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Abstract: In this study, a high-order compact finite difference method is used to solve boundary value
problems with Robin boundary conditions. The norm is to use a first-order finite difference scheme
to approximate Neumann and Robin boundary conditions, but that compromises the accuracy of
the entire scheme. As a result, new higher-order finite difference schemes for approximating Robin
boundary conditions are developed in this work. Six examples for testing the applicability and
performance of the method are considered. Convergence analysis is provided, and it is consistent
with the numerical results. The results are compared with the exact solutions and published results
from other methods. The method produces highly accurate results, which are displayed in tables
and graphs.

Keywords: boundary value problems; compact finite differences; quasilinearization; Robin boundary
conditions

1. Introduction

Boundary value problems (BVPs) are paramount in the modeling of several real-
life problems with diverse applications. Boundary conditions of different types often
accompany these problems. Dirichlet boundary conditions are the most common and
more straightforward to implement. The Neumann boundary conditions are also not too
complicated to deal with. On the other hand, the implementation of Robin boundary
conditions poses significant difficulties to many researchers. As a result, BVPs with Robin
boundary conditions have not received much attention. The Robin boundary condition, also
referred to as the third-type boundary condition, was named after Victor Gustave Robin,
who was behind its inception [1]. The Robin boundary condition is a linear combination of
the solution and its derivative at the boundary point. It arises in diverse physical situations.

If a differential equation is to be solved over a domain Ω, where ∂Ω denotes the
domain’s boundary, the Robin boundary condition is:

au + b
∂u
∂n

= g (1)

on the ∂Ω boundary. Our focus, in this work, is to solve second-order boundary value
problems of the form

y′′(x) = f
(
x, y, y′

)
for a ≤ x ≤ b (2)

subject to the Robin boundary conditions

αay(a) + βay′(a) = γa,

αby(b) + βby′(b) = γb,
(3)

where αa, αb, βa, βb, γa, and γb are constants.
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Numerous approximation methods have been developed and implemented to solve
Equation (2). They include the homotopy perturbation method [2], homotopy analysis
method [3], Adomian decomposition method [4], variational iteration method [5], spectral
method [6], shooting method [7], and finite differences [8], to name a few. The Robin
boundary conditions have not been covered that extensively because they are difficult
to deal with. Some of the methods that have been utilized to solve Equation (2) with
Robin boundary conditions include the diagonal block method [9], modified Adomian
decomposition method [10], Bernoulli polynomials [11], the compact finite difference
method [12].

Compact finite difference schemes (CFDSs) have gained popularity in the field of nu-
merical approximations in recent years. In [13], Lele gave an in-depth description of CFDSs
for various applications such as interpolation, filtering, and evaluating derivatives. They
have been applied to solve differential equations such as Poisson’s equation [14], Burger’s
equation [15,16], American option pricing problems [17], Navier–Stokes equation [18],
integro-differential equation [19,20], Korteweg–de Vries equation [21], Black–Scholes equa-
tion [22,23], dynamical systems [24,25], and many more [26–30]. Their main advantage is
that, with few grid points, they attain very high-order accuracy.

In this work, we use the higher-order compact finite difference schemes to solve two-
point boundary value problems with Robin boundary conditions. Usually, when finite
difference methods are used to solve differential equations subjected to Neumann or Robin
boundary conditions, the first-order finite difference formula is used to approximate the
derivative in the boundary condition, even if a higher-order method is being used to solve
the equation. The disadvantage with that is that the overall accuracy is compromised
because of the lower-order approximation at the boundaries. Hence, we develop new
higher-order finite difference schemes to approximate the Robin boundary conditions in
this work. This enhances the overall accuracy. We consider some examples of boundary
value problems that are subjected to Robin boundary conditions to test the applicability
and accuracy of the new schemes.

The rest of the paper is laid out as follows. In Section 2, we discuss the quasilin-
earization technique. In Section 3, we present the derivations of the sixth-order compact
finite difference schemes. In Section 4 we discuss the development of CFDSs with Robin
boundary conditions. We discuss the convergence of method in Section 5. The results and
discussion are presented in Section 6, followed by the conclusions in Section 7.

2. Quasilinearization

Before applying the CFDM, we need to linearize Equation (2) first. To this end, we use
the quasilinearization (QLM) technique that was introduced by Bellman and Kalaba [31].
The QLM reduces the nonlinear BVP into a sequence of linear BVPs, which we solve
iteratively until a set tolerance level is reached.

