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Abstract: A high-quality annotated text corpus is vital when training a deep learning model. However,
it is insurmountable to acquire absolute abundant label-balanced data because of the huge labor
and time costs needed in the labeling stage. To alleviate this situation, a novel active learning (AL)
method is proposed in this paper, which is designed to scratch samples to construct multi-class and
multi-label Chinese emotional text corpora. This work shrewdly leverages the superiorities, i.e.,
less learning time and generating parameters randomly possessed by extreme learning machines
(ELMs), to initially measure textual emotion features. In addition, we designed a novel combined
query strategy called an asymmetric sampler (which simultaneously considers uncertainty and
representativeness) to verify and extract ideal samples. Furthermore, this model progressively
modulates state-of-the-art prescriptions through cross-entropy, Kullback–Leibler, and Earth Mover’s
distance. Finally, through stepwise-assessing the experimental results, the updated corpora present
more enriched label distributions and have a higher weight of correlative emotional information.
Likewise, in emotion classification experiments by ELM, the precision, recall, and F1 scores obtained
7.17%, 6.31%, and 6.71% improvements, respectively. Extensive emotion classification experiments
were conducted by two widely used classifiers—SVM and LR—and their results also prove our
method’s effectiveness in scratch emotional texts through comparisons.

Keywords: machine learning; active learning; symmetry and asymmetry; ELM; uncertainty;
representativeness; emotion classification

1. Introduction

Large amounts of electronic textual data are produced by media or mobile platforms
every day (due to the rapid development of social media). By deeply mining the raw
data collected from the internet, a large number of valuable threads and rules can be
found and used, promoting various research developments, such as patient emotion
state detecting [1], bot detection [2–4], emergency response [5], and disease diagnosis [6].
Information recognition study is usually conducted on various deep neural networks
(DNNs), which need large amounts of labeled data. However, data labeling is extremely
tedious, as well as labor-, cost-, and time-consuming, and requires professional knowledge
by human experts. Moreover, keeping labels balanced while tagging also requires expert
resources. Thus, labeled data corpora are expensive [7,8] and hard to acquire, which
restricts the sharing and spreading of high-level corpora worldwide. Moreover, the labeled
data shortage has evolved as a ‘bottleneck’ to the development of artificial intelligence
(AI) [9]. As an important branch of machine learning, active learning (AL) has the ability
to alleviate the shortage of labeled data. AL aims to (1) acquire labeled data through
the cooperation between computer model selections and human expert labeling, or (2)
complete the challenging task via tagging pseudo labels based on accurate label predictions.
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However, in real applications, the existing AL approaches still have some problems.
On the one hand, traditional machine learning methods have embarrassing performances
when recognizing language semantics, even with the help of pre-trained word vectors
(based on the bag of words proposed by Markov [10]), or when looking for precise
pre-trained word vectors. On the other hand, more deep active learning (DAL) [11,12]
models are introduced into AL tasks to generate multi-dimension feature representations
with long training times, such as TextCNN [13], BERT [14], LSTM [15], and their variants.
In NLP tasks, they usually achieve better performances when compared to traditional
machine learning regarding homologous data features; however, their long training times
involve unaffordability, conflicts with the original intentions of AL, and are inharmonious
when it comes to cooperating with human experts. Therefore, we need to build a kind of
AL method with a lightweight neural network that is (1) highly explainable, (2) effective in
extracting emotional information, and (3) takes up less training time.

In this work, ELM (as proposed in 2006 by Huang et al. [16] with a single-layer
feed-forward network (SLFN)), considering its previous excellent performance and less
training time, was employed to (instruct to) build the AL framework in a novel method.
In the proposed AL framework, the widely-used vectorization tool TF-IDF was initially
utilized to provide textual representation for the instances. Then, through ELM’s particular
processing, textual representations of the features were transformed as burgeoning feature
maps before being executed via sampling criteria for probability comparisons in the AL
iteration progress. In this work, we argue that asymmetric samplers constructed by
uncertainty [17,18] and representativeness [19,20] can select important and needed instances;
these two strategies are normally successively reflected by cross-entropy, Kullback–Leibler
divergence, and earth mover’s distance. The selected samples were professionally annotated
by Human Oracle, progressively updating the training corpus. Furthermore, to verify
the efficiency of the designed AL method, it was examined on sentence-level Chinese
text extracted from a social media platform; extensive emotion classification experiments
were conducted simultaneously. Moreover, the referred data from the experiments were
divided into eight emotion classes referred from Ren Lab’s emotion taxonomy and an
additional neutral class. Moreover, the recurrent emotion classification experiments
verified the selected samples by our method and could improve the model’s learning
ability progressively.

In this work, there are three main contributions involved in constructing a high-quality
sentence-level Chinese textual emotion corpus: (1) A novel AL model that employs
SLFN (ELM) as a textual feature processor, replenishing the method to build the Chinese
text corpus. (2) A novel combined query strategy—called asymmetric samplers—that
simultaneously considers two asymmetric factors (i.e., uncertainty and representativeness)
and achieve state-of-the-art performances among the mentioned query strategies. (3) The
learning efficiency and ceiling performances for text emotion classification are significantly
improved with the proposed method.

The remainder of this paper is organized as follows. Section 2 reviews the working
procedure of ELM, traditional AL, and the development of emotion taxonomy. The model’s
methodology is described in Section 3. We illustrate the experimental results in detail and
compare the differences among the multi-query strategies in Section 4. Finally, Section 5
concludes this study.

2. Related Works

The research of AL helps to alleviate the pressure of obtaining the labeled text in
mining and analyzing the emotion polarity described by the targeted text [21,22]. While
designing the AL algorithm, two vital parts are attracting the attention of researchers—the
precise probability predictor and excellent sampling criterion [17–20]. In this section, we
briefly review the related research on ELM and highlight the merits and achievements. The
existing AL technologies are briefly introduced, which use different feature processors and
query strategies. Later, the developing history of emotion taxonomy is described concisely.
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2.1. Extreme Learning Machine

A single-layer feed-forward network (SLFN), different from the deep learning model
(with many learning layers), has a more brief and bright structure with only one hidden
layer, which means higher computing speeds and lower computing resource costs when
dealing with enormous amounts of data. In the past decades, ELM, as the representative
model of SLFN, except for the advantages mentioned above, has two advantages: (1)
generating hidden layer unit parameters randomly, and (2) admirable interpretability.

