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Abstract: In practical applications, for highly nonlinear systems, how to implement control tasks
for dynamic systems with uncertain parameters is still a hot research issue. Aiming at the internal
parameter fluctuations and external unknown disturbances in nonlinear system, this paper proposes
an adaptive dynamic terminal sliding mode control (ADTSMC) based on a finite-time disturbance
observer (FTDO) for nonlinear systems. A finite-time disturbance observer is designed to compensate
for the unknown uncertainties and a dynamic terminal sliding mode control (DTSMC) method is
developed to achieve finite time convergence and weaken system chattering. Moreover, a dual hidden
layer recurrent neural network (DHLRNN) estimator is proposed to approximate the sliding mode
gain, so that the switching item gain is not overestimated and optimal value is obtained. Finally,
simulation experiments of an active power filter model verify the designed ADTSMC method has
better steady-state and dynamic-steady compensation effects with at least 1% THD reduction in the
presence of nonlinear load and disturbances compared with the simple adaptive DTSMC law.

Keywords: finite-time disturbance observer; dynamic terminal sliding mode control; hidden layer
recurrent neural network; nonlinear systems; active power filter

1. Introduction

Most of the systems existing in nature are non-linear. However, especially in practical
applications, for highly nonlinear systems, how to implement control tasks for dynamic
systems with uncertain parameters is still a hot research issue. In recent years, the scientific
community has developed multiple advanced control strategies for nonlinear systems.
SMC became the most widely used and effective control method in complex nonlinear
systems. In the field of nonlinear control, the sliding mode control (SMC) method is
famous for its insensitivity to inaccurate parameter and uncertain disturbances [1–3].
Therefore, it is widely used in nonlinear system, hybrid system, cascade system, and
constraint system [4,5]. However, these sliding mode methods have two unavoidable
defects, including severe chattering and tardy convergence speed.

In traditional SMC, a large switching gain may bring higher control accuracy, but an
excessive gain will obviously cause chattering problems, which will reduce system perfor-
mance and even cause system failure. Intelligent SMC controllers have been discussed for
nonlinear systems [6]. In general, it is feasible to eliminate chattering by adaptive adjusting
switching gain. A dynamic sliding mode control (DSMC) is not only easy to implement,
but also has a better property to eliminate the chattering [7]. This is because the dynamic
sliding mode surface can transfer the discontinuous term to the higher order derivative of
the designed controller, and a continuous DMSC law is obtained.

Another defect of traditional SMC is the low convergence speed in order to improve
the convergence speed of the sliding mode. Mozayan et al. [8] proposed an enhanced expo-
nential reaching law for the PMSG wind turbine system. Wang et al. [9] developed a new
sliding mode reaching law that includes the state and the power term of the sliding function.
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These methods greatly improve the convergence rate of the dynamic system and have a
certain effect on eliminating chattering. The terminal sliding mode controllers [10–13] are
designed to ensure the tracking error of the system can finitely converge to zero. There-
fore, in this paper, combining the advantages of DMSC and TSMC, a DTSMC method is
proposed to increase the convergence speed and reduce chattering.

In practical applications, nonlinear systems often have unknown internal parameter
perturbations and external disturbances, which makes the ideal sliding mode controller
unable to be realized. Therefore, many scholars have proposed a series of new neural
network approaches to approximate nonlinear functions, including nominal functions
and parametric perturbations [14–18]. When the nonlinear function is unknown, these
methods are effective, but the matched and mismatched disturbances of the system cannot
be effectively resolved, and in order to avoid the influence of disturbances on the control
performance, a large switching gain needs to be selected to decrease the influence of dis-
turbances on the control performance, which may cause large chattering. At the same
time, the FTDO is a simple way to estimate the matched and mismatched disturbances
of the system, which means that only a small switching gain is needed to deal with the
impact of the disturbance estimation error [19,20]. Wang et al. [21] designed a continuous
fast nonsingular TSMC using finite-time exact observer for automotive electronic throttle
systems. Considering the time-varying disturbances in the DC-DC boost converters, Wang
et al. [22] proposed a continuous non-singular TSMC with a finite time disturbance observer.
In [23,24], an improved nonsingular sliding mode algorithm is proposed for nonlinear
systems with matched and mismatched disturbances. These methods fully demonstrate
the superiority of the FTDO. Neural networks are widely used because of the good approx-
imation ability [25–29] therefore they can be used to estimate the unknown parameters and
system nonlinearities.

Inspired by the above methods, an adaptive DTSMC based on a FTDO is introduced.
The FTDO is adopted to estimate the matched and mismatched disturbance of nonlinear
system, then the disturbance compensation term is added to the DTSMC law to reduce the
influence of the lumped disturbance. Although the existence of the disturbance observer can
reduce the switching gain, how to choose the gain is still worth considering. A DHLRNN
controller in [30] is introduced to obtain the optimal switching gain, instead of selecting it
based on expert experience. Compared with the existing methods, the innovative points
are listed as:

(1) By combining the advantages of DMSC and TSMC, dynamic terminal sliding mode
(DTSM) surface is designed, which can not only weaken chattering but also ensure the
tracking error can finitely converge to zero.

(2) A FTDO is proposed to remove the negative impact of matched and mismatched
disturbances on the control performance. The disturbance compensation term is added
to the DSMC law, so the switching gain only needs to be greater than the disturbance
estimation error which indirectly weakens the system chattering to a certain extent.

(3) A DHLRNN is presented to approximate the optimal switching gain, which
can effectively avoid the switching gain being selected too large or too small, which
not only guarantees the superiority of the algorithm but also reduces the difficulty of
algorithm application.

The rest of this paper is organized as follows. Section 2 explains a finite-time dis-
turbance observer. A new double hidden layer recurrent neural network is introduced
in Section 3. Section 4 designs an adaptive DTSM controller with a FTDO. To verify the
effectiveness of the algorithm, simulation experiments are applied in Section 5. Finally,
conclusions are summarized in Section 6.
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2. Design of Finite-Time Disturbance Observer

The FTDO is essentially a high-order sliding mode differentiator, which was first
proposed by Levant [19]. Consider an n-order SISO system with n-order differentiable
bounded uncertain disturbance g(t) as follows:

.
x1 = x2
...
.
xn−1 = xn.
xn = f (x) + bu + g(t)

(1)

For the matching disturbance term contained in system (1), a FTDO is proposed, and
the differential equation is defined as:

.
z0 = v0 + f (x) + bu, v0 = −λ0K

1
n+1 |z0 − xn|

n
n+1 sign(z0 − f (t)) + z1

.
z1 = v1, v1 = −λ1K

1
n |z1 − v0|

n−1
n sign(z1 − v0) + z2

...
.
zn−1 = vn−1, vn−1 = −λn−1K

1
2 |zn−1 − vn−2|

1
2 sign(zn−1 − vn−2) + zn.

zn = −λnKsign(zn − vn−1)

(2)

where v0, v1, · · · , vn are the internal state variables of the observer, λ0, λ1, · · · , λn, K are
the observer gains which are greater than zero, and K is a known Lipshitz constant that
satisfies the condition

∣∣∣g(n)(t)∣∣∣ < K.