We expand the nonlinear function f (x, y, y′) in Equation (2) using Taylor’s series up
to the first-order terms, to obtain

y′′ = f (x, yr, y′r) + (yr+1 − yr)
∂ f (x, yr, y′r)

∂yr
+ (y′r+1 − y′r)

∂ f (x, yr, y′r)
∂y′r

, (4)

y′′r+1 + a1y′r+1 + a0yr+1 = G(x), (5)

where

a1 =− ∂ f (x, yr, y′r)
∂y′r

, (6)

a0 =− ∂ f (x, yr, y′r)
∂yr

, (7)

G(x) = f (x, yr, y′r) + a1y′r + a0yr. (8)
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3. Compact Finite Difference Schemes at Interior Nodes

In this section, we present the derivations of the sixth-order compact finite difference
schemes for approximating first and second derivatives. We consider a function f (x)
defined on x ∈ [a, b], where a and b are arbitrary constants. We discretize the domain
into N number of nodes with a uniform step size h = (b− a)/(N − 1) and nodes xi =
a + (i− 1)h, 1 ≤ i ≤ N.

3.1. First Derivative Approximation

The general formula for approximating first derivatives is given by

A f ′i−1 + f ′i + A f ′i+1 = a1 fi−2 + a2 fi−1 + a3 fi + a4 fi+1 + a5 fi+2 + T1, (9)

where fi = f (xi) and T1 is the truncation error. A and ai(i = 1, . . . 5) are constants to
be determined. The values of these constants are obtained by expanding both sides of
Equation (9) using the Taylor series expansion about xi and matching the coefficients of
f (n)i , with n = 1, 2, . . . , 6 for a sixth-order accurate scheme. That results in six algebraic
equations that are solved to obtain the following constants:

A =
1
3

, a1 = − 1
36h

, a2 = − 7
9h

, a3 = 0, a4 =
7

9h
, a5 =

1
36h

. (10)

Therefore, the scheme for approximating the first derivative is given by

1
3

f ′i−1 + f ′i +
1
3

f ′i+1 =
1

36h
fi−2 +

7
9h

fi−1 −
7

9h
fi+1 −

1
36h

fi+2 + T(i)
1 . (11)

The first unmatched coefficients of the Taylor series expansion are used to determine
the truncation error, which is given by

T(i)
1 =

h7

5040

(
128a1 f (7)(x) + a2 f (7)(x)− a4 f (7)(x)− 128a5 f (7)(x)

)
= − h6

1260
f (7)(x) (12)

3.2. Second Derivative Approximation

The general formula for approximating second derivatives is given by

A f ′′i−1 + f ′′i + A f ′′i+1 = a1 fi−2 + a2 fi−1 + a3 fi + a4 fi+1 + a5 fi+2 + T2, (13)

with T2 being the truncation error. Similarly, the values of these constants are obtained
by expanding both sides of Equation (13) using the Taylor series expansion about xi and
matching the coefficients of f (n)i , with n = 1, 2, . . . , 6 for a sixth-order-accurate scheme.
That results in six algebraic equations that are solved to obtain the following constants:

A =
2

11
, a1 =

3
44h2 , a2 =

12
11h2 , a3 = − 51

22h2 , a4 =
12

11h2 , a5 =
3

44h2 . (14)

Therefore, the scheme for approximating the second derivative is given by

2
11

f ′′i−1 + f ′′i +
2
11

f ′′i+1 =
3

44h2 fi−2 +
12

11h2 fi−1−
51

22h2 fi +
12

11h2 fi+1 +
3

44h2 fi+2 + T(i)
2 (15)

Similarly, the first unmatched coefficients of the Taylor series expansion are used to
determine the truncation error, which is given by

T(i)
2 =

h8

40, 320

(
−256a1 f (8)(x)− a2 f (8)(x)− a4 f (8)(x)− 256a5 f (8)(x)

)
= − 23h6

55, 440
f (8)(x). (16)
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4. Compact Finite Difference Schemes for Robin Boundary Conditions

In this section, we develop sixth-order compact finite difference schemes for approxi-
mating first and second derivatives for arbitrary functions with Robin boundary conditions.
To accommodate the Robin boundary conditions and maintain a sixth-order accuracy at the
boundaries, the schemes are adjusted appropriately. To that end, we use one-sided compact
finite difference schemes, specifically for the points x0, x1, xN−1, and xN . The derivatives at
the interior points x2, x3, . . . , xN−2 are approximated using Equations (11) and (15).

4.1. First Derivative Approximation

We start by illustrating how the sixth-order compact schemes are formulated for first
derivative approximations at the boundaries. The one-sided schemes for the first derivative
at the boundary points are given as follows:

At i = 1, we have

f ′1 +
1
3

f ′2 = a0(αa f1 + βa f ′1) + a1 f1 + a2 f2 + a3 f3 + a4 f4 + a5 f5 + a6 f6 + T(1)
1 . (17)

The constants ai(i = 1, . . . 6) are obtained in a similar manner as in the previous
section, and they are

a0 =
14

15βa
, a1 = −197βa + 840αah

900βah
, a2 = − 1

36h
,

a3 =
1

3h
, a4 = − 1

9h
, a5 =

1
36h

, a6 = − 1
300h

.

