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Abstract: This paper studies a class of variational inequalities with degenerate parabolic operators
and symmetric structure, which is an extension of the parabolic equation in a bounded domain. By
solving a series of penalty problems, the existence and uniqueness of the solutions in the weak sense
are proved by the energy method and a limit process.
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1. Introduction

In this paper, the author studied parabolic problems with nonlocal nonlinearity of the
following type: 

min{Lu, u− u0} = 0, (x, t) ∈ QT ,
u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T],
u(x, 0) = u0(x), x ∈ Ω,

(1)

where QT = Ω× (0, T] , Ω ⊂ RN (N ≥ 2) is a bounded domain with appropriately smooth
boundary ∂Ω, and u0 satisfies

0 ≤ u0 ∈ H1
0(Ω) ∩ L∞(Ω). (2)

a(·) is a given function which satisfies a(u) =
(∫

Ω u2(x, t)dx
)γ with γ ∈ R. Lu is a

degenerate parabolic operator, which satisfies

Lu = ∂tu− a(u)∆u− f (x, t), γ > 0.

Here, ∇u = (∂x1 u, ∂x2 u, · · · , ∂xN u), |∇u|p(x,t) =

(
N
∑

i=1
|∂xi u|2

) p(x,t)
2

. The problem (1) can

be decomposed into two symmetric cases: if u(x, t) = u0(x) for any (x, t) ∈ ΩT , then
Lu > 0 in ΩT . On the contrary, if u(x, t) > u0(x) for any (x, t) ∈ ΩT , Lu = 0 in ΩT .
In applications, Problem (1) arises in the model of American option pricing in the Black–
Scholes models. The author refers to [1–5] for the financial background of parabolic
inequalities. Among them, the most interesting research topic is to construct different types
of variational parabolic inequalities and analyze the existence and numerical method for
their solutions (see, for example, refs. [3,4] and the references therein).

In the recent years, the study of variational and hemivariational inequalities has
been considered extensively in the variety of numerical analysis (for details, see [6,7]) and
mathematical theory analysis (see, for example, refs. [8–11] and the references therein). In
2014, the authors in [8] discussed the problem
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ut − Lu− F(u, x, t) ≥ 0 in QT
u(x, t) ≥ u0(x) in Ω
(ut − Lu− F(u, x, t)) · (u(x, t)− u0(x)) = 0 in QT
u(x, 0) = u0(x) in Ω
u(x, t) = 0 on ∂Ω

with the second order elliptic operator

Lu = div(a(x, t)∇u) + b(x, t)∇u + c(x, t)u.

They proved the existence and uniqueness of a solution to this problem with some restric-
tions on u0, F, and L. Later, the authors in [9,10] extended the relative conclusions with the
assumption that a(u) is a constant, γ = 0, and p(x) = 2. The authors also discussed the
existence and numerical algorithm of the proposed solution.

To the best of our knowledge, the existence and uniqueness of this problem with
nonlocal nonlinearities are rarely studied. We cannot easily put the method in [10,12] for
the case that Lu is the common second order elliptic operator.

The aim of this paper is to study the existence and uniqueness of solutions for a
degenerate parabolic variational inequality problem with nonlocal nonlinearities. The
innovation of this paper is to study the variational inequality based on parabolic operator
L with nonlocal nonlinearity a(u). Following a similar way in [8], the existence and
uniqueness of the solutions in the weak sense are proved by solving a series of penalty
problems.

The outline of this paper is as follows: in Section 2, we give the definition of the weak
solution to problem and show the existence and uniqueness. In Section 3, we give some
estimates of the penalty problem (approximating problem). Section 4 proves the existence
and uniqueness of the solution given in Section 2.

2. The Main Results of Weak Solutions

In this section, we first recall some useful definitions and known results, which can be
found in [13–18]. Denote

Lp(Ω) = {u|u is measurable real− valued function,
∫

Ω
|u|pdx < ∞},

and its norm is defined by

|u|p = inf
{

λ > 0
∣∣∣∣∫Ω

∣∣∣ u
λ

∣∣∣pdx ≤ 1
}

.

In the case of p = 2,|u|∞ = sup
x∈Ω
|u(x)|.

W1,p(Ω) is the space of all measurable functions, which, together with their first order
derivatives, belongs to Lp(Ω) that is

W1,p(Ω) = {u ∈ Lp(Ω)||∇u| ∈ Lp(Ω)},

with norm
|u|W1,p(Ω) = |u|p + |∇u|p, ∀u ∈W1,p(Ω).