Theorem 1. Assume that the input signal xn has Lebesgue-measure noise bounded by condition
ε > 0, and input signal f (x)+ bu has Lebesgue-measure noise defined by condition kε(n−1)/n, k > 0,
If the observer parameter λ0, λ1, · · · , λn, K is selected as a sufficiently large normal number, then
the following inequality is correct in finite time for some positive constant µi, ηj:

|z0 − xn| ≤ µ0ε∣∣∣zi − g(i−1)(t)
∣∣∣ ≤ µiε

n−i+1
n+1

...∣∣∣zn − g(n−1)(t)
∣∣∣ ≤ µnε

1
n+1

,



|v0 − g(t)| ≤ η0ε
n

n+1∣∣∣vj − g(j)(t)
∣∣∣ ≤ ηjε

n−j
n+1

...∣∣∣vn−1 − g(n−1)(t)
∣∣∣ ≤ ηn−1ε

1
n+1

(3)

where µi, i = 1, · · · , n and ηj, j = 1, · · · , n − 1 are normal numbers that only depend on the
FTDO parameters.

Theorem 2. If there is no measurement noise in the input signal, then when the observer parameters
are properly selected, the following precise equation is correct in a finite time:

z0 = xn
z1 = v0 = g(t)
...
zn = vn−1 = g(n−1)(t)

(4)

Levant [19] and Shtessel [20] prove Theorem 1 and Theorem 2 in detail.
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Suppose take the order of the observer as n = 2. Finally, a FTDO is obtained as follow:
.
z0 = v0 + f (x) + bu
.
z1 = v1.
z2 = −λ2Ksign(z2 − v1){
v0 = −λ0K

1
3 |z0 − x2|

2
3 sign(z0 − x2) + z1

v1 = −λ1K
1
2 |z1 − v0|

1
2 sign(z1 − v0) + z2

(5)

where λ0, λ1, λ2, K are the observer gains which are greater than zero. The output meaning
of the observer is defined as: 

z0 = x̂2
z1 = ĝ(t)
z2 =

.
ĝ(t)

(6)

Symbol ˆ represents the estimation of the state x2, unknown disturbance g(t), and its
various derivatives. Therefore, define the estimation error as:

ε0 = x2 − z0
ε1 = g(t)− z1
ε2 =

.
g(t)− z2

(7)

Find the first derivative of Equation (7) and bring the observer (5) into it. The dynamic
equation of the estimation error can be obtained as follows:

.
ε0 =

.
x2 −

.
z0

= −λ0K
1
3 |z0 − x2|

2
3 sign(z0 − x2) + z1 +

.
x2 − g(t)− .

x2

= −λ0K
1
3 |ε0|

2
3 sign(ε0) + ε1

(8)

.
ε1 =

.
g(t)− .

z1

=
.
g(t) + λ1K

1
2 |z1 − v0|

1
2 sign(z1 − v0)− z2

= ε2 + λ1K
1
2

∣∣∣λ0K
1
3 |ε0|

2
3 sign(ε0)

∣∣∣ 1
2
sign

(
λ0K

1
3 |ε0|

2
3 sign(ε0)

)
= −λ1K

1
2
∣∣ε1 −

.
ε0
∣∣ 1

2 sign
(
ε1 −

.
ε0
)
+ ε2

(9)

..
ε2 =

..
g(t)− .

z2
=

..
g(t) + λ2Ksign(z2 − v1)

= λ2Ksign
(

λ1K
1
2 |z1 − v0|

1
2 sign(z1 − v0)

)
+

..
g(t)

∈ −λ2Ksign
(
ε2 −

.
ε1
)
+ [−L, L]

(10)

where L is a known Lipshitz constant satisfying condition
∣∣ ..g(t)∣∣ < L.

3. Double Hidden Layer Recurrent Neural Network Structure

A DHLRNN is designed in [30] to approximate the equivalent controller term, which
has better dynamic fitting capability. This paper will adopt the DHLRNN to obtain the
optimal sliding mode switching gain. Figure 1 is the proposed network structure, which is
a 4-layer structure including input, first hidden, second hidden and output layers, with a
symmetry structure.
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Figure 1. Double hidden layer recurrent neural network.

The signal propagation and the results of each layer are explained as follows:
Layer 1—Input layer: The number of nodes in the input layer and the number of input

signals xi(i = 1, 2, · · · , m) are the same. Usually, the tracking error and the derivative of the
error are selected as the input signal. Each input node is related to the output exY at the pre-
vious moment, and the corresponding feedback weight is defined as Wri(k = 1, 2, · · · , m).
Therefore, the i-th node output in the input layer is computed as:

θi = xi ·Wri · exY , i = 1, 2, · · · , m (11)

where X = [x1, x2, · · · , xm]
T ∈ Rm×1 is the input of neural network, the feedback weight is

Wr = [Wr1, Wr2, · · · , Wrm]
T ∈ Rm×1, the output of the input layer is θ = [θ1, θ2, · · · , θm]

T ∈
Rm×1.

Layer 2—First hidden layer: The proposed network has two hidden layers. In this layer,
the Gaussian activation function is used to initially extract the input feature information.
Therefore, the Gaussian function output of j-th node is calculated as:

φ1j = e−net1j (12)

net1j =
m

∑
i=1

(
θi − c1j

)2

b2
1j

, j = 1, 2, . . . , n (13)

where the center vector and base width vector are defined as C1 = [c11, c12, · · · , c1n]
T ∈ Rn×1

and B1 = [b11, b12, · · · , b1n]
T ∈ Rn×1. Finally, output vector of the first hidden layer is

Φ1 = [φ11, φ12, · · · , ϕ1n]
T ∈ Rn×1.

