symmetry

Article

Computational Study of Methods for Determining the Elasticity
of Red Blood Cells Using Machine Learning

Samuel Mol¢an *', Monika Smieskova **, Hynek Bachraty

check for
updates

Citation: Molcan, S.; Smieskova, M.;
Bachraty, H.; Bachratd, K.
Computational Study of Methods
for Determining the Elasticity of
Red Blood Cells Using Machine
Learning. Symmetry 2022, 14, 1732.
https://doi.org/10.3390/
sym14081732

Academic Editor: Rahmat Ellahi

Received: 14 July 2022
Accepted: 13 August 2022
Published: 19 August 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://

creativecommons.org/licenses /by /
4.0/).

and Katarina Bachrata

Department of Software Technology, Faculty of Management Science and Informatics, University of Zilina,
010 26 Zilina, Slovakia
* Correspondence: samuel. molcan@fri.uniza.sk (S5.M.); monika.smieskova@fri.uniza.sk (M.S.)

Abstract: RBC (Red Blood Cell) membrane is a highly elastic structure, and proper modelling of
this elasticity is essential for biomedical applications that involve computational experiments with
blood flow. In this work, we present a new method for estimating one of the key parameters of
red blood cell elasticity, which uses a neural network trained on the simulation outputs. We test
classic LSTM (Long-Short Term Memory) architecture for the time series regression task, and we also
experiment with novel CNN-LSTM (Convolutional Neural Network) architecture. We paid special
attention to investigating the impact of the way the three-dimensional training data are reduced to
their two-dimensional projections. Such a comparison is possible thanks to working with simulation
outputs that are equivalently defined for all dimensions and their combinations. The obtained results
can be used as recommendations for an appropriate way to record real experiments for which the
reduced dimension of the acquired data is essential.

Keywords: regression neural networks; red blood cells elasticity; elastic object in flow; simulations of
blood flow; sequential data

1. Introduction

Microfluidics is a field that has seen a rapid growth in recent decades. It has a wide
variety of biological and biomedical applications, for example in manipulation of cells
and particles, development of new medicines, study of hemodynamics, simulations of
organ systems, or development of various diagnostic techniques [1,2]. The combination of
microfluidics and machine learning (ML), mostly referred to as intelligent microfluidics,
is an innovative approach which uses the advantages of both fields [3-5]. On one hand,
microfluidics focus on a precise control and manipulation of sub-millimeter structures
and the flow of fluids at the micrometer scale. On the other hand, ML is an effective
tool for processing and analysing large datasets. In particular, it can be used to find
causality between biochemical factors, various physical factors and physical properties
of used materials, and the structure of microfluidic devices. Some of the most important
applications of intelligent microfluidics include isolation and detection of CTCs (Circulating
Tumor Cells) in blood samples [6], or separation and analysis of RBCs with low elasticity
related to several diseases such as anemia [7] or malaria [8]. Another extensive area
of application of ML in connection with microfluidic techniques is the processing and
extraction of data from video sequences of biological experiments [9-11].

Although recent progress in microfabrication allows relatively fast prototyping of
multifunctional microfluidic devices, this approach still has very significant time, financial,
and technological constraints. One of the possible alternatives is computer simulation,
which can be used for much more cost-effective design of microfluidic devices with required
structures and properties. Furthermore, numerical models provide a more detailed insight
into the behaviour of the examined blood flow. For example, while it is practically impossi-
ble to extract the full information about the movement, deformation, and rotation of each

Symmetry 2022, 14, 1732. https:/ /doi.org/10.3390 /sym14081732

https://www.mdpi.com/journal /symmetry

https://doi.org/10.3390/sym14081732
https://doi.org/10.3390/sym14081732
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-2059-7484
https://orcid.org/0000-0002-3633-1798
https://orcid.org/0000-0003-1378-488X
https://orcid.org/0000-0002-5510-5585
https://doi.org/10.3390/sym14081732
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14081732?type=check_update&version=1

Symmetry 2022, 14, 1732

2 of 21

cell from a laboratory experiment, this can be easily obtained from a simulation experiment.
Hence, computer simulations can be very helpful in investigation of hemodynamics and
development of new diagnostic techniques. Our implementation of the simulation model is
realized as an extension of ESPResSo [12], and it can be used to model blood cells as elastic
objects in the fluid flow. An important part of our approach is a continuous validation of
our model by comparison of simulation and laboratory experiments published in [13].

Increases in the complexity of simulation experiments naturally makes them more
time and computationally intensive. Hence, as the next step, we can use data from the
simulation experiments and ML to develop more efficient methods to model the flow of
blood. The main advantage of using the simulation data is that they are virtually unlimited,
which allows us to have a much better insight into simulation experiments. When training
our models, mostly neural networks (NN), we aim to use only the type of data that are also
obtainable from the video analysis of in vitro experiments, see in [14,15]. However, it is still
difficult to acquire them from the medical environment.

Since RBCs are the dominant particles present in the blood plasma, their proper
modelling is the key part when modelling blood flow. An accurate description of the
elasticity of a RBC is necessary for such models, and it also has a significant application in
diagnostic medicine. Membrane, which forms the surface of a RBC, is deformable, allowing
the cells to easily flow through blood vessels. Elasticity of this membrane is affected by
different natural factors (such as the age of the cell), but the most important ones are various
diseases, such as sickle cell disease, leukemia, malaria, or diabetes. Deformability-based
sorting RBCs using the microfluidic ratchet device was introduced in [16]. We try to solve
the same problem without using a special microfluidic device. Our results are based only
on geometrical properties of cells which can be recorded on video.

The problem of determining a RBC’s elasticity using simulation experiments was investi-
gated in [17], where the main goal was to classify a RBC’s elasticity into predefined categories.
In this paper we extended the solution to the problem of categorisation of values of elastic
parameters to a regression task, where we determine for each cell the value of the regression
function determining the elasticity of the given cell. An ultimate but distant goal should be
the possibility of determining elastic properties (or, alternatively, elastic coefficients) of RBCs
from video recordings of laboratory experiments. In our numerical model the elasticity of a
RBC is controlled by five parameters, described in detail in Section 2.1. For several reasons,
including a good physical interpretation and the most substantial impact on the overall elastic
properties of RBCs, we consider the stretching parameter of the edges of a triangulation (given
by the stretching coefficient ks) to be the key parameter. Values of the coefficients are shown
in Table 1. In this paper, we propose machine learning methods for determination of elastic
parameter of the cell membrane. The novel approach is in the use of data. The data come from
computer simulations that are based on laboratory experiments. The information in these data
is accurate so it can be used for supervised teaching. Another advantage is that these data do
not need to be marked manually, but the computer will do it. With the help of simulations,
we can obtain a sufficient amount of data for neural network input. We may choose to use
only data obtained from video analysis of such experiments. However, for methodological
reasons, we also use complete simulation data for comparison. We compare the quality of the
estimation of the elastic coefficients obtained from the limited data with those obtained using
the full simulation data.

Table 1. Overview of used simulation parameters.

Coefficient Value

stretching coefficient (ks): 5x 107° N/m
bending coefficient (ky): 3 x 107 Nm
coefficient of local area conservation (k;;): 2 x107°N/m
coefficient of global area conservation (k,g): 7 x 1074 N/m

coefficient of volume conservation (k;): 900 N/m?