To cast off the limitations of parameter tuning in general DNNs while training, in ELM,
parameters in the hidden layer are exhaustive and generated randomly, which does not
need manual tuning or control. Moreover, this operation can save parameter fine-tuning time.
Moreover, ELM has other specialties—activation functions can be bounded, non-constant
piecewise continuous functions as well as integrable piecewise continuous functions, which
means we can adjust ELM’s activation functions to fit our own tasks, which is how we
can explain its working mechanism in a detailed manner. With these two traits, ELM
can be transferred to many tasks that concern the fields of visual [23,24], audio [25,26],
natural language [27,28], and physiological signals [29,30], comfortably and flexibly. Thus,
many works have been conducted on the deuterogenic ELM, achieving decent results. For
example, Yang et al., in [31], offered an ELM-based learning method that could improve
its performance by pulling back the residual network error to the hidden layer. Moreover,
due to fewer hidden nodes employed in the model, the learning speed was one hundred
times faster than other ELMs. Migel et al. [32] also proposed stacking multi-ELM modules
together to construct a DNN, and they controlled the inputting data dimensions by a
weighted matrix between two ELM modules, which reduced the computing complexity.
In [33], Deng et al. continued the research by shortening the learning times by fusing the
singular value decomposition (SVD) with the hidden ELM layer, which reduced learning
costs in the task and improved the classifier’s performance of high-dimensional data.
Normally, ELM is used in classification and regression tasks, and the learning data are in an
imbalanced state. To adjust ELM (to adapt to this situation), Li et al. [34] used a modified
AdaBoost, which could provide weighted training samples to weighted ELM. Follow-up
studies focused on assembling ELM with a novel learning structure for different aims as
well as on optimizing the inner loss functions to obtain a reduction of errors. In [35], Li et
al. abandoned the conventional modus operandi for optimizing the output layer’s error
in training. They reduced the calculating error via controlling hidden units based on the
number of training samples before being sent to the hidden layer. The above description
shows that ELM has indomitable vitality in classification and regression tasks. However, to
our knowledge, ELM is seldom reported or employed in the AL field. Thus, we decided to
utilize ELM’s extraordinary ability in recognizing instance information and transfer it into
our AL work.

2.2. Traditional Active Learning

One challenge in machine learning is how to acquire an appreciable quantity of
labeled data to ‘learn’ an outstanding model in a variety of tasks [21,22,36]. With the hope of
decreasing the sampling times and minimizing annotated data costs, the investigator wields
various information distance evaluating measurements to classify or cluster unlabeled
samples via training on small labeled data corpora, discarding the redundant parts according
to the designed sampling rules. Then, the selected samples are transferred into a training
set after being labeled by Human Oracle; this selecting and labeling process continues until
they stop being triggered. Overall, the above sampling procedure is called AL.

Normally, the core of AL is the query strategy to investigate the similarity of samples
and complete the selection of wanted samples [37]. Typically, we summarize various
strategies into two types: uncertainty [38] and representativeness [19,20]. With uncertainty,
if the candidate samples are far away from the baseline data in the probability map and
cannot confirm their classes based on current extracted features, there is adequate evidence
to suggest that such samples with high uncertainty scores should be selected to enrich the
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previous training set and be annotated by Human Oracle. However, unitary sampling
hurts the AL model when filtering information. Therefore, combining representativeness
with uncertainty to form asymmetric samplers can make the selection procedure more
justifiable. Moreover, the hybrid model can help reduce the costs of eliminating the
samples with less information [39]. Nowadays, it is hard to say which query strategy has
universal relevance in various AL tasks (in the background of the big data era). However,
researchers are attempting to optimize typical methods or recommend renewable ideas
to progressively improve the model’s performance. Through verification—cross-entropy,
Kullback–Leibler divergence and earth mover’s distance contribute to the research on
measuring sample distances when they are employed in enlarging data sets. In recent years,
earth mover’s distance, as a burgeoning difference assessing method, has been pursued by
many researchers when measuring information similarities. However, previous AL models
declared that they were effective in only one certain research realm, which means many
targets should be overcome. Thus, this paper proposes a novel AL model to alleviate the
pressure of labeled corpora shortages.

By adjusting the format of data inputting as a decisive standard, we can roughly
categorize information-oriented AL into three main scenarios—pool-based, stream-based,
and membership query synthesis. Moreover, due to text sets usually being closed in
classifications, we followed the format of pool-based AL in this work. Therefore, to
bridge the gap between the need for labeled data and labeling costs, this work proposes
asymmetric sample AL fused with label-balanced mechanisms.

2.3. Emotion Taxonomy

Miller T.L. et al. [40] enhanced Ekman’s emotion category, i.e., human emotions
could be categorized into six basic classes from the view of psychology—anger, disgust,
fear, happiness, sadness, and surprise, regardless of race, culture, and language. Since
then, more elaborate emotion taxonomies have been nominated according to the needs
of different research tasks, such as psychology, face emotion recognition, mental diseases,
and others. For example, Plutchik and Kellerman [41] employed four bipolar axes—joy
vs. sadness, anger vs. fear, trust vs. disgust, surprise vs. anticipation for modeling
emotions in a multi-dimensional space. Moreover, a tree-structured model was proposed
by Shaver et al. [42], in which anger, fear, joy, love, sadness, and surprise were the emotions
of the main branches, each of which had subordinate categories, such as affection, lust,
and longing.

More recently, Quan et al. [43] from Ren Lab, after deeply studying human communication
habits in the text (based on Ekman’s six basic emotions), proposed a peculiar emotion sorting
technique suitable for natural language processing, for anxiety, anger, sorrow, hate, joy, love,
expect, and surprise. Moreover, the fine-grained emotion distribution is closer to ‘feeling’
expressions in daily life. Furthermore, Ren Lab released a large and thoroughly annotated
emotion corpus Ren CECps (Available online: http://a1-www.is.tokushima-u.ac.jp/member/
ren/Ren-CECps1.0/DocumentforRen-CECps1.0.html (accessed on 16 October 2018)), this
corpus has attracted many related research studies [44–48]. Therefore, this is why Ren Lab’s
emotion taxonomy was adopted in this work.