Layer 3—Second hidden layer: The purpose of the second hidden layer is to realize
the nonlinear mapping from low latitude to high latitude. We also choose the Gaussian
function as the activation function. In addition, there is no special requirement for the
number of nodes in the first and second hidden layers. Finally, the second hidden layer
output of the k-th node is designed as:

φ2k = e−net2k (14)

net2k =
n

∑
i=1

(
φ1j − c2k

)2

b2
2k

, k = 1, 2, . . . , l (15)

where C2 = [c21, c22, · · · , c2l ]
T ∈ Rl×1 is a center, base width is B2 = [b21, b22, · · · , b2l ]

T ∈
Rl×1, output of the second hidden layer is Φ2 = [φ21, φ22, · · · , ϕ2l ]

T ∈ Rl×1.
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Layer 4—Output layer: It is a linear map. Each node in the second hidden layer
is linked to the output layer by a weight Wk(k = 1, 2, · · · , l). The DHL-RNN output is
expressed as:

Y = WTΦ2 = W1φ21 + W2φ22 + · · ·+ Wlφ2l (16)

where W = [W1, W2, · · · , Wl ]
T ∈ Rl×1 is the weights of output layer.

4. Controller Design and Stability Analysis

We first introduce a dynamic terminal sliding mode surface that not only ensures
fast error convergence but also reduces chattering. Then the sliding mode control law
is derived, and additionally, a FTDO is added to the control law to estimate the lumped
unknown disturbance. Finally, the neural network proposed in section IV is introduced to
approximate the switching gain in the sliding mode control law.

The purpose of the SMC law is to realize the compensation current x1 = ic tracking
its reference current r = i∗c . In order to design the control law, we first define the tracking
error e = x1 − r and its derivative

.
e = x2 −

.
r, then the error is E =

[
e

.
e
]T .

Consider a terminal sliding mode surface:

s(t) = C(E− P(t)) (17)

where C =
[
c 1

]
, c is a positive constant to ensure Hurwitz stability, and P(t) =[

p(t)
.
p(t)

]T .

Assumption 1. Considering terminal function p(t), R+ → R , p(t) is a continuous differentiable
function in [0, ∞), p,

.
p,

..
p ∈ L∞, when T > 0, p(t) is limited in interval [0, T]. In order to obtain

global robustness, set e(0) = p(0),
.
e(0) =

.
p(0),

..
e(0) =

..
p(0). When t ≥ T, p(t) = 0,

.
p(t) = 0,

..
p(t) = 0.

According to Assumption 1, the following terminal function p(t) is constructed as:

p(t) =


e(0) +

.
e(0)t + 1

2
..
e(0)t2 −

(
a00
T3 e(0) + a01

T2
.
e(0) + a02

T
..
e(0)

)
t3

+
(

a10
T4 e(0) + a11

T3
.
e(0) + a12

T2
..
e(0)

)
t4

−
(

a20
T5 e(0) + a21

T4
.
e(0) + a22

T3
..
e(0)

)
t5, 0 ≤ t ≤ T

0, t ≥ T

(18)

Due to the inherent chattering problem of sliding mode, we construct a new switching
function σ by differentiating the traditional switching function s. Therefore, a dynamic
terminal sliding mode surface is designed as:

σ(t) =
.
s(t) + λs(t)

= C
( .

E−
.
P(t)

)
+ λ[C(E− P(t))]

(19)

where λ is a strictly positive constant.
Ignoring the lumped unknown disturbance g(t), the first derivative of Equation (19)

can be obtained:

.
σ = C

( ..
E−

..
P
)
+ λ

[
C
( .

E−
.
P
)]

= c
(..
e− ..

p
)
+

...
e −

...
p + λ

[
c
( .
e− .

p
)
+

..
e− ..

p
]

= c
(

f (x) + bu− ..
r− ..

p
)
+

.
f (x) + b

.
u− ...

r −
...
p + λc

( .
e− .

p
)
+ λ

(
f (x) + bu− ..

r− ..
p
) (20)

Defining
.
σ = 0, we can get the ideal equivalent control term:

.
ueq = −1

b
[I1 · u + I2 + I3] (21)



Symmetry 2022, 14, 1704 7 of 21

where


I1 = b(c + λ)

I2 = c
[

f (x)− ..
r− ..

p
]
+

.
f (x)− ...

r −
...
p

I3 = λc
( .
e− .

p
)
+ λ

[
f (x)− ..

r− ..
p
] .

After considering the lumped uncertainty g(t), a FTDO is introduced to compensate
for the disturbance:

.
ud = −1

b

[
(c + λ)ĝ(t) +

.
ĝ(t)

]
(22)

A switching control item is designed to ensure the robustness as:

.
usw = −1

b
Kwsign(σ), Kw > 0 (23)

Finally, the designed dynamic terminal sliding mode control law based on disturbance
compensation is derived:

.
u =

.
ueq +

.
usw +

.
ud

= − 1
b

{
[I1 · u + I2 + I3] + Kwsgn(σ) + (c + λ)ĝ(t) +

.
ĝ(t)

} (24)

where


I1 = b(c + λ)

I2 = c
[

f (x)− ..
r− ..

p
]
+

.
f (x)− ...

r −
...
p

I3 = λc
( .
e− .

p
)
+ λ

[
f (x)− ..

r− ..
p
] .

Remark 1. Assumption 1 defines a terminal function, which requires the global stability of the
sliding mode surface, and the tracking error of the system converges to zero within a finite time. The
above requirements for dynamic terminal sliding surface are proved in [8]. For the control law (24),
the switching gain Kw has a decisive effect on the control performance. What we have to explain is
that the choice of gain is not as large as possible. Excessive gain will bring obvious chattering. On
the contrary, the system with too small gain is unstable. Therefore, we will use the DHLRNN to
approximate the switching gain Kw, so that the switching gain can reach the optimal value.

In order to find the adaptive law later, we will derive the approximation error in the
neural network.

A DHLRNN is designed to approximate the switching control term, the following
equation is true:

Kw = K∗w
(
W∗r , C∗1 , B∗1 , C∗2 , B∗2 , W∗

)
+ ε

= W∗
T

Φ∗2
(
W∗r , C∗1 , B∗1 , C∗2 , B∗2

)
+ ε

(25)

where ε is the minimum error between the ideal and actual values.
The optimal parameter is expressed as:

(W∗r , C∗1 , B∗1 , C∗2 , B∗2 , W∗) ≡ argmin
(Wr ,C1,B1,C2,B2,W)

[sup‖Kw − K∗w‖] (26)

Considering that the optimal parameters cannot be obtained, we use the output of
DHLRNN as the estimated value of the switching term. The following equation can
be derived:

K̂w = Y = ŴTΦ̂2
(
Ŵr, Ĉ1, B̂1, Ĉ2, B̂2

)
(27)

where Ŵr, Ĉ1, B̂1, Ĉ2, B̂2, Ŵ is the estimated value of the optimal parameter W∗r , C∗1 , B∗1 ,
C∗2 , B∗2 , W∗.

