index (SI) of pattern x(k) is defined as [47]:

Sk =
bk − ak

max{ak, bk}
(21)
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It can be rewritten as:

Sk =

∣∣∣∣∣∣∣
1− ak

bk
, ak > bk

0, ak = bk
bk
ak
− 1, ak < bk

∣∣∣∣∣∣∣ (22)

A low value of ak corresponds to a low degree of similarity of the patterns within the
same cluster. A high value of bk corresponds to a high degree of similarity between the
pattern x(k) and patterns of other clusters. The overall SI of all clusters is defined as [47]:

SI =
1
K

K

∑
k=1

Sk (23)

There is no a priori information about the number of clusters of the specific data set
or other relevant information on data structure such as the number of consumers that are
connected to the bus, number of atypical patterns, special conditions, or others. Hence,
the present load profiling problem was formulated as a purely unsupervised machine
learning task. For this reason, each algorithm was executed separately for 2 to 30 clusters.
The scope was to group together daily load curves with similar shapes, i.e., similar daily
consumption. For each number of clusters, the values of the validity indicators were
checked. The superiority of one algorithm over the other is demonstrated when leading
to better performance in all indicators. Figure 6 shows the comparisons of the algorithms
per validity indicator. Two crucial attributes of clustering quality are the well-separation
and compactness. The well-separation refers to the distances of the clusters’ centers, i.e.,
the centroids. High distances between centroids refer to clusters that are well-separated in
the feature space, i.e., the clustering algorithm managed to recognize the dissimilarities
between the patterns and distribute them correctly. Compactness is measured either by
intra-distances between patterns in the same cluster or by the distances between patterns
and the centroid of the cluster they belong to. Low values of a metric that measures
compactness refer to clusters that are composed of highly similar patterns.

The CDI is a ratio of a well-separation metric to a compactness one. While the number
of clusters increases, robust clustering should lead to lower values of the CDI. While the
number of clusters is increasing, the clusters become more compact, i.e., they contain load
curves with more similar characteristics. In Figure 6, the PSO/K-medoids results in lower
CDI values followed by the Ward hierarchical algorithm. The last in the competition is
the FCM. The CH indicator is a measure of compactness. Since the denominator needs to
be minimized, the better clustering corresponds to large CH values. Again, the PSO/K-
medoids outperforms all the rest. As for the second place in the competitions, there are
mixed results; K-means appears more suitable for a low number of clusters and the K-
medoids for a medium-range number. For a large number of clusters until 30, SOM is
proposed. As in the case of the CDI, fuzzy clustering presents poor performance. Like the
CDI, the DBI measures both well-separation and compactness. The best algorithm should
lead to lower values. The PSO/K-medoids leads to lower values in mist number of clusters
followed by the Ward algorithm. Finally, the SI indicates the proposed clustering algorithm
as the winner of the competition. The SOM is the second in the list whereas the FCM fails
to provide robust clustering.

Considering the CDI curve as drawn by the PSO/K-medoids algorithm, the optimal
number of clusters can be derived using the knee point detection method [48]. The optimal
number of clusters is seven. Thus, the 365 daily load curves are optimally grouped together
into seven groups. Figure 7 presents the load profiles of the clusters. The day-type
distribution per cluster is registered in Table 3.
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Figure 7. Load profiles of the clusters.

There are different shapes and magnitudes between the profiles. The most populated
cluster is cluster#1 which contains days from all types apart from Sundays. It corresponds
to a relatively medium consumption compared with the rest of the profiles. Also, there
is an almost equal number of different day types. Cluster#2 is the second largest cluster.
Again, there is an almost equal number of working days. It contains six Saturdays and two
Sundays. Cluster#6 contains one daily load curve. This includes both the peak demand
among the profiles and the maximum consumed energy, i.e., the largest area under the load
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curve in the power versus time axes. Cluster#7 refers to low consumption and contains the
most Sundays of the year.

Table 3. Day-type distribution per cluster.