A lightweight network is remarkable in data mining. For further excavating its potency, in
our research, ELM, as an outstanding SLFN, was first employed to predict the pseudo-emotion
labels for expanding the Chinese textual emotion corpus. Moreover, asymmetric samplers
were constructed to evaluate textual emotion distributions based on the emotion category
proposed by Ren Lab.

3. Methodology

In this section, the proposed AL via asymmetric samplers is introduced in detail
Algorithm 1. First, ELM is described from its inner structure and its working procedure
on multi-class Chinese textual tasks. Then, detailed descriptions of query strategies in
asymmetric samplers are presented in mathematical derivations.

http://a1-www.is.tokushima-u.ac.jp/member/ren/Ren-CECps1.0/DocumentforRen-CECps1.0.html
http://a1-www.is.tokushima-u.ac.jp/member/ren/Ren-CECps1.0/DocumentforRen-CECps1.0.html
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Algorithm 1 ELM-based active learning algorithm

Input: Training set Dtrain ∈ Rl , Raw set Dsample_pool ∈ Rlen(Dsample_pool)

Output: Updated training set Dupdated_train
1: repeat
2: Learn a multi-label emotion classifier ELM on X;
3: repeat
4: i means the similarity measurements CE, KL, EM
5: Du

sample_pool ← maxpartition(Dsample_pool ,Di) (Figure A1a)
6: until stop criterion 1
7: repeat
8: j means the similarity measurements CE, CEb, EMb
9: D r

sample_pool ← minpartition(Du
sample_pool , Sim(x′)j) (Figure A1b)

10: until stop criterion 2
11: obtain ground truth label from Human Oracle yt for D r

sample_pool (Figure A2)
12: Dupdated_train = Dtrain + (D r

sample_pool , yt)

13: until stop criterion 3
14: return Dupdated_train

3.1. Working Procedure of ELM

Firstly, a brief explanation is given of ELM and how it is used in the proposed model.
Generally, within the realm of machine learning, fewer layers in the model mean fewer
time–costs in the training. As the classical representative of SLFN, ELM has a single hidden
layer that can adjust and generate hidden unit numbers randomly. With this property, our
ELM-based AL method saves a lot of training time.

As a single-layer neural network, compared to other traditional SLFNs, ELM can
promise learning accuracy while having a faster learning speed [49]. While training, in
the hidden layer, ELM employs random weights w and biases b. Moreover, training
data are denoted as Dtrain ∈ Rl , which are already encoded by TF-IDF in the form of
{X, Y} = {{x1, y1}, . . . , {xi, yi}, . . . , {xl , yl}}, where xi means the instance and yi is the
ground truth label. The activation function in the hidden layer (h in Figure 1) is g(∗)
(sigmoid, in this paper). Thus, the single-layer network transformation can be expressed as:

F(x) = βg(X; w, b) (1)

where β is the weight matrix, w is the weight between the hidden nodes and input nodes,
and b is the bias.

Compared with the ordinary SLFN, the most soul-stirring innovation in ELM is that
all the initial parameters in β are generated randomly after fixing the number of hidden
nodes and activation functions. Then, when training on Dtrain, the least square (LS) can be
formulated compactly as:

L(X, Y; β) = ‖Y− βH‖2 → 0 (2)

H = g(X; w, b) (3)

where X is the text, Y is the true textual emotion label, and H is the matrix of the collection
about the activation functions.

While setting the deviation between the predicted probability and true value being
0 (Equation (2)), ELM finds the value of the simulation, which is extremely close to the
ground truth value. Thus, parameter β is determined directly by

β̂ = H∗Y, (4)

where H∗ is the Moore–Penrose generalized inverse of H. Moreover, the learned parameter
β̂ is a key role in the procedure of predicting the raw Chinese textual emotion label. In
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theory, due to LS being preset as 0, the emotion probability should be trusted with a high
confidence score.

By reviewing ELM, we separate its architecture into two parts: learning and predicting.
In learning, the goal is to learn the parameter β̂. Moreover, in predicting, with the help of
learned β̂, ELM predicts the raw Chinese textual emotion state precisely, which enhances
the instance selection work in the query strategy phase.

Figure 1. Inner structure of the traditional single-layer neural network.

3.2. Proposed Active Learning Method

The core idea of AL is to extract the wanted samples to alleviate the current pressure
in mining and labeling texts with both high uncertainty and representativeness [50–52].
Due to our raw data set being a closed set, we executed our experiments as a pool-based
batch-mode scenario as mentioned in Section 2.

3.2.1. Proposed Textual Label Predicting Mechanism

In this paper, we employed ELM as the representation executor to nominate text
features on the presupposed eight emotion classes. The predicted probabilities on candidate
texts were provided by basic ELM. According to the learning parameters β̂, the text emotion
probability can be noted as:

P = β̂g(T; w, b)

= β̂H
(5)

where T ⊆ Dsample_pool =
{

t1, . . . , tj, . . ., tn
}
∈ Rn, and H = g(T; w, b). To simulate our

daily communication convention more closely, we fully believe that being ‘neutral’, as
the common emotion state in life, should be introduced in our work. We denote its
probability as:

p9 = 1−Max(P) (6)

The sigmoid function is used to normalize the ELM output pm ⊆ PM = {p1, p2, · · ·, p9}
∈ RM within the interval [0, 1], and the sum of the nine emotion probabilities is equal to 1 (see
details in Figure 2), which is written as:

P(σ) =
1

1 + e−(PM)
(7)

where P(σ) denotes the finally textual feature representations (denoted in the format of
probabilities). Then the textual independently identical distributions on the nine emotion
states are obtained. Since 0 and 1 are included in the range of probability, the ultimate
endpoint is hardly reached. Hereto, we already completed the preparation work, giving
the estimation of each raw text by ELM.