(18)

The truncation error is

T(1)
1 =

h6

630
f (7)(x). (19)

At i = 2, we have

1
3

f ′1 + f ′2 +
1
3

f ′3 = b0(αa f1 + βa f ′1) + b1 f0 + b2 f1 + b3 f2 + b4 f3 + b5 f4 + b6 f5 + T(2)
1 , (20)

with the constants obtained as

b0 =
1

6βa
, b1 = −203βa + 60αah

360βah
, b2 = − 5

12h
,

b3 =
19

18h
, b4 = − 1

9h
, b5 =

1
24h

, b6 = − 1
180h

,

(21)

and

T(2)
1 =

h6

315
f (7)(x). (22)

At i = N − 1, we have

1
3

f ′N + f ′N−1 +
1
3

f ′N−2 = c0(αb fN + βb f ′N) + c1 fN + c2 fN−1 + c3 fN−2 + c4 fN−3

+ c5 fN−4 + c6 fN−5 + TN−1
1 ,

(23)

where
c0 =

1
6βb

, c1 = −203βb + 60αbh
360βbh

, c2 = − 5
12h

,

c3 =
19

18h
, c4 = − 1

9h
, c5 =

1
24h

, c6 = − 1
180h

,

(24)

and

T(N−1)
1 =

h6

315
f (7)(x). (25)
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Finally, at i = N, we have

f ′N +
1
3

f ′N−1 = d0(αb fN + βb f ′N) + d1 fN + d2 fN−1 + d3 fN−2 + d4 fN−3 + d5 fN−4

+ d6 fN−5 + T(N)
1 .

(26)

Here, the constants are

d0 =
14

15βb
, d1 = −−197βb + 840αbh

900βbh
, d2 =

1
36h

,

d3 = − 1
3h

, d4 =
1

9h
, d5 = − 1

36h
, d6 =

1
300h

,
(27)

and

T(N)
1 =

h6

630
f (7)(x). (28)

The sixth-order-accurate compact finite difference approximation for approximating
the first derivative of an arbitrary function with the Robin boundary condition is obtained
by combining Equation (11) with Equations (17), (20), (23), and (26), and is given by

A1 f ′ = B1 f + K1 + T1, (29)

where

A1 =



1 1
3 0 0 · · · 0 0 0 0

1
3 1 1

3 0 · · · 0 0 0 0

0 1
3 1 1

3 · · · 0 0 0 0
. . . . . . . . . . . .

. . . . . . . . . . . .
0 0 0 0 · · · 1

3 1 1
3 0

0 0 0 0 · · · 0 1
3 1 1

3

0 0 0 0 · · · 0 0 1
3 1


N×N

, K1 =



14
15βa

γa

1
6βa

γa

0

...

0

1
6βb

γb

14
15βb

γb


N×1

B1 =
1
h



− 840αah+197βa
900βa

− 1
36

1
3 −

1
9

1
36 −

1
300 0 · · · 0 0 0 0 0 0 0

− 60αah+203βa
360βa

− 5
12

19
18 −

1
9

1
24 −

1
180 0 · · · 0 0 0 0 0 0 0

− 1
36 − 7

9 0 7
9

1
36 0 0 · · · 0 0 0 0 0 0 0

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
0 0 0 0 0 0 0 · · · 0 0 − 1

36 −
7
9 0 7

9
1

36

0 0 0 0 0 0 0 · · · 0 1
180 −

1
24

1
9 −

19
18

5
12 −

60αbh−203βb
360βb

0 0 0 0 0 0 0 · · · 0 1
300 −

1
36

1
9 − 1

3
1

36 −
840αbh−197βb

900βb


N×N

(30)



Symmetry 2022, 14, 1720 6 of 23

and

T1 =



h6

630 f (7)(x), if i = 1

h6

315 f (7)(x), if i = 2

−h6

1260 f (7)(x), if 3 ≤ i ≤ N − 2

h6

315 f (7)(x), if i = N − 1

h6

630 f (7)(x), if i = N.

(31)

The first derivative f ′ is therefore approximated by

f ′ = D1 f + H1, (32)

where D1 = A−1
1 B1 and H1 = A−1

1 K1.

4.2. Second Derivative Approximation

The one-sided schemes for the second derivative at the boundary points are given as
follows:

At i = 1, we have

f ′′1 +
2
11

f ′′2 = a0(αa f1 + βa f ′1) + a1 f1 + a2 f2 + a3 f3 + a4 f4 + a5 f5 + a6 f6 + a7 f7 + T(1)
2 . (33)

The constants ai(i = 1, . . . 6) are obtained in a similar manner as in the previous
section, and they are given as

a0 = − 217
45hβa

, a1 =
−70, 933βa + 4740hαa

9900βh2 , a2 =
3757
330h2 , a3 = − 947

132h2 ,

a4 =
1307
297h2 , a5 = − 247

13h2 , a6 =
793

1650h2 , a7 = − 331
5940h2 ,

(34)

and

T(1)
2 =

1997h6

55, 440
f (8)(x). (35)