Symmetry 2022, 14, 1732

30f21

2. Materials and Methods
2.1. Simulation Model and Input Settings

A physics-informed neural network is the subject of the current research [18,19]. In our
work, we exploit the implicit information of the ML model by using data that correctly
capture the physics.

The source data we use in the machine learning-based estimation of k; coefficients were
obtained from several simulation experiments. Their settings and parameters were based on
real experiments and some were already used in the study [20]. All simulation experiments
were performed using the freely available open-source software ESPREesSo [21] and its
modules Lattice-Boltzmann and Object-in-fluid [22]. Blood flow simulations typically
involve two parts of the model—the fluid and the cell membrane. These are coupled
and interact with each other in the form of forces. Our model uses the Lattice-Boltzmann
method [23] for the fluid, a spring network model for the cell membrane, and a dissipative
version of the IBM (Immersed Boundary Method) for their interconnection [24].

For all simulations, the same channel and fluid flow parameters were used. The sim-
ulation channel had a cuboid shape with four walls with dimensions of 60 x 40 x 40 pm
(see Figure 1). Periodic fluid properties were ensured in the fluid flow direction (in the
x-axis direction). The fluid was discretised into a three-dimensional grid with a spatial
step of 1 yum. The kinematic viscosity of the fluid was 1.3 x 10 ~® m?/s and the density
was 1.025 x 10% kg/m3. The coefficient of friction providing the fluid-object interaction
was equal to 1.414. External forces were used to set the flow in motion with values that
provided a maximum velocity of approximately equal to 0.03 m/s.

4.1e-02

—0.03

—0.02

velocity X

— 0.01

l 0.0e+00

Figure 1. An illustration of the channel with cells (from simulation Sim9a). The colour represents the
fluid velocity (blue for slower and red for fast).

The interaction between cells defined as cell-cell interaction was modeled using the
membrane_collision potential with parameters mc, = 0.01, mc, = 1.0, mccyr = 0.4. Interac-
tions between cells and walls of the channel were modelled using the soft_sphere potential
with parameters soft, = 0.00035, soft, = 1.0, softc,+ = 0.5.

The red blood cells are modelled by a surface network with 374 nodes, which in the
relaxed state assumed a typical biconcave shape with dimensions of 7.82 x 7.82 x 2.58 ym
and a volume of 90.75 um?. The cells were filled with the same fluid as was in their
surroundings. We use five types of elastic forces to model the elastic properties of the cell
membrane. Each corresponds to one elastic modulus and its corresponding parameter:
elastic modulus (preservation of edge length), bending modulus (preservation of angles
between adjacent triangles), local area preservation modulus, global area preservation
modulus, and volume preservation modulus. A schematic representation of the RBC

Symmetry 2022, 14, 1732

4 0f 21

model and the individual elastic forces is shown in Figure 2. The calibration of the elastic
coefficients for a healthy well deformable RBCs and their subsequent validation is discussed
in more detail in [25]. The values of the coefficients used are shown in Table 1.

Elastic forces

. \B B . \ \B\ '\\
Vs / N A\

Stretching modulus Bending modulus
— A C A f
“A B ’ . - 5
Local area modulus Global area

and volume moduli

Figure 2. A schematic illustration of the cell membrane. Each individual cell is modeled by a spring
network of boundary points bound by elastic interaction.

In straight microfluidic channels, a parabolic velocity profile is typical, which ensures
a symmetric distribution of cells in the flow around the axial axis of the channel. As elastic
RBCs, due to the velocity gradient, migrate toward the center of the microchannel, hydro-
dynamic collisions between cells lead to the movement of stiffer RBCs toward the vessel
wall. Thus, hemodynamic phenomena such as marginalisation of stiffer RBCs [26,27] or
cell-free layers [28,29] can be observed in dense cell suspensions. Several factors influence
the migration of particles across streams in confined-space flow suspensions, with reduced
elasticity of a certain fraction of cells generally considered to be a key factor. In a previous
study by [17], we worked with only two levels of elasticity of RBCs, healthy and damaged
(stiffer). In the present work, RBCs with three and nine elasticity levels, respectively, are
included in the individual simulations, which both represents a shift towards a more re-
alistic model of blood flow and creates the need to address the issue from a more holistic
perspective. Thus, the individual simulations differ by varying the value of the elasticity
coefficient ks, while the other elasticity parameters remain set at the same values. Overall,
we worked with nine cell types with the ks values shown in Table 2. A value of 0.005
corresponds to healthy cells with good elasticity. In contrast, elasticity of cells with a set
value of ks = 0.03 corresponds approximately to the reduced elasticity of malaria-infected
cells at stage 3 of the disease (according to the optical tweezers stretching experiment [30]).

Table 2. Overview of ks values in each simulation.

Simulation Name Values of Stretching Coefficients (k)

Sim3a 0.3, 0.005, 0.03

Sim3b 0.15, 0.015, 0.009

Sim3c 0.225, 0.1, 0.05

Sim9a 0.005, 0.009, 0.015, 0.03, 0.05, 0.1, 0.15, 0.225, 0.3
Sim9b 0.005, 0.009, 0.015, 0.03, 0.05, 0.1, 0.15, 0.225, 0.3

2.2. Description of Obtained Simulation Data

The initial arrangement of RBCs was random in the simulations and the number
of recorded simulation steps was 3400 for Sim3a, Sim3b and Sim3c and 1240 steps for
Sim9a and Sim9b, which corresponded to RBC movement in the channel of approximately
5.5 pm. In doing so, the recorded steps corresponded to every 2000th internal step of
the simulation, which is sufficiently detailed for the purposes of training the methods.
Because of the need to steady the flow in the run-up part of the experiment, we did not
use the first 300 recordings for the simulation outputs. To create a balanced dataset, each

Symmetry 2022, 14, 1732

50f21

red blood cell type (by elasticity) was represented by an equal amount of data. For the
Sim3 experiments, we simulated nine elasticity types, six red blood cells of each type with
3100 records for each. For Sim9, there were also nine different types with six cells of each
type with 940 records. In total, we simulated a total of 54 red blood cells in both cases, Sim3
and Sim9. For example, we used a similar procedure in the study [17]. For each internal
simulation step of the ESPreSso module, the current position of each non-stationary point
in the blood flow, and hence all red blood cell triangulation points, is calculated. Since the
scale of these data is huge, usually the basic position and velocity data of the significant
points of each cell are stored, such as: the simulation step (cycle) number, the coordinates
of the center of the simulated cell [x, y, z], the velocity of the center of the cell determined
by its components in the direction of the x, y, z-axes, the x, y, z-coordinates of the extreme
points of the cell triangulation (according to the minimum and maximum coordinates in the
direction of each axis, as shown in Figure 3), the velocities of the extreme points of the cell
determined by the components in the x, y, z-axes direction, the cell volume or cell surface.

=
|

|

I

|

I
S

Figure 3. 3D cover cuboid of RBC from simulation and two 2D cover rectangles of RBC from the video.