Let p ≥ 2. L∞(0, T; W1,p(Ω)) be defined as the space of all measurable functions u on ΩT
and for almost all t ∈ (0, T), u(·, t) ∈ W1,p(Ω) and |u(·, t)|W1,p(Ω) ∈ L∞(0, T) . The space
L∞(0, T; Lp(Ω)) is defined in an obvious way.

If p = 2 , the space W1,p(Ω) and L∞(0, T; W1,p(Ω)) can be denoted by H1(Ω) and
L∞(0, T; H1(Ω)), respectively.
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In the spirit of [2,3], we introduce the following maximal monotone graph

G(x) =
{

0, x > 0,
θ, x = 0.

(3)

where θ > 0 and depends only on |u0|∞.
The purpose of the paper is to obtain the existence and uniqueness of weak solutions

of (1). Let B = L2(0, T; H1(Ω)), and the weak solution is defined as follows.

Definition 1. A pair is called a weak solution of problem (1), if
(a) ∂tu ∈ L2(0, T; L2(Ω)), (b) u(x, t) ≥ u0(x), (c) u(x, 0) = u0(x), (d) ξ ∈ G(u− u0),
(e) for every test-function φ ∈ H1

0(Ω) and every t ∈ (0, T), the following identity holds:∫
Ω

ut · φdx−
∫

Ω
a(u)∇u · ∇φdx =

∫
Ω

f φdx +
∫

Ω
ξφdx. (4)

It is worth noting that, if u(x, t) > u0(x), then ξ = 0,∫
Ω

ut · φdx−
∫

Ω
a(u)∇u · ∇φdx =

∫
Ω

f φdx,

if u(x, t) = u0(x) and φ > 0, then ξ > 0, so∫
Ω

ut · φdx−
∫

Ω
a(u)∇u · ∇φdx ≥

∫
Ω

f φdx.

Hence, ξ plays the same role with min{Lu, u − u0} = 0 in (1). Our main result is the
following theorem.

Theorem 1. Let f ∈ L2(0, T; H1
0(Ω)). Under assumption (2), variational inequality problem (1)

admits a unique weak solution in the sense of Definition 1.

We will prove Theorem 1 in Section 4 by means of a parabolic penalty method and
end this section by showing the following preliminary result that will be used several times
henceforth.

Lemma 1 ([13]). Assume p ≥ 2 and let M(s) = |s|p(x,t)−2s, then∀ξ, η ∈ RN ,

(M(ξ)−M(η)) · (ξ − η) ≥ C(p) · |ξ − η|p

3. Penalty Problems

Since the problem is degenerate, let us consider the auxiliary penalty problem follow-
ing the similar method of [1–3],

Lεuε + βε(uε − u0,ε) = 0, (x, t) ∈ Ω× (0, T]
uε(x, t) = ε, (x, t) ∈ ∂Ω× (0, T]
uε(x, 0) = u0,ε(x) = u0(x) + ε, x ∈ Ω

(5)

where

Lεuε = −uεdiv(aε(uε)|∇uε|p(x,t)−2∇u)ε − γ|∇uε|p(x,t) − f (x, t), aε(uε) =
(

min{a(uε), K2}+ ε
)γ

.

with K being a finite parameter to be chosen later. From γ > 0, it can be easy to see that

0 < εγ ≤ aε(uε) ≤ (K2 + 1)γ < ∞. (6)
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Here, βε( · ) is the penalty function satisfying

ε ∈ (0, 1), βε(·) ∈ C2(R), βε(x) ≤ 0, β′ε(x) ≥ 0, β′′ε(x) ≤ 0,

βε(x) =
{

0 x ≥ ε,
−1 x = 0,

lim
ε→0+

β(x) =
{

0, x > 0,
−1, x = 0.

(7)

It is noteworthy that, if u(x, t) > u0(x) for any (x, t) ∈ ΩT , Lu = 0 in ΩT , and, if
u(x, t) = u0(x) for any (x, t) ∈ ΩT , one obtains Lu ≥ 0 in ΩT , so that βε(uε − u0) plays a
similar role in (5). If uε > u0 + ε,

Lεuε = −βε(uε − u0) = 0,

and, if u0 ≤ uε ≤ u0 + ε, we have

Lεuε = −βε(uε − u0) ≥ 0.

With a similar method as in [8], we can prove that a regularized problem has a unique
weak solution

uε(x, t) ∈ L2(0, T; H1(Ω) ), ∂tuε(x, t) ∈ L2(0, T; L2(Ω) )

satisfying the following integral identities∫
Ω

∂uε

∂t
· φdx−

∫
Ω

aε(uε)∇uε · ∇φdx =
∫

Ω
f φdx−

∫
Ω

βε(uε − u0)φdx (8)

with φ ∈ H1
0(Ω) and t ∈ (0, T).