At i = 2, we have

2
11

f ′′1 + f ′′2 +
2
11

f ′′3 =b0(αa f1 + βa f ′1) + b1 f1 + b2 f2 + b3 f3 + b4 f4 + b5 f5

+b6 f6 + b7 f7 + T(2)
2 ,

(36)

where the constants are

b0 = − 21
44hβa

, b1 =
351βa + 420αah

880βah2 , b2 = − 39
44h2 , b3 = − 9

88h2 ,

b4 =
19

22h2 , b5 = − 63
176h2 , b6 =

21
220h2 , b7 = − 1

88
,

(37)

and

T(2)
2 =

899h6

110, 880
f (8)(x). (38)

At i = N − 1, we have

2
11

f ′′N + f ′′N−1 +
2
11

f ′′N−2 = c0(αb fN + βb f ′N) + c1 fN + c2 fN−1 + c3 fN−2 + c4 fN−3

+ c5 fN−4 + c6 fN−5 + c7 fN−6 + T(N−1)
2 ,

(39)
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and the constants are

c0 =
21

44hβb
, c1 =

351βb + 420αbh
880βbh2 , c2 = − 39

44h2 , c3 = − 9
88h2 ,

c4 =
19

22h2 , c5 = − 63
176h2 , c6 =

21
220h2 , c7 = − 1

88h2 ,

(40)

and

T(N−1)
2 =

899h6

110, 880
f (8)(x). (41)

Lastly, at i = N, we have

f ′′N +
2
11

f ′′N−1 = d0(αb fN + βb f ′N) + d1 fN + d2 fN−1 + d3 fN−2 + d4 fN−3 + d5 fN−4

+ d6 fN−5 + d7 fN−6 + T(N)
2 .

(42)

The constants are

d0 =
217

45hβb
, d1 =

70, 933βb − 4740hαbh
9900βh2 , d2 =

3757
330h2 , d3 = − 947

132h2 ,

d4 =
1307
297h2 , d5 = − 247

13h2 , d6 =
793

1650h2 , d7 = − 331
5940h2 ,

(43)

and

T(N)
2 =

1997h6

55, 440
f (8)(x). (44)

The sixth-order-accurate compact finite difference approximation for approximat-
ing the second derivative of an arbitrary function with the Robin boundary condition
is obtained by combining Equation (15) with Equations (33), (36), (39), and (42) and is
given by

A2 f ′′ = B2 f + K2 + T2, (45)

where

A2 =



1 2
11 0 0 · · · 0 0 0 0

2
11 1 2

11 0 · · · 0 0 0 0

0 2
11 1 2

11 · · · 0 0 0 0
. . . . . . . . . . . .

. . . . . . . . . . . .
0 0 0 0 · · · 2

11 1 2
11 0

0 0 0 0 · · · 0 2
11 1 2

11

0 0 0 0 · · · 0 0 2
11 1


N×N

, K2 =
1
h



217
415βa

γa

21
44βa

γa

0

...

0

21
44βb

γb

217
415βb

γb


N×1
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B2 =
1
h2



47,740αah−70,933βa
9900βa

3757
330 −

947
132

1307
297 −

247
132

793
1650 −

331
5940 · · · 0 0 0 0 0 0 0

420αah+351βa
880βa

− 39
44 −

9
88 −

19
22 −

63
176

21
220

1
88 · · · 0 0 0 0 0 0 0

3
44

12
11 − 51

22
12
11

3
44 0 0 · · · 0 0 0 0 0 0 0

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
0 0 0 0 0 0 0 · · · 0 0 3

44
12
11 − 51

22
12
11

3
44

0 0 0 0 0 0 0 · · · − 1
88

21
220 −

63
176

19
22 − 9

88 −
39
44 − 420αbh+351βb

880βb

0 0 0 0 0 0 0 · · · − 331
5940

793
1650 −

247
132

3071
247 −

947
132

3757
330 −

47,740αbh+70,933βb
9900βb


N×N

, (46)

T2 =



1997h6

55,440 f (8)(x), if i = 1

899h6

110,880 f (8)(x), if i = 2

−23h6

55,440 f (8)(x), if 3 ≤ i ≤ N − 2

899h6

110,880 f (8)(x), if i = N − 1

1997h6

55,440 f (8)(x), if i = N.

(47)

The second derivative f ′′ is therefore approximated by

f ′′ = D2 f + H2, (48)

where D2 = A−1
2 B2 and H2 = A−1

2 K2 .
Therefore, to solve Equation (5), we use Equations (32) and (48) to approximate the

derivatives, and so, we have

D2Y + H2 + ã1(D1Y + H1) + ã0Y = G(x), (49)

(D2 + ã1D1 + ã0)Y = G(x)− H2 − ã1H1, (50)

where
Y = [y1(x), y2(x), . . . , yN(x)]T , (51)

ã1 = diag{a1} and ã0 = diag{a0}. (52)

5. Convergence

In this section, we discuss the convergence of the proposed method described in
Section 4 to solve Equation (5).