When selecting and editing the data, we considered what information we could
extract from the actual video footage. From the information contained in the simulation
outputs, we can best determine the extreme points of a red blood cell in real experiment,
while the center of the cell, the speed of its movement and the movement of the extreme
points, the volume, or the overall surface of the cell are much more difficult to extract,
if at all. Therefore, in our work, we focused on the use of data representing the projection
of information from 3D to two-dimensional space according to the xy-axes and xz-axes.
By subtracting the positions of the extreme points in the direction of each axis, we can
also extract from the data information about the size of the “bounding box” rectangle
(or cuboid) that bounds the blood cell, for each time step (see Figure 3). In individual
computational experiments designed to the train machine learning methods, we generally
used the following types of simulation data modifications for input to the neural network:

* projection of the data into 2D according to the xy-axes

* projection of the data into 2D according to the xz-axes

* double projection of data into 2D along xy and xz-axes
¢ utilisation of full 3D data according to all three xyz-axes

An overview of datasets from different projections is in Table 3.

Table 3. Overview of used datasets.

dataset_xyz

dataset_xy_xz

dataset_xz

dataset_xy

cuboid_x_min (x,y,z)
cuboid_x_max (x,y,z)
cuboid_y_min (x,y,z)
cuboid_y_max (x,y,z)
cuboid_z_min (x,y,z)
cuboid_z_max (x,y,z)
X_X_size

y_y_size

Z_7_size

cuboid_x_min (x,y;z)
cuboid_x_max (x,y,z)

cuboid_y_min (x,y)
cuboid_y_max (x,y)
cuboid_z_min (x,z)
cuboid_z_max (x,z)
X_X_size
y_y_size
Z_ 7 size

cuboid_x_min (x,z)
cuboid_x_max (x,z)

cuboid_z_min (x,z)
cuboid_z_max (x,z)
X_X_size

Z_ 7 size

cuboid_x_min (X,y)
cuboid_x_max (x,y)
cuboid_y_min (x,y)
cuboid_y_max (x,y)

X_X_size

y_y_size

Symmetry 2022, 14, 1732

6 of 21

We use the data in the x-axis direction in each option because the fluid in the channel
flows along this axis, and thus the cell elasticity effect is most observable along this axis.
We used data using coordinates along all three axes in order to verify the correctness of the
neural network models we used and also to see to what extent we can extract information
about the elasticity of RBC from the full simulation data.

2.3. Preprocessing and Data Augmentation

The dataset used, obtained from the simulation experiments, had to be subsequently
transformed to be suitable for training the machine learning model.

Since the simulation data are meant to substitute the information from the real video
recordings, the cell velocity information is implicitly included according to the change
of the x-coordinate values in the downstream recordings. Therefore, we divided the
resulting dataset into time windows consisting of a sequence of consecutive simulation
records. In video processing, they would correspond to the sequence of subsequent frames.
The length of the sequence may also depend on the quality of the tracking/tracking of the
individual RBCs. Thus, the window size w corresponding to the length of the sequence
will represent an extremely important hyperparameter of the model.

In computational experiments consisting in learning individual neural networks, it
took values from the set w = {5, 10, 20, 30, 40, 50}. Once w was chosen, the whole dataset
was divided into time sequences (time series) of size w, producing training data (x,;, v;),
where x,,; is the time sequence and y; is the actual value of the stretching coefficient ks for
the given sequence.

We applied standardisation and normalisation techniques described in [31] to the
simulation data in order to speed up the training process of the model. We applied the
standardisation to the values of the extreme points according to the y and z axes and the
size of the sides of the bounding rectangle (or cuboid), so that the data were transformed to
have a mean of 0 and a standard deviation of 1. Then, for each training example separately,
the attributes containing information about the coordinates of the extreme points according
to the x axis were adjusted. The minimum value of the attribute x; in a given window was
subtracted from the value of the attribute x; for each record within the time window:

Xij_transformed = Xij — min(x;) 1)

In this way, we normalize the training examples while implicitly preserving informa-
tion about the rate of red blood cell movement.
The generated data were then divided into three parts:

* training data—for the training of the model
* walidation data 1—for the validation of the model after each epoch
* validation data 2—data used to compare different models

The partitioning was done in such a way as to avoid data leakage. The data leakage
occurs when the information that was used to train the machine learning model is also
used to validate or final test it.

Such a situation would occur if the model received only training data as an input,
which it automatically divided into training and validation parts, since the next step in
creating the dataset was to increase the number of training data for the machine learning
by augmenting the training data by noise and transforming the original positions.

The noise n generated from a random normal distribution with mean 0 and standard
deviation 1 was used, which was multiplied by a constant of 0.1 for each component of the
training example. One offset s was randomly generated from a uniform distribution from
the interval (—0.25,0.25) for each training example. The number of augmentations a was
determined as:

10,000
2= 30850 1)
w

Symmetry 2022, 14, 1732

7 of 21

and then a was rounded to be an integer. The amount of training data was thus increased
to approximately 380,000 examples.

2.4. Types of Tested Neural Network Architectures
2.4.1. Long-Short Term Memory

The LSTM (Long-Short Term Memory) architecture [32] is typically used for input
data in the form of a time sequence. Our network, using this architecture, was composed of
four layers, sequentially with 512, 64, 32 and 10 hidden neurons with hyperbolic tangent
activation function and recurrent sigmoid activation function. Each LSTM layer was
followed by a dropout in which 10% of the neurons were fired. The result is flattened (we
use keras.layers.Flatten() from [33]) and travels to a pair of fully connected layers with 1024,
512 neurons and ReLU activation function and also a fully connected layer with 1 neuron
and linear activation function, which is also the output layer.

2.4.2. CNN-LSTM

The CNN-LSTM (Convolutional Neural Networks—Long-Short Term Memory) ar-
chitecture [32] involves the use of convolutional layers CNN to extract features from the
input data combined with LSTM to support prediction from the sequence. One reason for
combining these layers is motivated by the analysis in [34] and papers, such as [35], which
suggests that the performance of LSTM can be improved. This architecture is suitable for
problems that:

* input with spatial structure, such as the 2D structure of pixels in an image or the 1D
structure of words in a sentence, paragraph, or document

* have temporal structure in their input, such as the order of images in a video or words
in a text, or require the generation of output with temporal structure, such as words in
a textual description

We have created two network versions of such a CNN-LSTM network. The first one,
CNN-LSTM ConvlD, used 1D convolution in traversing the temporal sequence and the
second one, CNN-LSTM Conv2D, used 2D convolution. First, we reduced the variance in the
input data by passing the input through a pair of convolutional layers with 256 filters, a step
size of 1, and alignment to the same size with ReLU activation. For CNN-LSTM Conv1D,
the size of the filters is for both layers the triple of the time window width. For CNN-LSTM
Conv2D, the size of the filters are the triple of the time window widths for the first layer
and then 4 x 3 for the second layer. After the CNN pair, the result is adjusted by layer
pooling with a filter size of 2 x 2. The multidimensional intermediate result is smoothed
(keras.layers.Flatten()) and is passed to the LSTM layer with 256 hidden neurons and the
ReLU activation function. Finally, we passed the output from the LSTM to a fully connected
layer with 512 neurons and ReLU activation function. The network terminated with a linear
output layer with one neuron.

The architectures of the neural networks used for our experiments are shown in Figure 4.