From the above description of traditional AL in Section 2, researchers usually construct
AL models from two aspects: uncertainty and representativeness. Thus, to fully investigate
text information, the proposed AL via asymmetric samplers integrates the above two
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aspects simultaneously. In this work, to make a strong and direct comparison, we constructed
baselines on the support of these three similar measurements: cross-entropy (CE), earth
mover’s distance (EM), and Kullback–Leibler divergence (KL), which are distinguished
query strategies in information theory. The detailed descriptions of the computational
processes between P(σ) and Y are as follows.

CE, known as the most popular loss function, plays a vital role in information theory.
In this paper, it is rewritten as:

DCE(P(σ), Y) = Max(−
M

∑
m=1

Ylog(P(σ))). (8)

Observing the above function, the texts with maximum loss are far away from the
training data; it is difficult to distinguish their classes. In the other words, they should be
selected and annotated by human experts carefully.

From the definition of EM described in [53], the distance from one distribution to
another distribution can be measured based on the given approach. Moreover, from
its name, this method’s ‘mathematics’ means to find the shortest way to deliver one
distribution to another. The lower the score achieved, the higher the similarity between
two distributions. If we scratch the maximum distribution, it means the corresponding text
has a higher opportunity to be extracted. Moreover, EM evaluates the distance between
P(σ) and Y via the formula given by

DEM(P(σ), Y) = Max(
∑M

m=1 ∑n
j=1 ρmjηmj

∑M
m=1 ∑n

j=1 ρmj
). (9)

EM is also known as the optimal transport (OT) distance. In this paper, it is used to
measure the distance from one textual distribution P(σ) to another textual distribution Y
through an optimized process, until P(σ) is geometrically reshaped as Y. Moreover, ρmj
indicates the cost of the transferred probability from the mth stack of P(σ) to the jth stack of
Y, and ηmj indicates the quantity of transferred probability from the mth stack of P(σ) to the
jth stack of Y. Considering the important properties of EM, such as symmetry and triangle
inequality, this paper also adopts it as a sample query strategy.

Specifically, KL divergence is a widely-used similarity measurement in sampling
work, which evaluates the log difference between P(σ) and Y under the expectation of P(σ).
Moreover, it is also employed in this paper as an instance query strategy; we rewrote it in
the format as,

DKL(P(σ), Y) = Max(
M

∑
m=1

P(σ)mlog(
Ym

P(σ)m
)). (10)

3.2.2. Query Strategies used in Asymmetric Samplers

Based on the above similarity evaluation methods and related experiments (shown in
Section 4), the proposed methodology for the uncertainty criterion is CE. In uncertainty, AL
wants to select the instances that are furthest from the training data. However, regarding
representativeness, the model expects to find the samples with the shortest distance
in the matrix space. For a better self-comparison between the instances, we rewrote
cross-entropy as:

H(P(σ)) = Min(−P(σ)logP(σ) − (1− P(σ))log(1− P(σ)). (11)

Through the method posted by Equation (11), the texts with the most expectations
of uncertainty were extracted. These instances were selected and treated as seed players
by another criterion (representativeness). In representativeness, the sampler employs CE
(Equation (12)), CE with a balancing strategy (Equation (13)), and EM with a balancing
strategy (Equation (14)) to instruct sampling work from three aspects, respectively. In each
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sampler, AL minimizes the distance scores to find the nearest sample point to strengthen
data representativeness. Therefore, this process is described as follows.

For cross-entropy (DS1),

Sim(x′)CE = Min{DCE(P(σ), Ŷ), Ŷ ∈ Y}. (12)

For cross-entropy with a balancing strategy (DS2),

Sim(x′)CEb = Min{DCEb(P(σ), Ŷ), Ŷ ∈ Y ∪ ŷx′}. (13)

For the earth mover’s distance with the balancing strategy (DS3),

Sim(x′)EMb = Min{DEMb(P(σ), Ŷ), Ŷ ∈ Y ∪ ŷx′}, (14)

where x means the seeds in the raw data pool and ŷx′ are the predicted labels of the selected
texts by Equation (15).

Moreover, inspired by paper [54], asymmetric samplers refer to (and modify) the
label balanced strategies. While balancing, the emotion class with the largest predicting
probability is directly marked as 1. The balancing strategy is given by

ŷx′ =

{
1, {Max{px′

(σ)m}, m ∈ M}
0, others

s.t : x′ ∈ Dsample_seeds

(15)

where Dsample_seeds is the selected unlabeled sample set by the first sampler, each of which
is a candidate influencing the emotion label balancing state in the training set.

Based on the above textual information similarity measurements, to excavate the
ELM module’s potential capacity in AL, asymmetric samplers simultaneously mine textual
emotion information from uncertainty and representativeness and successively utilize
three mainstream distance strategies (CE, EM, KL) as sampling strategies in this work.
Furthermore, the conceptual graph of asymmetric samplers is shown in Figure 2. In the
design, the first sampler is utilized to measure the uncertainty of texts and the second
sampler is employed to measure textual representativeness. Moreover, a novel label
balancing method is proposed in this section, which strengthens the label balance exploration.

Figure 2. Framework of AL via asymmetric samplers.
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4. Experiments and Discussion

In this section, AL tasks and extensive classification experiments were conducted
successively. The comparisons are presented on the experimental results, not only from
traditional key indicators, such as micro precision, recall, and F1 but also from current
popular visual evaluating methods, such as the WordCloud graph for emotion words.
Based on these descriptions and analyses of the referred experimental results, this work
also provides discussions and unscrambles the unique expressing phenomena in Chinese
short-texts.