Theorem 1. Let Y = [y1(x), y2(x), . . . , yN(x)] and Ȳ = [ȳ1(x), ȳ2(x), . . . , ȳN(x)] be vectors of
the numerical solution and exact solution obtained by solving the linear system (5), respectively.
Then, provided

∥∥∥hA2C−1
2

(
A−1

2 E2 + ã1 A−1
1 C1

)
− h2 A2C−1

2

(
ã1 A−1

1 E1 + ã0

)∥∥∥ < 1, we have

‖E‖ ≡ O
(

h7
)

, (53)

where
ã1 = diag{a1} and ã0 = diag{a0}. (54)

Proof. Applying the sixth-order compact schemes (29) and (45) to Equation (5), we obtain

A−1
2 B2Y + A−1

2 K2 + A−1
2 T2 + a1(A−1

1 B1Y + A−1
1 K1 + A−1

1 T1) + a0Y = G(x). (55)
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The exact solution, Ȳ, of Equation (5) is given by(
A−1

2 B2 + ã1(A−1
1 B1) + ã0

)
Ȳ = −A−1

2 k2 − a1 A−1
1 k1 + G + T, (56)

where T = −A−1
2 T2 − A−1

1 T1 and ã1 = diag(a1) and ã0 = diag(a0) . The approximate
solution, Y, of Equation (5) is given by(

A−1
2 B2 + ã1 A−1

1 B1 + ã0

)
Y = −A−1

2 k2 − a1 A−1
1 k1 + G, (57)

Subtracting Equation (57) from Equation (56), we obtain(
A−1

2 B2 + ã1 A−1
1 B1 + ã0

)
E = T, (58)

where E is given by
E = ‖Ȳ−Y‖. (59)

We can write B1 and B2 as

B1 =
1
h

C1 + Q1,

B2 =
1
h2 C2 +

1
h

Q2,
(60)

where

C1 =



− 197
900 − 1

36
1
3 − 1

9
1

36 − 1
300 0 · · · 0 0 0 0 0 0 0

− 203
360 − 5

12
19
18 − 1

9
1

24 − 1
180 0 · · · 0 0 0 0 0 0 0

− 1
36 − 7

9 0 7
9

1
36 0 0 · · · 0 0 0 0 0 0 0

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
0 0 0 0 0 0 0 · · · 0 0 − 1

36 − 7
9 0 7

9
1

36

0 0 0 0 0 0 0 · · · 0 1
180 − 1

24
1
9 − 19

18
5
12

203
360

0 0 0 0 0 0 0 · · · 0 1
300 − 1

36
1
9 − 1

3
1
36

197
900


N×N

,

Q1 =



− 840αa
900βa

0 · · · 0

− 60αa
360βa

0 · · ·
...

0 0 · · · 0

. . . . . .

. . . . . .

... · · · 0 − 60αb
360βb

0 · · · 0 − 840αb
900βb


N×N

,
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C2 =



−70,933
9900

3757
330 − 947

132
1307
297 − 247

132
793

1650 − 331
5940 · · · 0 0 0 0 0 0 0

351
880 − 39

44 − 9
88 − 19

22 − 63
176

21
220

1
88 · · · 0 0 0 0 0 0 0

3
44

12
11 − 51

22
12
11

3
44 0 0 · · · 0 0 0 0 0 0 0

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
0 0 0 0 0 0 0 · · · 0 0 3

44
12
11 − 51

22
12
11

3
44

0 0 0 0 0 0 0 · · · − 1
88

21
220 − 63

176
19
22 − 9

88 − 39
44 − 351

880

0 0 0 0 0 0 0 · · · − 331
5940

793
1650 − 247

132
3071
247 − 947

132
3757
330 − 70,933

9900


N×N

,

Q2 =



47,740αa
9900βa

0 · · · 0

420αa
880βa

0 · · ·
...

... 0 · · · 0

. . . . . .

. . . . . .

... · · · 0 − 420αb
351βb

0 · · · 0 −−47,740αb
9900βb


N×N

.