We start with the following preliminary result that will be used several times hence-
forth.

Lemma 2 (Comparison principle). Assume u and v are in L2(0, T; H1(Ω) ). If Lεu ≥ Lεv in
QT and u(x, t) ≤ v(x, t) on ∂QT , then u(x, t) ≤ v(x, t) in QT .

Proof. Argue by contradiction and suppose u(x, t) and v(x, t) satisfies Lεu ≥ Lεv in QT ,
and there is a δ > 0 such that for some 0 < τ ≤ T, w = u− v > δ on the set

Ωδ = Ω ∩ {x : w(x, t) > δ} (9)

and |Ωδ| > 0. Multiplying Lεu ≥ Lεv by w and integrating in Qδ = Ωδ × (0, T), then

J1 + J2 ≤ 0, (10)

where

J1 =
∫ ∫

Qδ

∂

∂t
w · Fε(w)dxdt, J2 =

∫ ∫
Qδ

[aε(u)∇u− aε(v)∇v]∇wdxdt.

By virtue of the first inequality of Lemma 2, one gets

J2 ≥ c(p)
∫ ∫

Qδ

|w|pdxdt ≥ 0. (11)

Dropping the nonnegative terms J2 in (10) obtains

1
2

d
dt

∫
Qδ

w2dx ≤ 0 (12)
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Noting that u(x, t) ≤ v(x, t) on ∂QT , one gets∫
Ωδ

w2dx ≤
∫

Qδ

|u(x, 0)− v(x, 0)|2dx = 0

This leads to |Ωδ| = 0, and a contradiction is obtained.

Lemma 3. Let there be weak solutions of (5). Then,

u0ε ≤ uε ≤ |u0|∞ + ε, (13)

uε1 ≤ uε2 for ε1 ≤ ε2, (14)

where |u0|∞ = sup
x∈Ω
|u0(x)|.

Proof. First, prove uε ≥ u0ε by contradiction. Assume uε ≤ u0ε in Q0
T , Q0

T ⊂ QT . Noting
uε ≥ u0ε on ∂QT , we assume that uε = u0ε on ∂Q0

T . With (5) and letting t = 0, it is easy to
see that

Lεu0,ε = −βε(u0,ε − u0,ε) = 1, (15)

Lεuε = −βε(uε − u0,ε) ≤ 1. (16)

From Lemma 2, it holds that

uε(x, t) ≥ u0,ε(x) for any (x, t) ∈ QT . (17)

Therefore, we obtain a contradiction.
Second, pay attention to

uε(t, x) ≤ |u0|∞ + ε.

Applying the definition of βε(·) yields

Lε(|u0|∞ + ε) = 0, Lεuε = −βε(uε − u0,ε) ≥ 0 (18)

From (18), applying Lemma 2 obtains

uε(t, x) ≤ |u0|∞ + ε on ∂QT (19)

and uε(t, x) ≤ |u0|∞ + ε in Ω. Thus, combining (18) and (19) and using Lemma 2, one
obtains

uε(t, x) ≤ |u0|∞ + ε in QT . (20)

Third, aim to prove (14). From (5), it yields

Lε1 uε1 = βε1(uε1 − u0,ε1), (21)

Lε2 uε2 = βε2(uε2 − u0,ε2). (22)

It follows by ε1 ≤ ε2 and the definition of βε(·) that

Lε2 uε2 − βε1(uε2 − u0,ε1)
= βε2(uε2 − u0,ε2)− βε1(uε1 − u0,ε1) ≥ βε2(uε2 − u0,ε2)− βε1(uε2 − u0,ε2) ≥ 0.

(23)

Thus, combining initial and boundary conditions in (5), (14) can be proved by Lemma 1.

Lemma 4. Let uε be a weak solution of Problem (5). If u0 ∈ L2k(Ω) and f ∈ L1(0, T; L2k(Ω)),
for any k ∈ N , then

‖uε‖L2k(Ω) ≤ ‖u0‖L2k(Ω) +
∫ T

0
‖ f ‖L2k(Ω)dt + M · T · |Ω| ≤ C, (24),
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where C does not depend on ε.