Therefore, the approaching switching control term is:

.
ûsw = K̂wsign(σ) (28)
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Approximation error between actual and estimated value is obtained as:

K̂w − Kw = ŴTΦ̂2 −W∗
T

Φ2
∗ − ε

= −W∗
T
(

Φ̂2 + Φ̃2

)
+ ŴTΦ̂2 − ε

= −W∗
T

Φ̂2 −W∗
T

Φ̃2 + ŴTΦ̂2 − ε

= −
(

ŴT + W̃T
)

Φ̂2 −
(

ŴT + W̃T
)

Φ̃2 + ŴTΦ̂2 − ε

= −W̃TΦ̂2 − ŴTΦ̃2 − ε0

(29)

where ε0 = W̃TΦ̃2 + ε.
The Taylor series expansion of Φ∗2

(
W∗r , C∗1 , B∗1 , C∗2 , B∗2

)
at W∗r = Ŵr, C∗1 = Ĉ1, B∗1 = B̂1,

C∗2 = Ĉ2, B∗2 = B̂2 is derived:

Φ∗2
(
W∗r , C∗1 , B∗1 , C∗2 , B∗2

)
= Φ̂2

(
Ŵr, Ĉ1, B̂1, Ĉ2, B̂2

)
+ ∂φ2

∂C∗1
C∗1 = Ĉ1

(
C∗1 − Ĉ1

)
+ ∂φ2

∂C∗2
C2 = Ĉ2

(
C∗2 − Ĉ2

)
+ ∂φ2

∂B∗1
B∗1 = B̂1

(
B∗1 − B̂1

)
+ ∂φ2

∂B∗2
B∗2 = B̂2

(
B∗2 − B̂2

)
+ ∂φ2

∂W∗r
W∗r = Ŵr

(
W∗r − Ŵr

)
+ Oh

(30)

Φ̃2 = Φ2C1 · C̃1 + Φ2C2 · C̃2 + Φ2B1 · B̃1 + Φ2B2 · B̃2 + Φ2Wr · W̃r + Oh (31)

where Oh is high-order term, Φ2C1 , Φ2B1 , Φ2C2 , Φ2B2 , Φ2Wr is the derivative of W∗r , C∗1 , B∗1 , C∗2 ,
B∗2 to Φ2 respectively. The above partial derivative is the Jacobian matrix determinant, like:

Φ2C1 =


∂φ21
∂C1

T
∂φ22
∂C1

T

...
∂φ2l
∂C1

T

 =


∂φ21
∂c11

∂φ21
∂c12

· · · ∂φ21
∂c1n

∂φ22
∂c11

∂φ22
∂c12

· · · ∂φ22
∂c1n

...
...

. . .
...

∂φ2l
∂c11

∂φ2l
∂c12

· · · ∂φ2l
∂c1n


l×n

(32)

Φ2C2 =


∂φ21
∂C2

T
∂φ22
∂C2

T

...
∂φ2l
∂C2

T

 =


∂φ21
∂c21

∂φ21
∂c22

· · · ∂φ21
∂c2l

∂φ22
∂c21

∂φ22
∂c22

· · · ∂φ22
∂c2l

...
...

. . .
...

∂φ2l
∂c21

∂φ2l
∂c22

· · · ∂φ2l
∂c2l


l×l

(33)

Φ2B1 =


∂φ21
∂B1

T
∂φ22
∂B1

T

...
∂φ2l
∂B1

T

 =


∂φ21
∂b11

∂φ21
∂b12

· · · ∂φ21
∂b1n

∂φ22
∂b11

∂φ22
∂b12

· · · ∂φ22
∂b1n

...
...

. . .
...

∂φ2l
∂b11

∂φ2l
∂b12

· · · ∂φ2l
∂b1n


l×n

(34)

Φ2B2 =


∂φ21
∂B2

T
∂φ22
∂B2

T

...
∂φ2l
∂B2

T

 =


∂φ21
∂b21

∂φ21
∂b22

· · · ∂φ21
∂b2l

∂φ22
∂b21

∂φ22
∂b22

· · · ∂φ22
∂b2l

...
...

. . .
...

∂φ2l
∂b21

∂φ2l
∂b22

· · · ∂φ2l
∂b2l


l×l

(35)

Φ2Wr =


∂φ21
∂Wr T
∂φ22
∂Wr T

...
∂φ2l

∂Wr T

 =


∂φ21
∂Wr1

∂φ21
∂Wr2

· · · ∂φ21
∂Wrm

∂φ22
∂Wr1

∂φ22
∂Wr2

· · · ∂φ22
∂Wrm

...
...

. . .
...

∂φ2l
∂Wr1

∂φ2l
∂Wr2

· · · ∂φ2l
∂Wrm


l×m

(36)
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Taking the above derivative results (32)–(36) into the approximation error (29), we can
obtain the following equation:

K̂w − Kw = −W̃TΦ̂2 − ŴTΦ̃2 − ε0
= −W̃TΦ̂2 − ŴTΦ2C1 C̃1
−ŴTΦ2C2 C̃2 − ŴTΦ2B1 B̃1
−ŴTΦ2B2 B̃2 − ŴTΦ2Wr W̃r − ∆0

(37)

where ∆0 = ŴTOh + ε0 = ŴTOh + W̃TΦ̃2 + ε is a lumped higher-order approximation
error term, assumed to be bounded by |∆0| ≤ ∆d.

Figure 2 is a block diagram of the proposed adaptive DTSMC using the FTDO. From
the Figure 2, the designed controller consists of an equivalent control item, an approximate
switching control item, and a compensated disturbance item.

Figure 2. Block diagram of the proposed FTDO-based DTSMC method.

The detailed information is developed as:

.
û =

.
ueq +

.
ûsw +

.
ud

= − 1
b

{
[I1 · u + I2 + I3] + K̂wsgn(σ) + (c + λ)ĝ(t) +

.
ĝ(t)

} (38)

where


I1 = b(c + λ)

I2 = c
[

f (x)− ..
r− ..

p
]
+

.
f (x)− ...

r −
...
p

I3 = λc
( .
e− .

p
)
+ λ

[
f (x)− ..

r− ..
p
] .

Theorem 3. Consider a dynamics (4) with the lumped unknown disturbances g(t). If a FTDO is
constructed as (5), and the control law is selected as Equation (38), then as long as the parameters of
the control law and the observer are reasonably selected, the compensation current x1 = ic can track
the reference current r within a finite time, which means that the system is stable.

Proof. According to the description of Remark 1, the observer error of the FTDO will even-
tually tend to be a finite constant, so we choose the following Lyapunov candidate function:

V =
1
2

σ2 +
1

2η1
W̃TW̃ +

1
2η2

B̃1
T B̃1 +

1
2η3

B̃2
T B̃2 +

1
2η4

C̃1
TC̃1 +

1
2η5

C̃2
TC̃2 +

1
2η6

W̃T
r W̃r (39)

Considering the unknown disturbance of single-phase APF, deriving the dynamic
terminal sliding mode surface (19) again yields:
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.
σ =

..
s + λ

.
s

= C
( ..