4.1. Evaluations

Choosing applicable evaluations is extremely important to reflect the model’s efficiency
and is necessary to present the rules of the selected texts. In this paper, we mainly evaluate
asymmetric samplers from three aspects: the improvement of the emotion classifiers’
learning abilities depending on the updated training set, the distribution of textual emotion
labels, and the emotion word rates. To check the ability of the updated text set in
learning classifiers, this work constructs three multi-label emotion classifiers based on ELM,
logistic regression (LR), and the support vector machine (SVM), which provide compared
experiments on updated training corpora annotated by Human Oracle. Moreover, the
main evaluation methods employed in this work are micro precision (Equation (16)), recall
(Equation (17)), and F1 (Equation (18)), which are widely used in the study of machine
learning [55,56]. Moreover, these three indicators are formulated as:

Pmicro =
∑M

m=1 TPm

∑M
m=1 TPm + FPm

, (16)

Rmicro =
∑M

m=1 TPm

∑M
m=1 TPm + FNm

, (17)

F1micro =
2× Pmicro × Rmicro

Pmicro + Rmicro . (18)

Furthermore, the second aspect involves the ground truth rate of each emotion
percentage in the updated set, which denotes the model’s capacity in capturing the useful
text in this work. Moreover, the third aspect is presented by WordCloud, which can be
seen as the information percentage for each emotion class in the selected instances by our
methods.

4.2. Text Preprocessing

Previous research [57] divided texts into three classes—document, sentence, and word
(or tokens), depending on the averaged length of the text. Specifically, sentence-level
texts express the users’ emotions, intensively and directly, without redundant textual
information. Thus, we conducted AL experiments on sentence-level Chinese text from
Weibo (Available online: https://weibo.com/ (accessed on 23 March 2013)) in this work.
Before experiments, data cleaning is important and necessary in NLP tasks, due to various
noises mixed in the raw text resources.

Moreover, in this paper, text pre-processing included filtering, segmenting, and
duplicate removal. Firstly, a tiny noisy text set was constructed, which contained 1907 noise
sentences, including advertisements, English text, the promotion of games, recipes, etc. By
learning these noise examples and filtering the highly similar texts, the number of raw texts
in each Dsample_pool can be cleaned and reduced from nearly 20,000 to 7000 obviously. This
operation provides a more clear target for the sampling criteria. Secondly, Chinese text has
its own traits in syntax rules, which are significantly different from English, with a blank
space token between two words and beginning with the capital letter in every independent
sentence. However, in Chinese, there are no more marks between characters, and it takes
more attention to semantics while expressing. Thus, this work employed the segment

https://weibo.com/
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module THULAC (Available online: http://thulac.thunlp.org/ (accessed on 11 November
2019)) developed by Tsinghua University, publicly, which is widely used in Chinese text
segment work. With the help of THULAC, whole sentences can be split into separate words
and characters. In this way, the separated words or characters can be easily encoded by AL
algorithm. Thirdly, with the specialized tiny module, duplicated texts are removed from the
raw text set. Reasonably, they hurt indiscriminate learning regarding ELM weights. Finally,
through these three pre-processing steps, text data are largely purified. Moreover, large
amounts of computing resources are saved, improving the efficiency of human–computer
interactions. As a result, the sampling procedures of AL are accelerated widely.

4.3. Experimental Setting

In SLFN, the most important parameter is the number of hidden nodes, which largely
influence the computational complexities as well as the accuracies in recognizing objects.
Referring to papers [28,58], this work sets the model’s hidden nodes as 1000, which is
appropriate to our middleweight raw text set.

Generally, the experiment is split into two stages in this work. In the first stage,
text sampling work was executed by a single sampler named ‘uncertainty’, which was
constituted by CE, EM, and KL. The experimental results in this stage are regarded as
baselines or foundations ({(CE: B1), (KL: B2), (EM: B3)}). In the second stage, AL via
asymmetric samplers, including uncertainty and representativeness, was constructed based
on B1, and denoted as {(double CE: DS1), (CE with balancing strategy: DS2), (EM with
balancing strategy: DS3).}

In this work, AL stop criteria were 60 iterations on the AL model (stop criterion 3 in
Algorithm 1), 30 sentence-level texts were extracted from Dsample_pool in each iteration (stop
criterion 2 in Algorithm 1). In contrast, in AL via asymmetric samplers, stop criterion 1 (in
Algorithm 1) selected 500 texts by uncertainty in each iteration.

The initial Dtrain largely impacted AL via the asymmetric sampler model’s learning
ability. In this work, Ren Lab collected and labeled 2022 and 1589 sentence-level texts on
nine emotion states for Dtrain and Dtest, respectively. In Dtrain, the emotion label distribution
was nearly kept at a balanced state, except Neutral, which was treated as a control role to
the eight other emotion categories via manual intervention. Correspondingly, in Dtest, the
quantity of each emotion label in the category was nearly 150.

4.4. Experimental Results

The classification performance is a key indicator of corpus quality. Concretely, micro
precision, recall, and the F1 score can present the textual information from three different
sides. In this section, two widely-used methods provide the comparisons of classification
results, and three state-of-the-art query strategies were selected as the baselines.

4.4.1. Results of Baselines

In this section, we mainly discuss the choice of the first sampler depending on the
performance of classification tasks and label distribution.

Firstly, Tables 1–3 present the initial and final emotion classification experimental
results on Dtrain, conducted by ELM, LR, and SVM, respectively.

Table 1. The results of the emotion classification experiments on the final corpora of baselines by
ELM. (↑means the improvement, and ↓ notes the decrement).

Precision recall F1

Initial (%) Final (%) ↑ or ↓ (%) Initial (%) Final (%) ↑ or ↓ (%) Initial (%) Final (%) ↑ or ↓ (%)

B1 51.23 57.33 6.10↑ 45.05 50.42 5.37↑ 47.94 53.65 5.71↑
B2 51.23 54.81 3.58↑ 45.05 48.20 3.15↑ 47.94 51.30 3.36↑
B3 51.23 61.04 9.18↑ 45.05 53.68 8.63↑ 47.94 57.13 9.19↑

http://thulac.thunlp.org/
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Table 2. The results of emotion classification experiments on the final corpora of baselines by LR. (↑
means the improvement, and ↓ notes the decrement).