Proof. Multiplying the first equation of Problem (5) by u2k−1
ε and integrating in Ω, for any

t ∈ (0, T],

1
2k

d
dt
‖uε‖2k

L2k(Ω) + (2k− 1)aε(uε)
∫

Ω
u2k−2

ε |∇uε|2dx =
∫

Ω
f u2k−1

ε dx−
∫

Ω
βε(uε − u0)u2k−1

ε dx. (25)

Applying the Hölder inequality, we have∫
Ω

f u2k−1
ε dx ≤ ‖ f ‖L2k(Ω) · ‖uε‖2k−1

L2k(Ω), (26)

∫
Ω

βε(uε − u0)u2k−1
ε dx ≤ M ·

∫
Ω
|uε|2k−1dx ≤ M ·

(∫
Ω
|uε|2kdx

) 2k−1
2k
· |Ω|

1
2k (27)

Substituting (26) and (27) into (28) and dropping the non-negative term
a(uε)

∫
Ω u2k−2

ε |∇uε|2dx ,

1
2k

d
dt
‖uε‖2k

L2k(Ω) ≤ ‖ f ‖L2k(Ω) · ‖uε‖2k−1
L2k(Ω) + M · |Ω|

1
2k · ‖uε‖2k−1

L2k(Ω).

Simplifying the factor ‖uε‖2k−1
L2k(Ω) and integrating in t, (24) follows.

Lemma 5. If u0 ∈ H1
0(Ω), f ∈ L2(0, T; H1

0(Ω)), and γ ≥ 0, then

∫ T

0

∫
Ω
|∂uε

∂t
|2dxdt ≤ C

(∫
Ω
|u0|2dx +

∫ T

0

∫
Ω
|∇ f |2 + f 2dxdt + 2MT|Ω|

)
, (28)

where C does not depend on ε.

Proof. Multiplying the first equation of (5) by ∂uε
∂t and integrating in Ω× [0, T],∫ T

0

∫
Ω |

∂uε
∂t |

2dxdt +
∫ T

0 a(uε)
∫

Ω∇uε
∂
∂t∇uεdxdt

=
∫ T

0

∫
Ω f ∂uε

∂t dxdt +
∫ T

0

∫
Ω βε(uε − u0)

∂uε
∂t dxdt.

(29)

First, estimate
∫ T

0

∫
Ω f ∂uε

∂t dxdt and use Holder and Young inequalities to arrive at∫ T
0

∫
Ω f ∂uε

∂t dxdt

=
∫ T

0

∫
Ω (2 f ) ·

(
1
2

∂uε
∂t

)
dxdt ≤ 2

∫ T
0

∫
Ω f 2dxdt + 1

8

∫ T
0

∫
Ω

∣∣∣ ∂uε
∂t

∣∣∣2dxdt.
(30)

Second, focus on
∫ T

0

∫
Ω βε(uε − u0)

∂uε
∂t dxdt. It follows by the definition of βε(·) that

∫ T

0

∫
Ω

βε(uε − u0)
∂uε

∂t
dxdt ≤ M

∫ T

0

∫
Ω

∣∣∣∣∂uε

∂t

∣∣∣∣dxdt. (31)

Using Holder and Young inequalities [12], then

∫ T

0

∫
Ω

βε(uε − u0)
∂uε

∂t
dxdt ≤ 2M2T · |Ω|+ 1

8

∫ T

0

∫
Ω

∣∣∣∣∂uε

∂t

∣∣∣∣2dxdt. (32)
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Third, pay attention to
∫ T

0 a(uε)
∫

Ω∇uε
∂
∂t∇uεdxdt . Applying (6) gives∣∣∣∫ T

0 a(uε)
∫

Ω∇uε
∂
∂t∇uεdxdt

∣∣∣
=
∣∣∣ 1

2

∫ T
0 a(uε)

∫
Ω

∂
∂t (∇uε)

2dxdt
∣∣∣ ≤ ∣∣∣ 1

2 (K
2 + 1)γ ∫ T

0

∫
Ω

∂
∂t (∇uε)

2dxdt
∣∣∣

=
∣∣∣ 1

2 (K
2 + 1)γ ∫

Ω (∇u0ε)
2dx−

∫
Ω∇uε(·, T)2dx

∣∣∣. (33)

Since 0 ≤ u0 ∈ H1
0(Ω), it is easy to see that∣∣∣∣∫ T

0
a(uε)

∫
Ω
∇uε

∂

∂t
∇uεdxdt

∣∣∣∣ ≤ 1
2
(K2 + 1)γ||∇u0ε||2L2

. (34)

Combining (29), (30), (32), and (34), then

∫ T

0

∫
Ω
|∂uε

∂t
|2dxdt ≤ C

∫
Ω
|∆u0|2dx + C

∫ T

0

∫
Ω
|∇ f |2dxdt + 2

∫ T

0

∫
Ω

f 2dxdt + 2M2T · |Ω| (35)

and the result follows.