Substituting Equation (60) into Equation (58), we obtain(
A−1

2

(
1
h2 C2 +

1
h

Q2

)
+ ã1 A−1

1

(
1
h

C1 + Q1

)
+ ã0

)
E = T. (61)

Multiplying Equation (61) by h2, we obtain(
A−1

2 C2 + h
(

A−1
2 Q2 + ã1 A−1

1 C1

)
+ h2

(
ã1 A−1

1 Q1 + ã0

))
E = h2T. (62)

We then multiply Equation (62) by A2C−1
2 to obtain(

I + hA2C−1
2

(
A−1

2 Q2 + ã1 A−1
1 C1

)
+ h2 A2C−1

2

(
ã1 A−1

1 Q1 + ã0

))
E = h2 A2C−1

2 T. (63)

Solving for E in Equation (63), we obtain

E =
(

I + hA2C−1
2

(
A−1

2 Q2 + ã1 A−1
1 C1

)
+ h2 A2C−1

2

(
ã1 A−1

1 Q1 + ã0

))−1
h2 A2C−1

2 T. (64)

Recall that if ‖·‖ is a subordinate matrix norm and B is any matrix such that ‖B‖< 1,
then the matrix I + B is invertible and

‖(I + B)−1‖≤ 1
1− ‖B‖ . (65)
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Now, if ‖hA2C−1
2

(
A−1

2 Q2 + ã1 A−1
1 C1

)
− h2 A2C−1

2

(
ã1 A−1

1 Q1 + ã0

)
‖ < 1, then

I + hA2C−1
2 (A−1

2 Q2 + ã1 A−1
1 C1) + h2 A2C−1

2 (ã1 A−1
1 Q1 + ã0) is invertible, and it follows

that the norm of E is

‖E‖ ≤
h2‖A2‖‖C−1

2 ‖‖T‖
1− h

∥∥∥A2C−1
2

(
A−1

2 Q2 + ã1 A−1
1 C1

)∥∥∥− h2
∥∥∥A2C−1

2

(
ã1 A−1

1 Q1 + ã0

)∥∥∥ ≡ O(h8)

O(h)
≡ O(h7). (66)

6. Numerical Examples

In this section, we consider several examples to highlight the applicability and high
accuracy of the proposed algorithm in solving two-point boundary value problems sub-
jected to Robin boundary conditions. To check the accuracy, we compute the maximum
absolute error (L∞) between the exact and numerical solutions, i.e.,

L∞ = max
0≤i≤m

|ỹ(xi)− y(xi)|, (67)

where y(xi) and ȳ(xi) represent the CFDM solution and exact solution at the grid point
xi, respectively. In addition, we compute the numerical rate of convergence, which is
defined as

ROC =
log
(

E1
E2

)
log
(

h1
h2

) , (68)

where E1 and E2 are absolute errors corresponding to grids with step size h1 and h2,
respectively. We compare our results with published results obtained using other methods.

Example 1. Consider the linear boundary value problem:

y′′ = y− 2 cos x,
π

2
< x < π, (69)

with boundary conditions:

3y
(π

2

)
+ y′

(π

2

)
= −1 and 4y(π) + y′(π) = −4. (70)

Exact solution : y = cos x.

We present the results of Example 1 in Table 1. We display the maximum absolute error
computed using different values of grid points N. In this example, we obtain the maximum
accuracy, with an error of about 10−14, when N = 50. When compared to the results in
[9,11], our results are much more accurate. For instance, with a step size h = 0.01, the
error in [9] is about 10−10, but our error is about 10−14, with a slightly larger step size. Our
results are also better compared to the results of [11] obtained using Bernoulli polynomials.
The agreement between the exact and numerical solutions is depicted in Figure 1, with the
errors from the different values of N again shown in Figure 2.
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Table 1. Maximum absolute error (L∞) for Example 1.

Present Method (CFDM) Nasir et al. [9] Islam and
Shirin [11]

N h Error Norm
(L∞) ROC h Error Norm

(L∞)
Error Norm

(L∞)

10 0.175 1.47278 × 10−8 0.1 8.47 × 10−7 1.525206
× 10−10

20 0.083 5.65279 × 10−11 7.70641 0.01 2.47 × 10−10

30 0.054 2.81286 × 10−12 7.02551
40 0.040 3.52718 × 10−13 7.13829
50 0.032 5.65024 × 10−14 6.95506
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▲ approximate

★ exact
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-0.6
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x

y(
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Figure 1. Exact and approximate solution plots for Example 1.
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▲ N = 10

● N = 20

■ N = 30

✶ N = 40

◆ N = 50

Figure 2. Error plots for the approximation of Example 1 for varying values of N.

Example 2. Consider the nonlinear second-order boundary value problem:

y′′ =
1
2

e−x
(

y2 +
(
y′
)2
)

, 0 ≤ x ≤ 1, (71)
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with boundary conditions:

− y′(0) + y(0) = 0 and y′(1) + y(1) = 2e. (72)

Exact solution : y = ex.

Figure 3 depicts the solution of Example 2. A good agreement between the exact and
the numerical solution can be observed. In this example, N = 32 gives the maximum error
of about 10−13, and this is shown in Table 2. Again, when compared to the results in [9],
the method shows remarkable accuracy on a slightly larger step size than in [9]. The errors
are also shown in Figure 4 for the different values of N. Figure 5 shows that six iterations
of the quasilinearization are required to reach full convergence.

Table 2. Maximum absolute error (L∞) and ROC for Example 2.