Symmetry 2022, 14, 1732

8 of 21

CNN_LSTM_Conv2D

LSTM CNN_LSTM_ConviD
ConviD ConvzD
— filters=256 filters=256
- kernsel_size=3 kemnsel_size=(#columns, 3)
ConviD Comv2D
Dropout filters=256 filters=256

dropout_rate=0.1

kernsel_size=3

kernsel_size=(4, 3)

v

i

MaxPooling2D

LSTM MaxPooling1D
units=64 pool_size=2 pool_size=2
Dropout
dropout.rate=0.1 Flatten Flatten
LSTM Dropout Dropout
units=32 dropout_rate=0.1 dropout_rate=0.1
Dropout LSTM LSTM

dropout_rate=0.1

number_of_nodes=256

number_of_nodes=256

v

i

LSTM Dense Dense
units=10 number_of_neurons=512 number_of_neurons=512
Flatten Dense Dense
number_of_neurons=1 number_of_neurons=1
Dropout

dropout_rate=0.1

L

Dense
number_of_neurons=1024

Dropout
dropout_rate=0.1

¥

Dense
number_of_neurons=512

L

Dense
number_of_neurons=1

Figure 4. Diagrams of the used neural network architectures.

All experiments were performed using Python 3.8 and the Tensorflow library (Keras)
was used to create the neural networks. The training was performed on a machine with an
ADM Ryzen 5 5600H with Radeon Graphics, 16 GB RAM and a NVIDIA GeForce RTX 3060

Laptop GPU graphics card.

Symmetry 2022, 14, 1732

9o0f21

3. Results and Discussion
3.1. Results of Using CNN-LSTM Networks to Simulate Triplets of RBC Types

We trained a total of 84 different neural network models, for each combination of
architecture type (3 types), data (4 used datasets), and window size w (7 possibilities) with
the Sim3 data. We used the mean absolute percentage error as the loss function defined in
Equation (3). The error MAPE (Mean Absolute Percentage Error) of the prediction and the
actual value is calculated as:

|3/true — Ypred
Ytrue

MAPE (Ytrue,]/pred) =100 x ®3)

Figure 5 shows the MAPE for each possible combination of the above options. The plot
shows that as the size of the time window for training increases, the MAPE also increases.
This trend was likely due to the addition of noise and bias in the augmentation.

Model-input data comparison

model_ax
LSTM_xy
CNN-LSTM_Conv1D_xy
80 1 CNN-LSTM_Conv2D_xy
LSTM xyz
CNN-LSTM_Conv1D xyz
CNN-LSTM_Conv2D_xyz
LSTM_xy xz
CNN-LSTM_Conv1D xy xz A
CNN-LSTM_Conv2D_xy xz 7
LSTM_xz A
CNN-LSTM_Conv1D_xz o
40 A CNN-LSTM_Conv2D_xz <ol

60

BARE

MAPE

20 - PR B

10 20 30 40 50
WINDOW

Figure 5. Comparison of the training MAPE for each combination of w, subset of data and type of
NN model.

The MAPE is in the 20% range for the data that simulate the data obtained from the
video recordings, while the combination of these data can reduce the error to half. The data
using information according to all three xyz-axes reach the lowest level, namely 5%, which
confirms our hypothesis that information about the elasticity of the observed cell can be
obtained from the data used. Table 4 shows the MAPE values by architecture and the
subset of data used for the value of the hyperparameter w for which the resulting model
had the smallest error. The results show that the most accurate neural network model was
the CNN-LSTM Conv2D for data along the xy-axes, xyz-axes, xy_xz-axes with the size of
the time window w used being successively 3, 3, 5, and along the xz-axes, the best model
was the LSTM with w = 5. CNN-LSTM Conv2D with w = 3 had the lowest MAPE value of
all the trained models, namely 4.58%. For the 2D projection, LSTM with w = 5 was the best
for the z data according to the xz-axes, with a MAPE value of 20.46%. For the concatenation
of the two 2D projections, the MAPE was 7.97% for CNN-LSTM Conv2D with w = 5.

Symmetry 2022, 14, 1732

10 of 21

Table 4. MAPE values according architecture, the subset of data used for training and the value of

the hyperparameter w. The lowest (best) value for each subset of data is highlighted.

MODEL DATA w MAPE
LSTM Xy 5 23.311285
LSTM XZ 5 20.463190
LSTM Xyz 5 5.706743
LSTM Xy_XZ 5 8.803662
CNN-LSTMConv1D Xy 3 22.353682
CNN-LSTMConv1D XZ 5 22.477804
CNN-LSTMConv1D Xyz 3 5.173491
CNN-LSTMConv1D Xy_XZ 3 9.300526
CNN-LSTMConv2D Xy 3 20.930489
CNN-LSTMConv2D XZ 3 20.559206
CNN-LSTMConv2D Xyz 3 4.578221
CNN-LSTMConv2D Xy_xz 5 7.974189

The MAPE distribution of all the elastic blood cell types we simulated can be seen in
Figure 6 for CNN-LSTM Conv2D xyz with w = 3 and in Figure 7 for CNN-LSTM Conv2D
xy_xz with w = 5. The green triangles represent the average MAPE for each value of the
elastic coefficient ks, the yellow line indicates the median of the values. The plots on both
sides show the same phenomenon, plots (b) and (d) additionally show outliers.

Absolute Percentage Error by True Value of ks

10 -
A
8 -
A

- N A
g
w
v 61
o
2 A
1]
o
@
[=9
[1¥]
5 4
[=]
2]
£
< A

21— T

T T
. T il T i —
T T T T T T
0.005 0.009 0.015 0.03 0.1 0.225 0.3

Figure 6. Cont.

Symmetry 2022, 14, 1732 11 of 21

Absolute Percentage Error by True Value of ks

800 A
[-
g600
w
o
[=3}
8
c
L5
=
& 400
z
=
o
v
Q
<
200 + ! ‘
$ | ‘ |
»
- »

S S S S 3 .i_ 4 i i
of - & 4

T T T T T T T T T

0.005 0.009 0.015 0.03 0.05 0.1 0.15 0.225 0.3

Value of ks

Figure 6. Boxplots of MAPE for each RBC elasticity type for the architecture CNN-LSTM Conv2D,
the subset of data used xyz with w = 3.

Absolute Percentage Error by True Value of ks

14 4

A

12 4

10 4 7y

Absolute Percentage Error

N

TesoULUnlUL

0.(;05 O.OIO9 0.615 0.63 0.65 0.‘1 0.‘15 O.iZS 0.‘3
Value of ks

Figure 7. Cont.

Symmetry 2022, 14, 1732 12 of 21

Absolute Percentage Error by True Value of ks

300 1

2501

N
=]
=]

Absolute Percentage Error
-
w
=]

100 4

50

o S

|]
7*+4_$_¢_£L_l_3::‘t:

T T T T T T T T T
0.005 0.009 0.015 0.03 0.05 0.1 0.15 0.225 0.3
Value of ks

Figure 7. Boxplots of MAPE for each RBC elasticity type for the architecture CNN-LSTM Conv2D,
the subset of data used xy_xz with w = 5.

The largest average MAPEs are seen at elasticity values of 0.03 and 0.1 for the CNN-
LSTM Conv2D models xyz with w = 3 and xy_xz with w = 5 in Figures 8 and 9, respectively.
For both models, we can notice that for the part of the corpuscles with elasticity of 0.03,
the predicted value was at 0.009, and similarly for the elasticity value of 0.1, where the
more significant part of the predictions is from the interval (0.005,0.03).