E−
..
P
)
+ λ

[
C
( .

E−
.
P
)]

= c
(..
e− ..

p
)
+

...
e −

...
p + λ

[
c
( .
e− .

p
)
+

..
e− ..

p
]

= c
(

f (x) + bu + g(t)− ..
r− ..

p
)
+

.
f (x) + b

.
u +

.
g(t)− ...

r −
...
p + λc

( .
e− .

p
)
+ λ

(
f (x) + bu + g(t)− ..

r− ..
p
) (40)

Finding the first derivative of the Lyapunov candidate function (39) and bringing
Equation (40) into it deduces:

.
V = σ

.
σ + 1

η1
W̃T

.
W̃ + 1

η2
B̃1

T
.
B̃1 +

1
η3

B̃2
T

.
B̃2 +

1
η4

C̃1
T

.
C̃1 +

1
η5

C̃2
T

.
C̃2 +

1
η6

W̃T
r

.
W̃r

= σ
{

b
.
u + c

(
f (x) + bu + g(t)− ..

r− ..
p
)
+

.
f (x) +

.
g(t)− ...

r −
...
p + λc

( .
e− .

p
)
+λ
(

f (x) + bu + g(t)− ..
r− ..

p
)}

+ H
(41)

where H = 1
η1

W̃T
.

W̃ + 1
η2

B̃1
T

.
B̃1 +

1
η3

B̃2
T

.
B̃2 +

1
η4

C̃1
T

.
C̃1 +

1
η5

C̃2
T

.
C̃2 +

1
η6

W̃T
r

.
W̃r.

Equation (41) involves the control law
.
u before approximation, we add and subtract a

control law
.
û after approximation, and we can get:

.
V = σ

{
b

.
u− b

.
û + b

.
û + c

(
f (x) + bu + g(t)− ..

r− ..
p
)
+

.
f (x) +

.
g(t) −...

r −
...
p + λc

( .
e− .

p
)
+ λ

(
f (x) + bu + g(t)− ..

r− ..
p
)}

+ H

= σ
{

b
[
− 1

b
( .
ueq +

.
usw +

.
ud
)]
− b
[
− 1

b

( .
ueq +

.
ûsw +

.
ud

)]
+ b
[
− 1

b

(
I1u + I2 + I3 + K̂wsign(σ) + (c + λ)ĝ(t) +

.
ĝ(t)

)]
+c
(

f (x) + bu + g(t)− ..
r− ..

p
)
+

.
f (x) +

.
g(t)− ...

r −
...
p +λc

( .
e− .

p
)
+ λ

(
f (x) + bu + g(t)− ..

r− ..
p
)}

+ H
= σ

[(
K̂w − Kw

)
sign(σ)− K̂wsign(σ) + (c + λ)ε1 + ε2

]
+ H

(42)

Bringing the approximation error (37) into (42) yields:
.

V = σ
[(

K̂w − Kw
)
sign(σ)− K̂wsign(σ) + (c + λ)ε1 + ε2

]
+ H

= σ
[
−K̂wsign(σ) + (c + λ)ε1 + ε2

]
+
(
K̂w − Kw

)
|σ|+ H

= σ
[
−K̂wsign(σ) + (c + λ)ε1 + ε2

]
+
(
−W̃TΦ̂2 − ŴTΦ2C1 C̃1 − ŴTΦ2C2 C̃2 − ŴTΦ2B1 B̃1

−ŴTΦ2B2 B̃2−ŴTΦ2Wr W̃r + ∆0

)
|σ|+ 1

η1
W̃T

.
W̃ + 1

η2
B̃1

T
.
B̃1 +

1
η3

B̃2
T

.
B̃2 +

1
η4

C̃1
T

.
C̃1 +

1
η5

C̃2
T

.
C̃2 +

1
η6

W̃T
r

.
W̃r

(43)

Finally, the following adaptive laws are selected:

Let −|σ|W̃TΦ̂2 +
1
η1

W̃T
.

W̃ = 0, we can get:

.
W̃ = η1|σ|Φ̂2 (44)

Let −|σ|ŴTΦ2B1 B̃1 +
1
η4

B̃1
T

.
B̃1 = 0, we can get:

.
B̃1

T = η2|σ|ŴTΦ2B1 (45)

Let −|σ|ŴTΦ2B2 B̃2 +
1
η5

B̃2
T

.
B̃2 = 0, we can get:

.
B̃2

T = η3|σ|ŴTΦ2B2 (46)

Let −|σ|ŴTΦ2C1 C̃1 +
1
η2

C̃1
T

.
C̃1 = 0, we can get:

.
C̃1

T = η4|σ|ŴTΦ2C1 (47)

Let −|σ|ŴTΦ2C2C̃2 +
1
η3

C̃2
T

.
C̃2 = 0, we can get:

.
C̃2

T = η5|σ|ŴTΦ2C2 (48)
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Let −|σ|ŴTΦ2Wr W̃r +
1
η6

W̃r
T

.
W̃r = 0, we can get:

.
W̃

T

r = η6|σ|ŴTΦ2Wr (49)

where η1, η2, η3, η4, η5, η6 is an adjustable constant.
After the adaptive laws (44)–(49) are selected, the first derivative of Lyapunov function

is simplified as:

.
V = σ

[
−K̂wsign(σ) + (c + λ)ε1 + ε2

]
+ |σ|∆0

= −K̂w|σ|+ ∆0|σ|+ [(c + λ)ε1 + ε2]σ
≤ −K̂w|σ|+ ∆d|σ|+ Ω|σ|
= −|σ|

[
K̂w −

(
∆d + Ω

)] (50)

where |∆0| ≤ ∆d is the upper bound of the higher-order approximation error of the neural
network, |ε1| ≤ ε∗1 and |ε2| ≤ ε∗2 are the upper bounds of the observer error. In addition, we
define a lumped observer error (c + λ)ε1 + ε2 ≤ (c + λ)ε∗1 + ε∗2 = Ω. From Equation (50),
as long as we can guarantee that the switching gain approximated by the DHLRNN is
greater than the upper bound of the lumped error, i.e., K̂w >

(
∆d + Ω

)
, then

.
V ≤ 0. Based

on Lyapunov stability theory and Barbalat’s lemma, the control law (38) designed in this
paper can ensure that the equilibrium point of the system is stable, which means lim

t→∞
σ = 0.