Cluster
Day

Number of Days per Cluster
Mon Tue Wed Thu Fri Sat Sun

1 18 18 20 21 23 23 0 123
2 11 11 10 12 12 6 2 64
3 9 9 8 8 7 3 0 44
4 6 6 6 3 4 10 9 44
5 8 7 7 6 5 7 14 54
6 0 0 1 0 0 0 0 1
7 0 1 0 2 2 3 27 35

Total number of days 365

3.3. Forecasting

The proposed model with an FFNN. The maximum number of training iterations
of the FFNN is set to 500. The initial velocities of the particles are randomly given. The
evaluation of the accuracy is done with the mean absolute percentage error (MAPE):

MAPE =
1
D

D

∑
d=1

∣∣∣La(d)− L f (d)
∣∣∣

La(d)
× 100 (24)

where D is the total number of days and La(d) and L f (d) are the actual and forecasted
loads of day D, respectively. The FFNN is trained with a variable number of neurons in
the hidden layer and for each number the MAPE is checked. The comparison of the two
models is illustrated in Figure 8. The figure refers to the MAPE of the test set. The test
set is used for the model’s predictability assessment. For the greatest number of neurons,
the reduced set of inputs leads to lower errors. The ANN with the 65 inputs results in the
lowest MAPE = 5.77% at six neurons, whereas the one with the 48 inputs results in the
lowest MAPE = 5.64% at 12 inputs. The average MAPE of the 65 inputs is 11.84% whereas
that of the 48 inputs is 11.12%.

Symmetry 2022, 14, x FOR PEER REVIEW 16 of 19 
 

 

3.3. Forecasting 

The proposed model with an FFNN. The maximum number of training iterations of 

the FFNN is set to 500. The initial velocities of the particles are randomly given. The eval-

uation of the accuracy is done with the mean absolute percentage error (MAPΕ): 

1

( ) ( )1
MAPE= 100

( )

D
a f

d a

L d L d

D L d


  (24)

where D  is the total number of days and ( )aL d  and ( )fL d  are the actual and fore-

casted loads of day D, respectively. The FFNN is trained with a variable number of neu-

rons in the hidden layer and for each number the MAPE is checked. The comparison of 

the two models is illustrated in Figure 8. The figure refers to the MAPE of the test set. The 

test set is used for the model’s predictability assessment. For the greatest number of neu-

rons, the reduced set of inputs leads to lower errors. The ANN with the 65 inputs results 

in the lowest MAPE = 5.77% at six neurons, whereas the one with the 48 inputs results in 

the lowest MAPE = 5.64% at 12 inputs. The average MAPE of the 65 inputs is 11.84% 

whereas that of the 48 inputs is 11.12%. 

 

Figure 8. Comparison of the two ANNs for the case of 48 inputs. 

The second case refers to a further reduction of the inputs to 42. Figure 9 presents the 

comparison. The lowest MAPE = 5.63% at 12 neurons, whereas the average MAPE = 

12.03%. Therefore, the case with 40 inputs leads to the lowest error. In all cases, the lowest 

MAPE is not met in the same number of neurons. 

 

Figure 9. Comparison of the two ANNs for the case of 42 inputs. 

Figure 8. Comparison of the two ANNs for the case of 48 inputs.

The second case refers to a further reduction of the inputs to 42. Figure 9 presents the
comparison. The lowest MAPE = 5.63% at 12 neurons, whereas the average MAPE = 12.03%.
Therefore, the case with 40 inputs leads to the lowest error. In all cases, the lowest MAPE is
not met in the same number of neurons.
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4. Conclusions

The forecasting of future demand is an important process in power systems operation
and planning in order to ensure a reliable and secure network. Among forecasting horizons,
STLF is the basis of intra-day and day-ahead power system operations. Apart from power
generation companies and system operators, STLF has also become a valuable tool for
retailers and prosumers, leading to the conclusion that STLF supports the decision-making
actions of the various competitive market entities.

Among the models that have been proposed in the literature, neural networks are a
favorable approach. However, the main issue of the model set-up and application is the
proper selection of inputs that will influence forecasting accuracy.

The present paper proposes a novel approach to neural network application for load
forecasting. A metaheuristics-type algorithm is used both for optimal input selection and
optimal determination of the weights of the neural network. This double operation has
not been proposed so far in the literature. Also, the metaheuristics-type algorithm is a new
type; it combines two algorithms, a clustering algorithm and an optimization one.
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