Precision Recall F1

Initial (%) Final (%) ↑ or ↓ (%) Initial (%) Final (%) ↑ or ↓ (%) Initial (%) Final (%) ↑ or ↓ (%)

B1 57.32 61.63 4.31↑ 65.19 68.46 3.27↑ 61.00 64.87 3.87↑
B2 57.32 61.75 4.43↑ 65.19 68.62 3.43↑ 61.00 65.01 4.01↑
B3 57.32 60.14 2.82↑ 65.19 67.29 2.10↑ 61.00 63.52 2.52↑

Table 3. The results of emotion classification experiments on the final corpora of baselines by SVM.
(↑means the improvement, and ↓ notes the decrement).

Precision Recall F1

Initial (%) Final (%) ↑ or ↓ (%) Initial (%) Final (%) ↑ or ↓ (%) Initial (%) Final (%) ↑ or ↓ (%)

B1 57.17 59.02 1.85↑ 56.72 57.06 0.34↑ 56.94 58.02 1.08↑
B2 57.17 55.86 1.31↓ 56.72 53.79 2.93↓ 56.94 54.81 2.13↓
B3 57.17 58.76 1.59↑ 56.72 56.45 0.27↓ 56.94 57.58 0.64↑

After 60 loops, updated text corpora based on B1 improve the performances of the
classifiers and the improvements of classification experiments are {(precision, 6.10%), (recall,
5.37%), (F1, 5.71%)}, {(precision, 4.31%), (recall, 3.27%), (F1, 3.87%)}, and {(precision, 1.85%),
(recall, 0.34%), (F1, 1.08%)} on ELM, LR, and SVM, respectively. Meanwhile, corpora built by
B2 do not train competent SVM classifiers with the improvements as {(precision, −1.31%),
(recall, −2.93%), (F1, −2.13%)}, and corpora built by B3 also have the same commonplace
performances in classification experiments conducted by SVM, which are {(precision,
1.59%), (recall, −0.27%), (F1, 0.64%)}. It is clearly shown that the corpora constructed by B1
improve the three classifier learning abilities the most, which indirectly demonstrate that
texts extracted by the B1 sampler contain more information on emotions. Figure 3 presents
the increments of micro precision, recall, and F1 scores in the experiments. We observed
that B1 performed better than B2 and B3 in all three aspects, and its score distributions
were more compact, which meant emotional information in the corpus improved smoothly
and progressively. Moreover, through comparing the final results, ELM was the suboptimal
classifier in Tables 1 and 3. ELM had a hidden layer in the network as the representative of
SLFN, and it required a large amount of data to fine-tune its state, while SVM and LR did
not need as many samples to learn due to their formalistic mechanisms.

Secondly, Table 4 and Figure 4a–c present the emotion label distributions of the final
Dtrain from the three baselines. The expectations of each emotion class show the differences
from the ideal state to reality. The experimental results for the expectations are presented in
Table 4, and their scores are observed at approximately {(B1, 1336), (B2, 2589.56), and (B3,
1397.56)}, respectively, which means B1 treats emotion texts more equally. Additionally, the
tight-binding label rate is achieved in Figure 4a–c and it proves that B1 outperforms the
other two baselines in controlling emotional text increments. Furthermore, the Hamming
loss training (of B1, B2, and B3) is shown in Figure 5a. B1-based Dtrain learns the classifier
better with the same amount of emotional texts.

In conclusion, despite the classification performance or quantity of textual emotion
labels observed from the above results, it is proper to construct B1 (CE) as the basic sampler.
Moreover, to show the improvements in emotion classification performances within groups
in a detailed manner, we present the results achieved by ELM on the final corpus of B1
in Table 5. Moreover, the table shows that the consequences also enhance the conclusions
obtained from the above analysis, in that B1 (CE) is excellent at extracting emotional texts.
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Figure 3. The performance of the corpus updated with a single sampler on emotion classification
experiments. In (a–c), the x-axis means the loops in AL experiments, and the y-axis note precision,
recall, and F1. In (d–f), the x-axis means three baselines B1, B2, B3, and the y-axis notes precision,
recall, and F1. In the boxplot, the orange line means the median of data distribution; the other
four transverse lines from top to bottom note the highest, quarter, three-quarters, and lowest scores,
respectively.

Figure 4. The tendency of the emotion label’s quantity in the updated corpus. The x-axis denotes the
text numbers in the updated corpus, and the y-axis means each label’s proportion.
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Figure 5. Hamming loss of emotion classification experiments.

Table 4. The quantity of each emotion label in the final baselines corpus.

Anxiety Anger Sorrow Hate Joy Love Expect Surprise Neutral

Initial 301 300 304 300 301 300 306 308 99

B1 338 352 486 352 491 415 418 387 1153
B2 316 311 319 311 1794 431 410 369 232
B3 584 774 686 414 335 308 366 338 626

Table 5. The emotion classification performances within groups on the final corpus of B1 by ELM. (↑
means the improvement, and ↓ notes the decrement).

Precision Recall F1

Initial (%) Final (%) ↑ or ↓ (%) Initial (%) Final (%) ↑ or ↓ (%) Initial (%) Final (%) ↑ or ↓ (%)

Anxiety 49.76 64.90 15.14↑ 57.30 55.06 2.24↓ 53.26 59.57 6.31↑
Anger 38.15 61.19 23.04↑ 32.84 40.80 7.96↑ 35.29 48.96 13.67↑
Sorrow 51.63 65.05 13.43↑ 43.18 55.00 11.82↑ 47.03 59.61 12.58↑

Hate 38.89 53.19 14.30↑ 43.26 28.09 15.17↓ 40.96 36.76 4.20↓
Joy 70.00 84.02 14.02↑ 58.88 66.36 7.48↑ 63.96 74.15 10.19↑

Love 68.47 79.33 10.83↑ 65.57 56.13 9.44↓ 66.99 65.75 1.24↓
Expect 52.83 65.73 12.90↑ 50.00 52.23 2.23↑ 51.38 58.21 6.83↑

Surprise 43.72 56.70 12.98↑ 42.55 29.26 13.29↓ 43.13 38.60 4.53↓
Neutral 33.33 29.53 3.80↓ 8.85 66.15 57.30↑ 13.99 40.84 26.85↑

4.4.2. Results of AL via Asymmetric Samplers

In this section, extended instance selection experiments were conducted by AL via
the asymmetric sampler model, designed to verify the effectiveness of representativeness
criteria in sampling. Firstly, to find the effective query strategy for the second sampler,
we conducted extensive experiments; the results can be seen in Table 6–8 and Figure 6.
Moreover, the results show that, regardless of what indicators are utilized to evaluate the
performances of the models, double CE always outperforms the baselines (DS2 and DS3).
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Table 6. The results of the emotion classification experiments on the final asymmetric sampler corpus
by ELM. (↑means the improvement, and ↓ notes the decrement).