Once the conditions σ = 0 are met, by global stability, then the sliding mode surface s = 0
is established, and finally by solving differential equations ce +

.
e = 0, the tracking error

eventually tends to zero lim
t→∞

e = 0. �

5. Simulation Study

This part takes a single-phase parallel active power filter as the control object, and
adopts the proposed strategy for the first-order dynamic model obtained by the averaging
method to realize the current tracking control task. The circuit model diagram of APF is
given in Figure 3. The effectiveness, reliability, and practical feasibility of the novel control
strategy for APF system is verified on MATLAB/Simulink. The following introduces the
simulation experiment where the comparative results are also carried out. In the simulation
process, the CPU is i5-8300H (2.30 GHz), the system is 64-bit, and the version of MATLAB
is 2019b. The control task is to design the controller to output an appropriate duty cycle to
control the correct switching of the IGBT according to the calculated reference current, so as
to realize the high-precision tracking control task of the current. Actually, three-phase active
power filter has a symmetry structure based on single-phase parallel active power filter.

Figure 3. Circuit model diagram of the APF system.
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According to the derivation of the circuit model, the first-order dynamic model of APF
can be obtained as

.
x = f (x) + bu + d(t) (51)

where x = ic, f (x) = − R
L x − Us+Udc

L , b = 2Udc
L , d(t) is the external disturbance. For the

detailed modeling process, please refer to [18].
The parameters used in the system simulation are shown in Table 1. In this section,

an adaptive DTSMC [7] is introduced as a comparison algorithm. The parameters in
control law (adaptive DTSMC with FTDO) (36) are c = 7× 104, λ = 9× 104, T = 0.15,
the switching gain K̂w is approximated by a DHLRNN. The parameters of the FTDO are
selected as λ0= 725650, λ1= 3× 106, λ2= 5× 106, K= 2000, the structure of the DHLRNN
is also selected as 2-4-3-1. The learning rate (31) is selected as η1 = 3000, η2 = 10, η3 = 5000,
η4 = 2000, η5 = 30, η6 = 0.005.

Table 1. Model parameters of active power filter.

Parameters Values

Supply voltage Us = 24 V, f = 50 Hz

Steady load R1 = 5 Ω, R2 = 15 Ω, C = 1000 µF

Dynamic load R1 = 15 Ω, R2 = 15 Ω, C = 1000 µF

APF main circuit Lc = 10 mH, Rc = 0.1 Ω, C = 2200 µF, U∗dc = 50 V

Switching frequency fsw = 20 KHz

Simulation sampling time Tcurrent= 1× 10−5 s

In the simulation process, the following three aspects are analyzed: (1) before APF
compensation, (2) steady-state compensation process, (3) dynamic compensation process.
In order to simulate the operating state of the grid system, the single-phase APF is linked
to the grid system at t = 0.1 s , and a dynamic nonlinear load shown in Table 1 is connected
to the grid system at t = 0.3 s, then the dynamic load that has been connected to the grid is
separated at t = 0.5 s. It is worth noting that when we measure the THD value, the time
mentioned later is the start measurement time, and the measurement period is selected as
5 periods.

Figure 4 is the grid current change curve under two control algorithms. From
Figure 4a,b, when the APF is not linked to the grid, the power supply current is severely
distorted. The THD value at t = 0 s is 38.61%. After t = 0.1 s, the single-phase APF starts
to work, and the power current under the two algorithms was rapidly compensated to
the sinusoidal waveform. Even if the non-linear load changes, the current curve is still
sinusoidal waveform.

Figure 5 is the harmonic current tracking curve under the two algorithms. No matter
which algorithm is used, the harmonic compensation current can track the reference current
in a short time. From Figure 5a, when the nonlinear load changes, the tracking effect of the
adaptive DTSMC method suddenly becomes worse, while the proposed algorithm in this
paper has better harmonic suppression property. In order to further compare the tracking
effect, we have drawn the tracking error curve as shown in Figure 6. It is obvious that when
the proposed algorithm is applied to the current controller, the tracking error is smoother,
and the error range is smaller.
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Figure 4. Source current curve before and after compensation under two control algorithms (unit of
y-axis of is A). (a) Adaptive DTSMC; (b) Adaptive DTSMC with FTDO.

Figure 5. Cont.
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Figure 5. Harmonic current tracking curve under two control algorithms (unit of y-axis of is A). (a)
Adaptive DTSMC; (b) adaptive DTSMC with FTDO.

Figure 6. Tracking error curve under two control algorithms. (a) Adaptive DTSMC; (b) adaptive
DTSMC with FTDO.
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The tracking curve of the voltage outer loop control is shown in Figure 7, and the gain
of the PI controller is selected as KP = 0.3, KI = 0. It is worth noting that although the
controllers can be designed separately, in fact there is an indirect correlation between the
current inner loop and the voltage outer loop. If the DC-side voltage cannot be stabilized,
then the current inner loop control performance will be affected. From Figure 7, under the
same PI control gain, the voltage outer loop tracking effect is very ideal, which means that
the comparative simulation we conducted in the current loop is reasonable.

Figure 7. DC side voltage tracking curve under two control algorithms (unit of y-axis is Volt). (a)
Adaptive DTSMC; (b) adaptive DTSMC with FTDO.

Figure 8 is the control input curve under the two algorithms. Since the same sliding
mode surface is adopted, the change trend of the control input is the same. In addition,
the control input will be modulated into a switching signal by triangular wave, so we can
ignore the amplitude of the control input.
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Figure 8. Control input curve under two control algorithms (unit of y-axis of is A). (a) Adaptive
DTSMC; (b) adaptive DTSMC with FTDO.

In order to directly reflect the steady-state and dynamic compensation performance
under the two algorithms, Table 2 is the summary of the distortion rate change of the
reflecting THD values measured at different time, showing the THD value of the proposed
controller is reduced from 38.61% before compensation to 2.26% of the steady-state perfor-
mance, and when an additional nonlinear load is increased, the THD is further reduced
to 1.57%. When the nonlinear load is reduced again, the total harmonic distortion rate is
2.27%. Compared with the simple adaptive DTSMC law, the proposed method has better
steady-state and dynamic-steady compensation effects.

Table 2. Harmonic distortion rate of two algorithms at different times.

Time Adaptive DTSMC Adaptive DTSMC
with FTDO

0 s 38.61% 38.61%

0.2 s 3.17% 2.26%

0.4 s 2.73% 1.57%

0.6 s 3.22% 2.27%

The proposed method applies a FTDO, and the disturbance compensation term (21)
is added to the control law (24). However, it is worth discussing whether the disturbance
term estimated by the observer is accurate, if not, it may affect the control accuracy of the
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system. Considering the output of the FTDO (6), the output z0 = x̂2 estimates the state
variable of the system x2 = dic/dt, the output z1 = ĝ(t) estimates the lumped unknown
disturbance g(t), and the output z2 =

.
ĝ(t) estimates the first derivative of the unknown

disturbance
.
g(t).