Predicted values for cell with ks=0.03 Predicted values for cell with ks=0.1

I—

WO DR TR
P R B &

T T T T T T T T T
0.010 0.015 0.020 0.025 0.030 0.00 0.05 0.10 0.15 0.20
Value of predicted ks Value of predicted ks

Figure 8. The largest average MAPE for elasticity 0.03 and 0.1 for the architecture CNN-LSTM Conv2D,
the subset of data used xyz with w = 3.

Symmetry 2022, 14, 1732

13 of 21

Predicted values for cell with ks=0.03 Predicted values for cell with ks=0.1

. |
f

T T T T T T T T T T T T T
0.02 0.04 0.06 0.08 0.10 0.12 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Value of predicted ks Value of predicted ks

Figure 9. The largest average MAPE for elasticity 0.03 and 0.1 for the architecture CNN-
LSTM_Conv2D, the subset of data used xy_xz with w = 5.

Table 4 shows the MAPE values by architecture, the subset of data used and the
value of the hyperparameter w for which the resulting model had the smallest error.
The results show that the most accurate neural network model was CNN-LSTM_Conv2D
for data according to xy-axes, xyz-axes, xy_xz-axes with the used time window size w
successively 3, 3, 5 and according to xz-axes the best model was LSTM with w = 5. The
CNN-LSTM_Conv2D with w = 3 had the lowest MAPE value of all the trained models,
namely 4.58%. For 2D projection, LSTM with w = 5 for the data from the along-axis xz,
with a MAPE value of 20.46%. For merging the two 2D projections, the MAPE was 7.97%
for CNN-LSTM_Conv2D with w = 5.

The results of the experiment described in the Section 3.1 suggest that it might be
possible to determine the elasticity of a red blood cell from the data we can obtain from
video recordings of blood flow in microfluidic devices. However, if we use only one view of
the blood flow, e.g., along the xy-axes, the resulting prediction will contain a relatively large
error, on average over 20%. If a video from two sides, xy and xz, is used, the prediction
will achieve an average error of less than 8% of the true value. This result would be
difficult to obtain from data measured in a real blood flow experiment. In the simulation
experiment we have all the values of x, y, z coordinates for all points of RBC surface
discretisation. Thanks to this we can estimate how big is the deviation of the real blood
cell from its recording on the video. By fitting an estimate of the elasticity parameter ks,
we can estimate the error we have made compared to a situation in which we would have
complete information. Our results show that when solving the ks parameter estimation
problem, we obtain better results for video recordings from multiple axes of symmetry of
the monitored channel.

3.2. Use of Regression Neural Network for Red Blood Cell Elasticity Classification

As we mentioned in the introduction, the problem of determining the elasticity of
RBCs as a classification problem has been studied before, and we assume that it is a more
frequently-studied and an easier-to-solve problem. In order to be able to compare the
results, we simply transformed the results of the regression method into a simple classifier.
For this we used the same simulation data as in the Section 3.1, Sim3a-c.

We decided to investigate the ability of the neural network to predict cell elasticity
approximately, and thus the ability to assign blood cells to categories. An intuitive way was
to train a classification neural network. However, along with it, we developed yet another
method of classifying the corpuscles that used the output of the regression neural network
directly. Converting the output of the regression model into a classification consisted
of de-averaging the elastic coefficient and then assigning it to the appropriate category.
The categories were created by identifying eight boundaries among the nine elasticity values

Symmetry 2022, 14, 1732

14 of 21

used, with the boundary located midway between two adjacent coefficients (ordered in
ascending order). This neural network is referred as RegToClass.

The neural network classification model had the same architecture as the regression
neural networks and was created by alternating the last layer. The only change was in the
last, output layer, which replaced one output neuron with nine, which was the number of
categories, and the activation function was changed from linear to softmax. At the same
time, we also changed the loss function to categorical cross-entropy and transformed the
target variables to one-hot encoding.

The classification success rate for the best models according to the comparison in
Table 4 can be consulted in Table 5. In all cases, we see improved classification performance
for versions of the models directly optimized for the classification task. The largest dif-
ference in accuracy is almost 11.75% for the model that learned on data representing the
projection onto 2D by the xz-axes (Figure 10), with a minimal improvement of 5.84% for
the model with xyz data (Figure 11). Again, the bias is evident for the blood cells with an
elastic coefficient value of 0.03, where the predicted class was 0.009, to a greater extent for
the neural network model trained on the xz data. We also note the lower classification
success for coefficient values of 0.225 and 0.3, for which the corpuscle is very stiff and
the differences in elasticity are small, and this makes a correct prediction difficult. (It can
be said that such stiff RBCs are rarely seen in reality).

Table 5. Comparison of classification accuracies of RegToClass and Classification neural networks.

Window Size w w Subset of Data RegToClass Classification
3 xy 69.83% 80.92%
3 Xz 71.84% 83.59%
3 xyz 93.73% 96.87%
5 Xy_xz 88.83% 94.67%

Confusion matrix W 3 A 9 X xz (in %)

0.005 265 2.83 018 0.00 0.00 000 000 0.00
0.0094 169 339 203 0.85 0.00 000 000 0.00
00154 3485 833 . 0.00 0.00 0.00 000 000 0.00

0034 052 3552 793 241 000 000 000 0.00

2

& 5054 055 1015 277 4.06 074 018 0.00 0.00

2

',_

014 164 1691 473 6.00 1273 0.36
0154 000 018 000 018 0.54 0.00
02254 000 275 055 275 916 1.10
034 000 214 071 071 231
T T T T T T T T
& 9 g] % ~) 9)
090 090 09'\, P O N o 0,'1,’1- o

Predicted label

Figure 10. Cont.

Symmetry 2022, 14, 1732

15 of 21

Confusion matrix W 3 A 9 X xz (in %)

0005 NEEPPM 071 989 000 018 000 000 0.0

0.009 ~

0.015 A

0.03 4

0.05

True label

0.1 A

0.15 A

0.225 A

034 0.00 0.53 0.00 0.18 0.00 8.19 9.96 6.76

T T T T T T T

o o)) 5 5 s 5

$ $ ~ S S o N o
S S O o o o

Predicted label

0.00

Figure 10. Confusion matrices of RBC classification for RegToClass (up) and Classification (down)

neural networks xz.

0.005 000 053 000 000 000 000 000

0.009 ~

0.015 ~

0.03 4

0.05 4

True label

0.1 A

0.15 4

0.225 A

0.3 1

T T T T T

T T

“ > 2] “y 2] Ne]

< S S o0 N o o v
Predicted label

Figure 11. Cont.

0.00

Symmetry 2022, 14, 1732

16 of 21

0.005 0.00 088 000 000 000 000 000 000

0.009 +

0.015 4

0.03

0.05

True label

0.1 1

0.15 1

0.225 1

0.3 A

T T T T T T T T

]] 2] ~ “
& g N o ~
o o o N o

Predicted label

Figure 11. Confusion matrices of RBC classification for RegToClass (up) and Classification (down)
neural networks xyz.