Present Method (CFDM) Nasir et al. [9]

N h Error Norm (L∞) ROC h Error Norm
(L∞)

8 0.143 1.28214 × 10−8 0.1 4.90 × 10−7

16 0.067 6.99112 × 10−11 6.83821 0.01 1.90 × 10−11

24 0.043 3.94751 × 10−12 6.72948
32 0.032 5.09370 × 10−13 6.782713

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

▲ approximate

★ exact

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

x

y(
x)

Figure 3. Exact and approximate solution plots for Example 2.
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Figure 4. Error plots for the approximation of Example 2 for varying values of N.
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Figure 5. Convergence plots for the approximation of Example 2 for varying values of N.

Example 3. Consider the nonlinear second-order boundary value problem:

y′′ = −1
8

(
e−2y + 4

(
y′
)2
)

, 0 ≤ x ≤ 1, (73)

with boundary conditions:

− 2y′(0) + y(0) = −1 and y′(1) + y(1) =
2
3
+ log

(
3
2

)
. (74)

Exact solution : y = log((2 + x)/2).

The results of Example 3 are similar to those of the previous examples. Figure 6 shows
the plots of the exact and numerical solution, which are in good agreement. The maximum
absolute error, computational times, and rates of convergence (ROCs) are presented in
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Table 3, with results from Nasir et al. [9] included. As shown in the table, the proposed
method gives accurate results with fewer grid points compared to the results in [9]. Plots of
the maximum absolute errors for various values of N are shown in Figure 7. Finally, Figure
8 shows the convergence plots for the various N values. It can be seen from the plot that
the method reaches full convergence after six iterations.

Table 3. Maximum absolute error (L∞) and ROC for Example 3.

Present Method (CFDM) Nasir et al. [9]

N h Error Norm (L∞) ROC h Error Norm
(L∞)

8 0.1429 1.09973 × 10−7 0.1 4.47 × 10−8

16 0.0667 7.66028 × 10−10 6.51687 0.01 1.31 × 10−12

24 0.0435 4.35134 × 10−11 6.71
32 0.0323 5.61728 × 10−12 6.85852
40 0.0256 1.08691 × 10−12 7.15459
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Figure 6. Exact and approximate solution plots for Example 3.
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Figure 7. Error plots for the approximation of Example 3 for varying values of N.
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Figure 8. Convergence plots for the approximation of Example 3 for varying values of N.

Example 4. Consider the nonlinear second-order boundary value problem:

y′′ = −e−2y, 0 ≤ x ≤ 1, (75)

with boundary conditions:

y′(0)− y(0) = 1 and y′(1) + y(1) = 0.5 + ln(2). (76)

Exact solution : y = ln(1 + x).

For Example 4, we also compute the approximate solution using the proposed CFDM
for various values of N. Likewise, the error norm, rates of convergence, and computational
times are presented in Table 4. As shown in the table, for h = 0.0159, the CFDM has an error
of about 10−13, whereas in [9], the error is 10−11 for h = 0.01. This comparison confirms
that the CFDM gives accurate results with fewer grid points. A graphical comparison of
the CFDM results and the exact solution is shown in Figure 9. Plots of the absolute errors
for various N values is shown in Figure 10. Lastly, Figure 11 shows the convergence plots
for the various N values. The plot indicates the method reaches full convergences after
six iterations.

Table 4. Maximum absolute error (L∞) and ROC for Example 4.

Present Method (CFDM) Nasir et al. [9] Bhatta and Sastri [32]

h Error norm
(L∞) ROC h Error Norm

(L∞) h Error Norm
(L∞)

1
8 4.94004 × 10−6 0.1 1.66 × 10−6 1

8 0.44886 × 10−5

1
16 6.07399 × 10−8 5.77129 0.01 1.201 × 10−11 1

16 0.12439 × 10−6

1
32 6.10962 × 10−10 6.3357 1

32 0.26496 × 10−8

1
64 4.76696 × 10−12 6.84389 1

64 0.48683 × 10−10

1
128 0.83165 × 10−12



Symmetry 2022, 14, 1720 17 of 23

▲▲
▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲▲

▲▲▲▲
▲▲▲▲

▲▲▲▲
▲▲▲▲

▲▲▲▲
▲▲▲▲

▲▲▲▲
▲▲▲▲

▲▲▲▲
▲▲▲▲

▲

★★
★★
★★★
★★★
★★★
★★★
★★★
★★★
★★★
★★★
★★★
★★★
★★★
★★★
★★★
★★★
★★★
★★★
★★★
★★★★

★★★★
★★★★

★★★★
★★★★

★★★★
★★★★

★★★★
★★★★

★★★★
★★★★

★

▲ approximate

★ exact

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

y(
x)

Figure 9. Exact and approximate solution plots for Example 4.
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Figure 10. Error plots for the approximation of Example 4 for varying values of N.
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Example 5. Consider the nonlinear second-order boundary value problem:

y′′ = π2ey, 0 ≤ x ≤ 1, (77)

with boundary conditions:

2y′(0) + y(0) = −2π and − y′(1) + 2y(1) = −π. (78)

Exact solution : y = −2 ln
(

cos
(π

2
x− π

4

))
− ln(2).