Precision Recall F1

Initial (%) Final (%) ↑ or ↓ (%) Initial (%) Final (%) ↑ or ↓ (%) Initial (%) Final (%) ↑ or ↓ (%)

DS1 51.23 58.40 7.17↑ 45.05 51.36 6.31↑ 47.94 54.65 6.71↑
DS2 51.23 59.60 8.37↑ 45.05 52.41 7.36↑ 47.94 55.77 7.83↑
DS3 51.23 58.84 3.61↑ 45.05 51.74 6.69↑ 47.94 55.06 7.12↑

Table 7. The results of the emotion classification experiments on the final asymmetric sampler corpus
by LR. (↑means the improvement, and ↓ notes the decrement).

Precision Recall F1

Initial (%) Final (%) ↑ or ↓ (%) Initial (%) Final (%) ↑ or ↓ (%) Initial (%) Final (%) ↑ or ↓ (%)

DS1 57.32 61.87 4.55↑ 65.19 66.63 1.44↑ 61.00 64.16 3.16↑
DS2 57.32 61.15 3.83↑ 65.19 65.41 0.22↑ 61.00 63.21 2.21↑
DS3 57.32 60.63 3.31↑ 65.19 67.24 2.05↑ 61.00 63.76 2.76↑

Table 8. The results of the emotion classification experiments on the final asymmetric sampler corpus
by SVM. (↑means the improvement, and ↓ notes the decrement).

Precision Recall F1

Initial (%) Final (%) ↑ or ↓ (%) Initial (%) Final (%) ↑ or ↓ (%) Initial (%) Final (%) ↑ or ↓ (%)

DS1 57.17 59.57 2.40↑ 56.72 57.33 0.61↑ 56.94 58.43 1.49↑
DS2 57.17 58.13 0.94↑ 56.72 55.62 1.10↓ 56.94 56.84 0.10↓
DS3 57.17 59.38 2.21↑ 56.72 56.78 0.06↑ 56.94 58.05 1.11↑

Tables 6–8 and Figure 6 demonstrate the changing of micro precision, recall, and F1 in
the classification experiments. Tables 6–8 show that DS1 has a better performance on LR
and SVM than ELM. Moreover, DS2 has higher improvements in {(precision, 8.37%), (recall,
7.36%), and (F1, 7.83%)} on the classifier ELM, but it only achieves {(precision, 3.83%),
(recall, 0.22%), (F1, 2.21%)}, and {(precision, 0.94%), (recall, −1.10%), and (F1, −0.10%)}
in tasks conducted by LR and SVM, respectively. Meanwhile, DS1 achieves all positive
improvements in the three classification experiments, which are {(precision, 7.17%), (recall,
6.31%), (F1, 6.71%)}, {(precision, 4.55%) on ELM, (recall, 1.44%), (F1, 3.16%)} on LR and
{(precision, 2.40%), (recall, 0.61%), (F1, 1.11%)} on SVM, respectively. Furthermore, from
the tendency of precision, recall, and F1 scores shown in Figure 6, scores achieved by DS1
are smoother and more compact than the other two. Hereto, the usefulness of AL via
asymmetric samplers is proved directly and strongly.

Secondly, label distributions are also measured in this section. From Figure 4d,e,f, we
observe that the differences in the fluctuations of the emotion label percentages between
DS1 and DS2 are difficult to distinguish. Therefore, we took the implementations of the
direct quantities of each class emotion label to analyze the tiny distinctions. Based on the
quantities of the emotion labels in Table 9, except for the numbers, the expectations on
every final Dtrain were easily achieved via mathematical computing, and the results were
{(DS1, 996.44), (DS2, 962.22), and (DS3, 1245.33),} which depicts the manner of DS2 utilizing
the balancing strategy, but its superiority is tiny to DS1.

Thirdly, the Hamming loss measures the importance of text corpora to classifiers
from another perspective. In this task, the Hamming loss (based on corpora updated by
DS1, DS2, and DS3) is shown in Figure 5b, and it is clear that the curves of the Hamming
loss converged rapidly while training on the basis of DS1. Conclusively, Dtrain based on
DS1 could provide more ‘emotion’ features to ‘learn’ more proper distributed weights
in ELM; improves the classification performance with the same number of labeled texts.
Additionally, the improvements within groups of emotion classification on the final corpus
based on DS1 by ELM are shown in Table 10. It is clear that the performances of the
overwhelming majority of groups increased visibly in precision, recall, and F1, which
proved the proposed method’s efficiency in recognizing emotional tokens.
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Figure 6. The corpus performance updated with asymmetric samplers on emotion classification
experiments. In (a,c,e), the x-axis means the loops in the AL experiments, and the y-axis notes
precision, recall, and F1. In (b,d,f), the x-axis means three baselines DS1, DS2, DS3, and the y-axis
notes precision, recall, and F1. In the boxplot, the orange line means the median of data distribution,
and the other four transverse lines from top to bottom note the highest quarter, three-quarters, and
lowest score, respectively.

Table 9. The quantity of each emotion label in the final asymmetric sampler corpus.

Anxiety Anger Sorrow Hate Joy Love Expect Surprise Neutral

Initial 301 300 304 300 301 300 306 308 99

DS1 372 382 560 381 695 541 482 421 633
DS2 360 399 561 371 662 500 469 396 739
DS3 643 848 611 449 335 310 340 344 559

Table 10. The emotion classification performances within groups on the final corpus of DS1 by ELM.