3.3. Validating Models on the Different Simulations

The previous experiments worked with a triplet of simulations, where each was
divided into training, validation, and test parts. The next experiment focused on detecting
model errors and possible overfitting. The dataset was constructed in a different way in
this case:

* Training: one simulation with nine cell types (according to the elastic coefficient value
ks = 0.005, 0.009, 0.015, 0.03, 0.05, 0.1, 0.15, 0.225, 0.3)

¢ Validation: one simulation with nine cell types (same as for training the model,
but with different initial seeding) and the same simulation parameters

In the previous experiment, subsets of the data for the performance model were shown
to be the best data along the xy and xz axes simultaneously (the subset of data labeled as
xy_xz), not counting the subset of data xyz, which we cannot obtain in practice. For this
combination of model and data subset we trained the models for different window lengths
w. As in the previous experiment, we pre-processed the data and then expanded the data
by a sufficient amount of data for a neural network. The resulting MAPE values are visible
in Figure 12.

The validation showed a significantly degraded performance of the model despite
our efforts to limit the possibility of overfitting by adding augmented data by noise and
dropout. This deterioration was likely due to the data, or rather the components of the
data, containing information about the y and z axes. The neural network overfitted, which
in this case means that it over-focused on this subsection of the data by predicting the value
of the elastic coefficient based on the position of the cell according to the channel. In the
previous experiment, when the entire red blood cell trajectory was divided into parts with
the required number of records equal to the parameter w and then divided into subparts for
training and validation, which was random, this information was present in both datasets,

Symmetry 2022, 14, 1732

17 of 21

Model-input data comparison

which explains the better performance of the model. This implies that despite splitting the
dataset into four parts to prevent data leakage, such leakage did occur. The best model
in such validation was again the CNN_LSTM_Conv2D model with window size w = 20,

but again the MAPE was remarkably high.

Validation of models for xy-xz data

351 Maodel type Lo 704 % Model type
.
—8— LSTM xy xz g \ CNN-LSTM_Conv1D
104 CNN-LSTM_Conv1D_xy_xz o0 Y ==~ ~#— CNN-LSTM_Conv2D
—=— CNN-LSTM_Conv2D Xy xz et / ’,'\:\ J —=— ISTM
K /
/ ’ 6571 4 Y / *
/ " V; N
4 ’ [\ AN 7 Y
25 / h) Y . / Y
' 7 \ A i Y
rd F; Y \ / Y
7 J \ . / N
W 4 w
o i’] 60 \ ~ / hY
E 201 K ’f % " \\ ." \\.
4 A ra
,f. .'! * N S
; \
15 A o-ZIIlo- . / ™ ;
.fr B -~ 551 N
4" ., //, \\\
§ T - v _——a
10 4 L RN d N e S~
14 ~ . = ~
2 Saa P 50 T~
5./ S TTeeel,
5 T T T T T T T T T T
10 20 30 40 50 10 20 30 40 50
window window
(a) (b)

Figure 12. Comparison of (a) training MAPE and (b) validation MAPE of the different combinations

of model architectures and the window size w.

An important observation, despite the significantly degraded results, was the observ-
ably better performance of the CNN_LSTM_Conv2D model in all experiments. Unlike
the original CNN_LSTM_Conv1D architecture from the paper [36], this model contained a
convolution filter of size (4, 3) (as opposed to number of features, 3). This finding is further
evidence that CNNs are one of the most powerful architectures of the present day.

Comparison with Multiple Linear Regression

To better understand the quality of the results obtained using NN as described above,
we solved a similar problem using classical regression tools. We used a modified MLR
(Multivariate Linear Regression) and the same dataset (dataset_xy_xz). Regression coef-
ficients were again calculated based solely on Sim9a data and then were used to predict
ks values in Sim9b. The obtained results were compared with the values obtained for the
CNN-LSTM-Conv2D architecture and the parameter w = 50, for which we obtained the
smallest MAPE value.

The input data matrix was created by arranging the data from the dataset_xy_xz for
each simulation step, resulting in a matrix with dimensions 54 x 15,997. Its data were
centered and scaled. Since the number of regression parameters is larger than the number of
observations, the standard MLR method cannot be implemented due to the singular matrix
formation when estimating covariances between independent variables. For this reason, it
is necessary to first reduce the space of observations, for which we used the PCA (Principal
Component Analysis) method. After performing the space projection using the PCA
method, using the first seven principal components preserves approximately 97% of the
information from the original data. This effective reduction of the 15,997-dimensional space
is due to the significant “similarity” of the processed data. This combination of methods is
called the PCR (Principal Component Regression) method, and we subsequently used it to
predict ks values in this reduced space.

The obtained results along with the actual values for each cell are plotted in Figure 13
part (a). Recall that the multivariate linear regression used the simulation data to estimate
ks for each cell just once; therefore, a total of 54 ks values were predicted. For the estimation
of ks values using CNN-LSTM_Conv2D, ks values were predicted (given a window size

Symmetry 2022, 14, 1732

18 of 21

of w = 50) for sequences of 50 consecutive positions of individual RBCs, so there were
486 estimated ks values in total. In the Figure 13, we see that the MLR method was able to
capture the increasing trend of ks values, but the MAPE for this method reached as high
as 140%. Compared to the MAPE of 48.86% using the CNN-LSTM-Conv2D model with
a window size of w = 50, this is an expected deterioration. The PCR method can only
capture linear dependencies in the data structure. In contrast, NNs are generally able to
find even non-linear constraints in the data.

PCR
0.35 - CNN-LSTM-Conv2D (w = 50)
—— predicted value 0.35
0.3 e true value —s—predicted value

—_ — * -average predicted value g e truevalue

~® 025 - — « -average predicted value

= x

@ 02 £

0o Qo

5 015 =

£ B

2 o1 o

g £

IS =

g 0.05 g

(%] 0 m

-0.05 0.05
0 10 20 30 40 50 60 0 100 200 300 400 500
red blood cell red blood cell
(a) (b)

Figure 13. Comparison of predicted (blue curve) and actual (red points) ks values for individual
cells using (a) the PCR method using the first seven principal components and (b) the CNN-LSTM-
Conv2D model (w = 50). The black curve represents the average percentage error for cells with the
same elasticity.

4. Conclusions

The results of our computational experiments and the performance of the obtained
NN in predicting the elasticity of RBCs have been described in detail in the previous sec-
tions. Recall that in our research we use the outputs from simulation experiments of RBCs
motion in blood flow as input data for training NNs. Although simulations generally model
and repeat real experiments, we are aware that this is only a computational model and not
a record of biological data. However, we can modify the computational outputs to fit even
very simple image recordings of in vitro experiments. This approach gives us, among other
things, the opportunity to investigate theoretically how the predictions obtained from the
experimental record differ from those obtained from the full computational data.

Our recent research goal is therefore not to compare the consistency of real and
simulation experiments, but to focus on the differences in the capabilities of 3D models and
their, video-recording-based, 2D descriptions. In [17], we showed that different results can
be yielded by whether the video footage was acquired at the top or at the side of a channel
with a flowing fluid.