Likewise, in Example 5, we estimate the solution of the nonlinear differential equation
using the CFDM for various values of N. The error norm, rates of convergence, and execu-
tion times of the proposed method are presented in Table 5, with results from Nasir et al. [9].
The table indicates that the CFDM achieves accuracy on a slightly larger step size than
in [9]. A graphical comparison of the CFDM results and the exact solution is shown in
Figure 12. The errors for various values of N are shown in Figure 13. Lastly, convergence
plots for the different N values are depicted in Figure 14, depicting that the method reaches
full convergence after about 6 to 8 iterations, depending on the value of N.

Table 5. Maximum absolute error (L∞) and ROC for Example 5.

Present Method (CFDM) Nasir et al. [9] Lang and Xu [33]

h Error Norm
(L∞) ROC h Error Norm

(L∞) h Error Norm
(L∞)

0.1 7.08842 × 10−4 0.1 5.903279 × 10−4 0.1 3.405 × 10−4

0.05 1.43008 × 10−5 5.22382 0.05 2.478867 × 10−5 0.05 2.154 × 10−5

0.025 1.95329 × 10−7 5.97031 0.025 1.042691 × 10−7 0.025 1.348 × 10−6

0.0125 1.99574 × 10−9 6.4935 0.0125 6.29665 × 10−9 0.0125 8.425 × 10−8
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Figure 12. Exact and approximate solution plots for Example 5.
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Figure 13. Error plots for the approximation of Example 5 for varying values of N.
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Figure 14. Convergence plots for the approximation of Example 5 for varying values of N.

Example 6. Consider the nonlinear second-order boundary value problem:

y′′ = 0.5(1 + x + y)3, 0 ≤ x ≤ 1, (79)

with boundary conditions:

y′(0)− y(0) = −0.5π and y′(1) + y(1) = 1. (80)

Exact solution : y =
2

2− x
− x− 1.

Lastly, a graphical comparison of the CFDM results and the exact solution is shown in
Figure 15. The maximum absolute errors of Example 6 obtained using various values of
N are displayed in Table 6 and also shown in Figure 16. We observe that with the same
step size, we obtain better accuracy than the results in [32,34]. Lastly, convergence plots
for the different N values are depicted in Figure 17, depicting that the method reaches full
convergence after 8 or 9 iterations, depending on the value of N used.
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Table 6. Maximum absolute error (L∞) and ROC for Example 6.

Present Method (CFDM) Bhatta and Sastri [32] Majid [34]

h Error Norm
(L∞) ROC h Error Norm

(L∞) h Error Norm
(L∞)

1
8 4.21610 × 10−5 1

8 0.37366 × 10−4 0.10 5.9071 × 10−6

1
16 5.99955 × 10−7 5.57955 1

16 0.11160 × 10−5 0.05 1.9592 × 10−7

1
32 6.53844 × 10−9 6.22527 1

32 0.24812 × 10−7 0.01 1.1374 × 10−10

1
64 5.75249 × 10−11 6.67454 1

64 0.46645 × 10−9

1
128 2.86215 × 10−13 7.56467 1

128 0.80107 × 10−11
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Figure 15. Exact and approximate solution plots for Example 6.
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Figure 16. Error plots for the approximation of Example 6 for varying values of N.
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Figure 17. Convergence plots for the approximation of Example 6 for varying values of N.

In Tables 1–6, we present the computed rates of convergence for all the examples,
which are consistent with the theoretical order of convergence obtained in Theorem 1.

7. Conclusions

In this paper, we presented a highly accurate compact finite difference method (CFDM)
to solve both linear and nonlinear second-order boundary value problems subjected to
Robin boundary conditions. The method utilizes sixth-order compact finite difference
schemes. We successfully developed new sixth-order schemes to approximate the Robin
boundary conditions, and this leads to a highly accurate method, as shown by the results.
Nonlinear equations were first linearized using the quasilinearization (QLM) technique.
Convergence of the CFDM was established by using the properties of the standard matrix
norm. By computing the absolute error norm, and rates of convergence, the high accuracy
of the CFDM was confirmed by comparing its numerical results against the numerical
results of the diagonal block method presented in Nasir et al. [9] and Majid et al. [34],
symmetric spline [32], Bernoulli polynomials [11], and quintic B-spline collocation [33].
We also observed that the CFDM approximate solution is in excellent agreement with the
exact solution in all of the considered examples. Numerical results further confirmed that
the rate of convergence of the presented CFDM is seven, consistent with the theoretical
approximation.

We conclude that to solve linear and nonlinear boundary value problems subject to
Robin boundary conditions, the CFDM is highly accurate and computationally efficient
and a dependable method to utilize.
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