Precision Recall F1

Initial (%) Final (%) ↑ or ↓ (%) Initial (%) Final (%) ↑ or ↓ (%) Initial (%) Final (%) ↑ or ↓ (%)

Anxiety 49.76 57.39 7.63↑ 57.30 56.74 0.56↓ 53.26 57.06 3.80↑
Anger 38.15 55.28 17.13↑ 32.84 44.28 11.44↑ 35.29 49.17 13.88↑
Sorrow 51.63 61.72 10.09↑ 43.18 58.64 15.46↑ 47.03 60.14 13.11↑

Hate 38.89 55.38 16.49↑ 43.26 40.45 2.81↓ 40.96 46.75 5.79↑
Joy 70.00 74.23 4.23↑ 58.88 67.29 8.41↑ 63.96 70.59 6.63↑

Love 68.47 76.00 7.53↑ 65.57 62.74 2.83↓ 66.99 68.73 1.74↑
Expect 52.83 61.11 8.28↑ 50.00 54.02 4.02↑ 51.38 57.35 5.97↑

Surprise 43.72 48.59 4.87↑ 42.55 36.70 5.85↓ 43.13 41.82 1.31↓
Neutral 33.33 34.31 0.98↑ 8.85 36.46 27.61↑ 13.99 35.35 21.36↑

4.5. Emotional Information In Corpus Built by DS2

From the above description, the proposed AL via asymmetric samplers presents an
excellent performance in extracting sentence-level text to enrich the emotional information
in the text sets. To further mine emotional lexicons and information in Dtrain built by
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DS1, this work roughly explores Chinese expressing traditional customs and shows
high-frequency emotion words via WordCloud.

By observing the texts in Dtrain, we believe that two significant points from empirical
evidence impact the model’s learning ability most. Firstly, due to its traditional culture
(different from the direct expression manner in English), Chinese is implicit while showing
its inner true feelings in some certain emotions. For example, “愿为梁祝” . There are
only four characters—and its literal meaning is “want to be Liang and Zhu”, with an
‘emotion’ state of “expect”. However, the publisher presents his “love” in the manner of
a love story. Therefore, more accurate text linguistic representation is needed to prevent
misunderstanding the integrated emotional information.

Secondly, textual emotion probing is still a research hot topic, but it is a hard point in
NLP, especially in multi-class and multi-label tasks. Figure 7 shows the WordCloud drawn
from Dtrain, built by DS1. For more distinct details, we split emotion into two groups:
positive and negative. The emotions joy, love, and expect are arranged positively; the other
five emotion labels are believed to be negative. While expressing emotional text randomly,
it is obvious that some special words are used with high frequency. In the positive part,
“joy” is usually represented by “嘻嘻” (Mimetic word, Xi Xi), “偷笑” (Titter) , while “love”
is more likely to be expressed by “爱，喜欢” (both mean love in Chinese). In “expect”,
“希望” (expect) and “想” (want) are the most frequent tokens. Moreover, it was found that
“泪” (Tears) has a large font size in “expect”. Through an analysis, we observed that the
Chinese prefer to express “expect” when they are in an awful situation; it encourages them
to overcome the difficulties in their lives due to nationality characteristics.

In contrast, in the negative part, “anxiety” is always represented by words such as
“抓狂” (Crazy) and “烦躁” (anxiety) . The “anger” expression in Chinese is single, and the
most frequent character is “怒” (Anger). In “sorrow”, “泪” (Tears), “伤心” (Sad), and “悲
伤” (Sorrow) usually appear together. Compared to the latter-day obscure expression style,
it means that the directly emotive expression is the tendency in Chinese. While Chinese
shows the feeling “讨厌” (Hate), the token “怒” (Anger) is often used together to intensify
people’s feelings. When it comes to “surprise”, it is complex, with its definition being
something to happen or messages beyond one’s control or thinking in Chinese. Thus, too
many aspects/intentions can be summarized in this class, such as “惊喜” (surprise with
happy), “惊吓” (Scare), “惊扰” (Alarm), and so on. However, the above statement does not
mean “surprise” texts are collected easily because of the low percentage of this emotion in
daily life. Thus, an effective solution is urgently needed to prevent diverting the correct
meaning of the input sentence during the process of embedding learning in multi-label and
multi-class tasks.

Figure 7. WordCloud of emotional tokens in the final corpus built by DS1.
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Overall, from the above analyses, we can see that it is important to grasp Chinese from
its textual semantics and syntax; this will be our (continued) research point in future work.

5. Conclusions

In this paper, to alleviate the pressure from the shortage of labeled data, we proposed
a novel AL via an asymmetric sampler model based on ELM for sentence-level Chinese
texts. This model integrates information measurement and a label-balanced strategy to
capture emotional texts efficiently, to build a Chinese sentence-level emotion corpus and
guide the textual learning of ELM. To begin with, this paper proposes using the highly
explainable SLFN (ELM) as the textual feature generator in AL research; our research
findings show that it can be transferred into the AL domain conveniently and efficiently,
providing a new method to explore the AL field. Furthermore, in the proposed AL model,
a novel combined query strategy, known as asymmetric samplers, which consider two
asymmetric factors (i.e., uncertainty and representativeness) simultaneously, was utilized
to update the text corpus; the updated corpus achieved a state-of-the-art performance
among the mentioned query strategies. Finally, the experiments found that ELM-based
AL via asymmetric samplers based on double CE achieved state-of-the-art classification
performances, and greatly reduced human labor in selecting the raw text, which could
largely alleviate the pressure of shortages in acquiring the emotion labels of Chinese texts.

In the future, we plan to study more effective implementations of the query strategy
based on ELM. Furthermore, more lightweight neural networks will be employed in our
AL research. Moreover, we will introduce an auto-labeling module to the AL study, which
would provide the exact predicted labeled data to the text and further reduce labeled data
pressure in NLP tasks. Moreover, we will conduct more relative research on correlations
among different emotion groups and probe the influences of cross-performances in AL
sampling tasks.
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Appendix A

Figure A1. Asymmetric samplers in the designed AL model; (a) selects the proper candidate
sentence-level texts by uncertainty; (b) denotes samples extracted by representativeness.

Figure A2. The output of the selected sentence-level texts by AL via asymmetric samplers.
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