In this study, with similar intent, we addressed the ability to predict the elasticity of
RBCs using high-performance LSTM and CNN-LSTM networks. As expected, the networks
that used full 3D information were the most successful in this task. In our case, this
involved all three dimensions x, y, z of bounding boxes surrounding the RBCs (dataset_xyz).
Second in order of success were networks where two 2D data describing the bounding
box dimensions when viewed from the side and from above were used simultaneously as
input (dataset_xy_xz). Networks for which only separate projections onto the xy-plane
or onto the xz-plane were inputs showed the largest errors. For the design of biological
experiments, we can therefore recommend that at least two devices capturing their progress
in linearly independent planes should be used for video recording.

Among the NNs trained and investigated, the CNN-LSTM architecture using 2D con-
volutional layers was found to be the best performing. Acceptable accuracy was achieved
in its standard use for elasticity prediction, described in Section 3.1. The hyperparameter
w, describing the length of the sequence of data records used for training the network,

Symmetry 2022, 14, 1732

19 of 21

References

proved to be optimal in this case for low values of w = 3 or w = 5. For the processing of
data from real experiments, this is a sufficient result, as it will not require long tracing of
individual RBCs.

The weakest results were obtained when the model was experimentally validated on
parallel simulations to test the transferability of the prediction between similar experiments.
A way to improve these results is offered as a further possibility of research. However,
we have shown that NN results are also significantly better in this area than using more
conventional linear methods.

Author Contributions: Conceptualisation, K.B., H.B. and M.S.; methodology, S.M. and M.S.; soft-
ware, S.M. and M.S,; validation, S.M. and M.S.; formal analysis, S.M.; investigation, S.M. and M.S.;
resources, M.S. and H.B.; data curation, M.S.; writing—original draft preparation, S.M., H.B. and M.S.;
writing—review and editing, H.B., K.B., S.M. and M.S.; visualisation, S.M. and M.S.; supervision,
K.B.; project administration, K.B.; funding acquisition, K.B. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by the Operational Program “Integrated Infrastructure” of
the project “Integrated strategy in the development of personalized medicine of selected malignant
tumor diseases and its impact on life quality”, ITMS code: 313011V446, co-financed by resources of
European Regional Development Fund, and by the Ministry of Education, Science, Research and
Sport of the Slovak Republic under the contract No. VEGA 1/0643/17 and by the Slovak Research
and Development Agency under the contract No. APVV-15-0751.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this study are freely available in the GIT repository:
https:/ /github.com/molcan23/RBC_NN, (accessed on 13 July 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CIF Cell in Fluid, Biomedical Modeling & Computation Group
CNN Convolutional neural network

CTC Circulating Tumor Cells

ESPResSo Extensible Simulation Package for Research on Soft Matter
IBM Immersed Boundary Method

LSTM Long-short Term Memory

MAPE Mean Absolute Percentage Error

ML Machine Learning

MLR Multiple Linear Regression

NN Neural Networks

PCA Principal Component Analysis

PCR Principal Component Regression

RBC Red Blood Cell

ReLU Rectified Linear Unit

1. Afsaneh, H.; Mohammadi, R. Microfluidic platforms for the manipulation of cells and particles. Talanta Open 2022, 5, 100092.

[CrossRef]

2. Li, C; He, W.; Wang, N.; Xi, Z; Deng, R; Liu, X; Kang, R; Xie, L.; Liu, X. Application of Microfluidics in Detection of Circulating
Tumor Cells. Front. Bioeng. Biotechnol. 2022, 10, 907232. [CrossRef] [PubMed]

3. Riordon, J; Sovilj, D.; Sanner, S.; Sinton, D.; Young, E.W. Deep learning with microfluidics for biotechnology. Trends Biotechnol.
2019, 37, 310-324. [CrossRef] [PubMed]

4. Vasilevich, A.S,; Carlier, A.; de Boer,].; Singh, S. How not to drown in data: A guide for biomaterial engineers. Trends Biotechnol.
2017, 35, 743-755. [CrossRef] [PubMed]

https://github.com/molcan23/RBC_NN
http://doi.org/10.1016/j.talo.2022.100092
http://dx.doi.org/10.3389/fbioe.2022.907232
http://www.ncbi.nlm.nih.gov/pubmed/35646880
http://dx.doi.org/10.1016/j.tibtech.2018.08.005
http://www.ncbi.nlm.nih.gov/pubmed/30301571
http://dx.doi.org/10.1016/j.tibtech.2017.05.007
http://www.ncbi.nlm.nih.gov/pubmed/28693857

Symmetry 2022, 14, 1732 20 of 21

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Raji, H.; Tayyab, M.; Sui, J.; Mahmoodi, S.R.; Javanmard, M. Biosensors and machine learning for enhanced detection, stratification,
and classification of cells: A review. Biomed. Microdev. 2022, 24, 1-20. [CrossRef]

Liu, Y;; Li, S.; Liu, Y. Machine Learning-Driven Multiobjective Optimization: An Opportunity of Microfluidic Platforms Applied
in Cancer Research. Cells 2022, 11, 905. [CrossRef]

Mantegazza, A.; Clavica, F; Obrist, D. In vitro investigations of red blood cell phase separation in a complex microchannel
network. Biomicrofluidics 2019, 14, 014101. [CrossRef]

Rizzuto, V.; Mencattini, A.; Alvarez-Gonzélez, B.; Di Giuseppe, D.; Martinelli, E.; Beneitez-Pastor, D.; Samitier,]. Combining
microfluidics with machine learning algorithms for RBC classification in rare hereditary hemolytic anemia. Sci. Rep. 2021,
11, 13553. [CrossRef]

Kajének, F,; Cimrdk, I. Advancements in Red Blood Cell Detection using Convolutional Neural Networks. In Proceedings of the
13th International Joint Conference on Biomedical Engineering Systems and Technologies—BIOINFORMATICS, Valletta, Malta,
24-26 February 2020; pp. 206-211.

Hervé, L.; Kraemer, D.C.A.; Cioni, O.; Mandula, O.; Menneteau, M.; Morales, S.; Allier, C. Alternation of inverse problem
approach and deep learning for lens-free microscopy image reconstruction. Sci. Rep. 2020, 10, 20207. [CrossRef]

Ondrasovi¢, M.; Tardbek, P. Siamese visual object tracking: A survey. IEEE Access 2021, 9, 110149-110172. [CrossRef]

Cimrak, I.; Gusenbauer, M.; Jan¢igovd, I. An ESPResSo implementation of elastic objects immersed in a fluid. Comput. Phys.
Commun. 2014, 185, 900-907. [CrossRef]

Kovalé¢ikovd, K.; Cimrék, I.; Bachrata, K.; Bachraty, H. Comparison of Numerical and Laboratory Experiment Examining
Deformation of Red Blood Cell. In Proceedings of the 7th International Work-Conference, IWBBIO 2019, Granada, Spain, 8-10
May 2019; pp. 75-86.

Bachraty, H.; Bachratd, K.; Chovanec, M.; Kajanek, F; Smieskova, M.; Slavik, M. Simulation of blood flow in microfluidic devices
for analysing of video from real experiments. In Proceedings of the 6th International Work-Conference, IWBBIO 2018, Granada,
Spain, 25-27 April 2018.