It is not difficult to find that the integral of the observer output can be deduced, i.e.,∫
z0 =

∫
x̂2 = x̂1. Therefore, we can compare the observed value x̂1 with the actual system

state x1 = ic, if they are equal, it can indicate that the designed FTDO is effective. Finally,
we can conclude that the observer’s estimate of the lumped unknown disturbance and
its derivative are correct, and the disturbance compensation term is valid. Figure 9 is a
comparison of the estimated value x̂1 and actual harmonic compensation current x1 = ic.
Regardless of the trend or amplitude, the curves of observed value and actual values are
remarkably similar.

Figure 9. Comparison of the estimated and actual values.

Figure 10 is the output of the disturbance compensation term. There is still a slight
error between the observed value and the actual value in Figure 10, which will also cause a
slight error in the estimated value of Figure 10. In fact, the smaller observation error can
be ignored. In the stability proof (50), we have deduced that as long as the approximated
switching gain is greater than the total integration error, i.e., K̂w >

(
∆d + Ω

)
, the stability

of the system can be guaranteed. In other words, the observation error of the FTDO can be
compensated by the switching gain.

Figure 10. Disturbance compensation term.
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Since the DHLRNN is applied to approximate the switching gain, it can be seen from
Figure 11 that the switching gain satisfies Kw ≈ 6.2× 1013. The adaptive curves of the
DHLRNN are shown in Figures 12–17. It is shown that all parameters Wr, C1, B1, C2, B2, W
can converge to stable values because the role of the two hidden layers enables the network
to have faster convergence speed and convergence accuracy under fewer nodes.

Figure 11. The output of the DHLRNN.

Figure 12. Adaptive parameter B1 curve.

Figure 13. Adaptive parameter C1 curve.
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Figure 14. Adaptive parameter B2 curve.

Figure 15. Adaptive parameter C2 curve.

Figure 16. Adaptive parameter W curve.
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Figure 17. Adaptive parameter Wr curve.

6. Conclusions

The current tracking control problem of nonlinear system has been investigated
through an adaptive DTSMC technique with a FTDO in this paper. The merits of DSMC
and TSMC are successfully combined to improve the convergence speed and reduce the
chattering problems of traditional sliding mode controller. By combining the advantages of
DMSC and TSMC, DTSM surface is designed, which can not only weaken chattering but
also ensure the tracking error can finitely converge to zero. A FTDO is proposed to remove
the negative impact of matched and mismatched disturbances on the control performance,
where the disturbance compensation term is added to the DSMC law. A DHLRNN is
presented to approximate the optimal switching gain, and all parameters in the neural
network can converge to stable values because the role of the two hidden layers enables the
network to have faster convergence speed and convergence accuracy under fewer nodes.

Finally, numerical simulation experiments show that the proposed method has ef-
fective compensation performance. Compared with the existing methods, the proposed
algorithm has better dynamic compensation capabilities with the decreasing of 1% THD.
Experimental validation by implementing the proposed method on the actual system in
real-time is needed in the next research steps. Considering the superior control performance,
the presented approach can be further extended to other power electronic controls.

Author Contributions: Conceptualization, J.F.; methodology, Y.F.; software, Y.C.; validation, Y.C.;
writing—original draft preparation, Y.C.; writing—review and editing, Y.F.; project administration, J.F.;
funding acquisition, J.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work is partially supported by National Science Foundation of China under Grant
No. 61873085.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yao, X.; Park, J.; Dong, H.; Guo, L.; Lin, X. Robust Adaptive Nonsingular Terminal Sliding Mode Control for Automatic Train

Operation. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 2406–2415. [CrossRef]
2. Fei, J.; Wang, Z.; Pan, Q. Self-Constructing Fuzzy Neural Fractional-Order Sliding Mode Control for Active Power Filter. IEEE

Trans. Neural Netw. Learn. Syst. 2022. Available online: https://ieeexplore.ieee.org/abstract/document/9768195 (accessed on 4
May 2022). [CrossRef]

3. Young, K.; Utkin, V.; Ozguner, U. A control engineer's guide to sliding mode control. IEEE Trans. Control Syst. Technol. 1999, 7,
328–342. [CrossRef]

4. Vu, M.T.; Le, T.-H.; Thanh, H.L.N.N.; Huynh, T.-T.; Van, M.; Hoang, Q.-D.; Do, T.D. Robust Position Control of an Over-actuated
Underwater Vehicle under Model Uncertainties and Ocean Current Effects Using Dynamic Sliding Mode Surface and Optimal
Allocation Control. Sensors 2021, 21, 747. [CrossRef] [PubMed]

http://doi.org/10.1109/TSMC.2018.2817616
https://ieeexplore.ieee.org/abstract/document/9768195
http://doi.org/10.1109/TNNLS.2022.3169518
http://doi.org/10.1109/87.761053
http://doi.org/10.3390/s21030747
http://www.ncbi.nlm.nih.gov/pubmed/33499320


Symmetry 2022, 14, 1704 21 of 21

5. Lopac, N.; Bulic, N.; Vrkic, N. Sliding Mode Observer-Based Load Angle Estimation for Salient-Pole Wound Rotor Synchronous
Generators. Energies 2019, 12, 1609. [CrossRef]

6. Yang, Y.; Yan, Y. Backstepping sliding mode control for uncertain strict-feedback nonlinear systems using neural-network- based
adaptive gain scheduling. J. Syst. Eng. Electron. 2018, 29, 580–586.

7. Fei, J.; Chen, Y. Dynamic Terminal Sliding Mode Control for Single-Phase Active Power Filter Using Double Hidden Layer
Recurrent Neural Network. IEEE Trans. Power Electron. 2020, 35, 9906–9924.

8. Mozayan, S.; Saad, M.; Vahedi, H. Sliding Mode Control of PMSG Wind Turbine Based on Enhanced Exponential Reaching Law.
IEEE Trans. Ind. Electron. 2016, 63, 6148–6159. [CrossRef]

9. Wang, Y.; Feng, Y.; Zhang, X.; Liang, J. A New Reaching Law for Antidisturbance Sliding-Mode Control of PMSM Speed
Regulation System. IEEE Trans. Power Electron. 2020, 35, 4117–4126. [CrossRef]

10. Wang, Z.; Fei, J. Fractional-Order Terminal Sliding Mode Control Using Self-Evolving Recurrent Chebyshev Fuzzy Neural
Network for MEMS Gyroscope. IEEE Trans. Fuzzy Syst. 2022, 30, 2747–2758. [CrossRef]

11. Sami, I.; Ullah, S.; Ali, Z.; Ullah, N.; Ro, J. A Super Twisting Fractional Order Terminal Sliding Mode Control for DFIG-Based
Wind Energy Conversion System. Energies 2020, 13, 2158. [CrossRef]

12. Feng, Y.; Han, F.; Yu, X. Chattering free full-order sliding-mode control. Automatica 2014, 50, 1310–1314. [CrossRef]
13. Liu, J.; Sun, F. A novel dynamic terminal sliding mode control of uncertain nonlinear systems. J. Control. Theory Appl. 2007, 5,

189–193. [CrossRef]
14. Fei, J.; Chen, Y. Fuzzy Double Hidden Layer Recurrent Neural Terminal Sliding Mode Control of Single-Phase Active Power

Filter. IEEE Trans. Fuzzy Syst. 2021, 29, 3067–3081. [CrossRef]
15. Fei, J.; Wang, Z.; Liang, X. Adaptive Fractional Sliding Mode Control of Micro gyroscope System Using Double Loop Recurrent

Fuzzy Neural Network Structure. IEEE Trans. Fuzzy Syst. 2022, 30, 1712–1721. [CrossRef]
16. Xu, B.; Zhang, R. Composite Neural Learning Based Nonsingular Terminal Sliding Mode Control of MEMS Gyroscopes. IEEE

Trans. Neural Netw. Learn. Syst. 2020, 31, 1375–1386. [CrossRef]
17. Fei, J.; Wang, Z.; Fang, Y. Self-Evolving Chebyshev Fuzzy Neural Fractional-Order Sliding Mode Control for Active Power Filter.

IEEE Trans. Ind. Inform. 2022. Available online: https://ieeexplore.ieee.org/abstract/document/9745783 (accessed on 31 March
2022). [CrossRef]

18. Fei, J.; Liu, L. Real-Time Nonlinear Model Predictive Control of Active Power Filter Using Self-Feedback Recurrent Fuzzy Neural
Network Estimator. IEEE Trans. Ind. Electron. 2022, 69, 8366–8376. [CrossRef]

19. Levant, A. Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 2003, 76, 924–941. [CrossRef]
20. Shtessel, Y.; Shkolnikov, I.A.; Levant, A. Smooth second-order sliding modes: Missile guidance application. Automatica 2007, 43,

1470–1476. [CrossRef]
21. Wang, H.; Shi, L.; Man, Z.; Zheng, J.; Li, S.; Yu, M.; Jiang, C.; Kong, H.; Cao, Z. Continuous Fast Nonsingular Terminal Sliding

Mode Control of Automotive Electronic Throttle Systems Using Finite-Time Exact Observer. IEEE Trans. Ind. Electron. 2018, 65,
7160–7172. [CrossRef]

22. Wang, Z.; Li, S.; Li, Q. Continuous Nonsingular Terminal Sliding Mode Control of DC-DC Boost Converters Subject to Time-
Varying Disturbances. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 2552–2556. [CrossRef]

23. Yang, J.; Li, S.; Su, J.; Yu, X. Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances.
Automatica 2013, 49, 2287–2291. [CrossRef]

24. Yang, J.; Li, S.; Yu, X. Sliding-Mode Control for Systems With Mismatched Uncertainties via a Disturbance Observer. IEEE Trans.
Ind. Electron. 2013, 60, 160–169. [CrossRef]

25. Li, Y.; Liu, Y.; Tong, S. Observer-based neuro-adaptive optimized control for a class of strict-feedback nonlinear systems with
state constraints. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 3131–3145. [CrossRef]

26. Li, Y.; Zhang, J.; Liu, W.; Tong, S. Observer-Based Adaptive Optimized Control for Stochastic Nonlinear Systems with Input and
State Constraints. IEEE Trans. Neural Netw. Learn. Syst. 2021. Available online: https://ieeexplore.ieee.org/abstract/document/
9463406 (accessed on 23 June 2021). [CrossRef]

27. Shao, X.; Shi, Y. Neural Adaptive Control for MEMS Gyroscope With Full-State Constraints and Quantized Input. IEEE Trans. Ind.
Inform. 2020, 16, 6444–6454. [CrossRef]

28. Hou, S.; Fei, J. A Self-Organizing Global Sliding Mode Control and Its Application to Active Power Filter. IEEE Trans. Power
Electron. 2020, 35, 7640–7652. [CrossRef]

29. Hua, M.; Zheng, D.; Deng, F. H∞ filtering for nonhomogeneous Markovian jump repeated scalar nonlinear systems with
multiplicative noises and partially mode-dependent characterization. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 3180–3192.
[CrossRef]

30. Chu, Y.; Fei, J.; Hou, S. Adaptive Global Sliding Mode Control for Dynamic Systems Using Double Hidden Layer Recurrent
Neural Network Structure. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 1297–1309. [CrossRef]

http://doi.org/10.3390/en12091609
http://doi.org/10.1109/TIE.2016.2570718
http://doi.org/10.1109/TPEL.2019.2933613
http://doi.org/10.1109/TFUZZ.2021.3094717
http://doi.org/10.3390/en13092158
http://doi.org/10.1016/j.automatica.2014.01.004
http://doi.org/10.1007/s11768-005-5275-5
http://doi.org/10.1109/TFUZZ.2020.3012760
http://doi.org/10.1109/TFUZZ.2021.3064704
http://doi.org/10.1109/TNNLS.2019.2919931
https://ieeexplore.ieee.org/abstract/document/9745783
http://doi.org/10.1109/TII.2022.3162855
http://doi.org/10.1109/TIE.2021.3106007
http://doi.org/10.1080/0020717031000099029
http://doi.org/10.1016/j.automatica.2007.01.008
http://doi.org/10.1109/TIE.2018.2795591
http://doi.org/10.1109/TCSII.2019.2955711
http://doi.org/10.1016/j.automatica.2013.03.026
http://doi.org/10.1109/TIE.2012.2183841
http://doi.org/10.1109/TNNLS.2021.3051030
https://ieeexplore.ieee.org/abstract/document/9463406
https://ieeexplore.ieee.org/abstract/document/9463406
http://doi.org/10.1109/TNNLS.2021.3087796
http://doi.org/10.1109/TII.2020.2968345
http://doi.org/10.1109/TPEL.2019.2958051
http://doi.org/10.1109/TSMC.2019.2919146
http://doi.org/10.1109/TNNLS.2019.2919676

	Introduction 
	Design of Finite-Time Disturbance Observer 
	Double Hidden Layer Recurrent Neural Network Structure 
	Controller Design and Stability Analysis 
	Simulation Study 
	Conclusions 
	References