Bachraty, H.; Bachratd, K.; Chovanec, M.; Jan¢igova, I.; Smieskovéa, M.; Koval¢ikova, K. Applications of machine learning for
simulations of red blood cells in microfluidic devices. BMC Bioinform. 2020, 21, 90. [CrossRef] [PubMed]

Lamoureux, E.; Islamzada, E.; Wiens, M.; Matthews, K.; Duffy, S.; Ma, H. Assessing Red Blood Cell Deformability using Deep
Learning. Lab Chip 2021, 22, 26-39. [CrossRef]

Bachratd, K.; Buzdkovd, K.; Chovanec, M.; Bachraty, H.; Smieskovd, M.; Bohinikova, A. Classification of Red Blood Cell Rigidity
from Sequence Data of Blood Flow Simulations Using Neural Networks. Symmetry 2021, 13, 938. [CrossRef]

Kovacs, A.; Exl, L.; Kornell, A.; Fischbacher, J.; Hovorka, M.; Gusenbauer, M.; Breth, L.; Oezelt, H.; Yano, M.; Sakuma, N.
Conditional physics informed neural networks. Commun. Nonlinear Sci. Numer. Simul. 2022, 104, 106041. [CrossRef]

Kovacs, A.; Exl, L.; Kornell, A.; Fischbacher, J.; Hovorka, M.; Gusenbauer, M.; Breth, L.; Oezelt, H.; Praetorius, D.; Suess, D.
Magnetostatics and micromagnetics with physics informed neural networks. |. Magn. Magn. Mater. 2022, 548, 168951. [CrossRef]
Smieskova, M.; Bachrata, K. Validation of Bulk Properties of Red Blood Cells in Simulations. In Proceedings of the 2019
International Conference on Information and Digital Technologies (IDT), Zilina, Slovakia, 25-27 June 2019; pp- 417-423.
Arnold, A.; Lenz, O.; Kesselheim, S.; Weeber, R.; Fahrenberger, F.; Roehm, D.; Holm, C. Espresso 3.1: Molecular dynamics software
for coarse-grained models. In Meshfree Methods for Partial Differential Equations VI; Springer: Berlin/Heidelberg, Germany, 2013;
pp- 1-23.

Cell in Fluid (CIF). Biomedical Modeling & Computation Group. Available online: https:/ /cellinfluid.fri.uniza.sk/ (accessed on
21 April 2021).

Ahlrichs, P; Diinweg, B. Lattice-Boltzmann simulation of polymer-solvent systems. Int. J. Mod. Phys. C 1998, 9, 1429-1438.
[CrossRef]

Busik, M.; Slavik, M.; Cimrak, I. Dissipative coupling of fluid and immersed objects for modelling of cells in flow. Comput. Math.
Methods Med. 2018, 2018, 7842857. [CrossRef]

Jancigovd, I.; Kovalcikova, K.; Bohinikova, A.; Cimrék, I. Spring-network model of red blood cell: From membrane mechanics to
validation. Int. J. Numer. Methods Fluids 2020, 92, 1368-1393. [CrossRef]

Chen, Y,; Li, D.; Li, Y.; Wan, J.; Li, J.; Chen, H. Margination of stiffened red blood cells regulated by vessel geometry. Sci. Rep. 2017,
7,15253. [CrossRef]

Zhang, X.; Caruso, C.; Lam, W.A.; Graham, M.D. Flow-induced segregation and dynamics of red blood cells in sickle cell disease.
Phys. Rev. Fluids 2020, 5, 053101. [CrossRef] [PubMed]

Bento, D.; Fernandes, C.S.; Pereira, A.I; Miranda,].M.; Lima, R. Visualization and measurement of the Cell-Free Layer (CFL)
in a microchannel network. In Proceedings of the European Congress on Computational Methods in Applied Sciences and
Engineering, Porto, Portugal, 18-20 October 2017.

Balogh, P.; Bagchi, P. The cell-free layer in simulated microvascular networks. J. Fluid Mech. 2019, 864, 768-806. [CrossRef]
Suresh, S.; Spatz, J.; Mills,].P; Micoulet, A.; Dao, M.; Lim, C.T.; Beil, M.; Seufferlein, T. Connections between single-cell
biomechanics and human disease states: Gastrointestinal cancer and malaria. Acta Biomater. 2005, 1, 15-30. [CrossRef] [PubMed]
Montavon, G. Neural Networks: Tricks of the Trade; Orr, G., Miiller, K.-R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012;
Volume 7700.

http://dx.doi.org/10.1007/s10544-022-00627-x
http://dx.doi.org/10.3390/cells11050905
http://dx.doi.org/10.1063/1.5127840
http://dx.doi.org/10.1038/s41598-021-92747-2
http://dx.doi.org/10.1038/s41598-020-76411-9
http://dx.doi.org/10.1109/ACCESS.2021.3101988
http://dx.doi.org/10.1016/j.cpc.2013.12.013
http://dx.doi.org/10.1186/s12859-020-3357-5
http://www.ncbi.nlm.nih.gov/pubmed/32164547
http://dx.doi.org/10.1039/D1LC01006A
http://dx.doi.org/10.3390/sym13060938
http://dx.doi.org/10.1016/j.cnsns.2021.106041
http://dx.doi.org/10.1016/j.jmmm.2021.168951
https://cellinfluid.fri.uniza.sk/
http://dx.doi.org/10.1142/S0129183198001291
http://dx.doi.org/10.1155/2018/7842857
http://dx.doi.org/10.1002/fld.4832
http://dx.doi.org/10.1038/s41598-017-15524-0
http://dx.doi.org/10.1103/PhysRevFluids.5.053101
http://www.ncbi.nlm.nih.gov/pubmed/34095646
http://dx.doi.org/10.1017/jfm.2019.45
http://dx.doi.org/10.1016/j.actbio.2004.09.001
http://www.ncbi.nlm.nih.gov/pubmed/16701777

Symmetry 2022, 14, 1732 21 of 21

32.

33.

34.
35.

36.

Wahlstrom, N.; Lindholm, A.; Lindsten, F.; Schon, T.B. Machine Learning: A First Course for Engineers and Scientists; Cambridge
University Press: Cambridge, UK, 2022.

TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Available online: https://www.tensorflow.org/ (ac-
cessed on 12 August 2022).

Pascanu, R.; Gulcehre, C.; Cho, K.; Bengio, Y. How to construct deep recurrent neural networks. arXiv 2013, arXiv:1312.6026.
Kim, T.-Y.; Cho, S.-B. Predicting residential energy consumption using CNN-LSTM neural networks. Energy 2019, 182, 72-81.
[CrossRef]

Yan, R.; Liao, J.; Yang, J.; Sun, W.; Nong, M.; Li, E. Multi-hour and multi-site air quality index forecasting in Beijing using CNN,
LSTM, CNN-LSTM, and spatiotemporal clustering. Expert Syst. Appl. 2021, 169, 114513. [CrossRef]

https://www.tensorflow.org/
http://dx.doi.org/10.1016/j.energy.2019.05.230
http://dx.doi.org/10.1016/j.eswa.2020.114513

	Introduction
	Materials and Methods
	Simulation Model and Input Settings
	Description of Obtained Simulation Data
	Preprocessing and Data Augmentation
	Types of Tested Neural Network Architectures
	Long-Short Term Memory
	CNN-LSTM

	Results and Discussion
	Results of Using CNN-LSTM Networks to Simulate Triplets of RBC Types
	Use of Regression Neural Network for Red Blood Cell Elasticity Classification
	Validating Models on the Different Simulations

	Conclusions
	References