4. Proof of Theorem 1

From Lemmas 3–5, we see that uε is bounded and increasing in ε, which implies the
existence of a function u and subsequences such that

uε → u a.e. in QT , (36)

∇uε → ∇u weakly in L2k(QT), (37)

∂

∂t
uε →

∂

∂t
u weakly in L2(QT), (38)

Since a(·) is continuous, we have that

aε(uε)→ a(u) a.e. in L2(Ω× (0, T]). (39)

Next, we pay attention to the limitation of βε(uε − u0).

Lemma 6. For any (x, t) ∈ ΩT , let uε be the solution of (5). Then,

βε(uε − u0)→ ξ ∈ G(u− u0)asε→ 0. (40)

Proof. Using (14) and the definition of βε, one has

βε(uε − u0)→ ξ as ε→ 0. (41)

Now, consider ξ ∈ G(u− u0). According to the definition of G(·), we only need to prove
that, if u(x0, t0) > u0(x0),

ξ(x0, t0) = 0.

In fact, if u(x0, t0) > u0(x0), there exist a constant λ > 0 and a δ-neighborhood Bδ(x0, t0)
such that, if ε is small enough,

uε(x, t) ≥ u0(x) + λ, ∀(x, t) ∈ Bδ(x0, t0).

Thus, if ε is small enough, such that

0 ≥ βε(uε − u0) ≥ βε(λ) = 0, ∀(x, t) ∈ Bδ(x0, t0).
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Furthermore, it follows by ε→ 0 that

ξ(x, t) = 0, ∀(x, t) ∈ Bδ(x0, t0).

Hence, (41) holds, and the proof of Lemma 6 completes.

On the one hand, when u ≥ u0, Lu = 0, and when u = u0, we have Lu ≥ 0 in (1). On
the other hand, when uε ≥ u0ε, Lεuε = −β(uε − u0ε) = 0, and, when uε = u0ε, we have
Lεuε = −β(uε − u0ε) ≥ 0 in (5). When β(uε − u0ε) converges to ξ, ξ plays the same role in
weak solution.

Now, we prove the existence of the weak solutions in the sense of Definition 1.

Proof of Existence of Theorem 1. Combining (36)–(40) and Lemma 6, passing to the limit
in ∫

Ω

∂uε

∂t
· φdx−

∫
Ω

aε(uε)∇uε · ∇φdx =
∫

Ω
f φdx−

∫
Ω

βε(uε − u0)φdx,

we arrive at ∫
Ω

∂u
∂t
· φdx−

∫
Ω

a(u)∇u · ∇φdx =
∫

Ω
f φdx +

∫
Ω

ξφdx. (42)

Applying (36), (46), and Lemma 6, it is clear that

u(x, t) ≤ u0(x) in ΩT , u(x, 0) = u0(x) in Ω, ξ ∈ G(u− u0),

thus (a), (b), and (c) hold. Hence, u is a weak solution of Problem (3) in the sense of
Definition 1.

Proof of Uniqueness of Theorem 1. Finally, we study the uniqueness of the weak solu-
tions to Problem (1). Argue by contradiction and suppose (u, ξ1) and (v, ξ2) are two
nonnegative weak solutions of Problem (1).

Define w = u− v,

F(w) =

{
− 1

α−1 w1−α, if w > 0,
0, if w ≤ 0,

(43)

and let F(w) ∈ H1
0(Ω) be a test-function in (42),

0 ≥
∫ ∫

ΩT

wtF(w) + [a(u)∇u− a(v)∇v]∇F(w)dxdt−
∫ ∫

QT

(ξ1 − ξ2)F(w)dxdt. (44)

Now, analyze
∫

Ω (ξ1 − ξ2)F(w)dxdt. On one hand, if u1(x, t) > u2(x, t), then using (13)
yields

u1(x, t) > u2(x, t) ≥ u0(x). (45)

From (3) and (45), it is easy to see
ξ1 = 0 < ξ2. (46)

Combining (45) and (46) and the fact that α = 1
2 σ > 1,∫

Ω
(ξ1 − ξ2)F(w)dxdt ≤ 0. (47)

On the other hand, if u1(x, t) < u2(x, t), it is easy to have that F(w) = 0 . In this case,
(47) still holds.

Using (45) in (44) and dropping the nonnegative term, (44) becomes∫ ∫
QT

wtF(w) + [a(u)∇u− a(v)∇v]∇F(w)dxdt ≤ 0.
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By the above inequality and combining initial and boundary condition in Problem (1), the
uniqueness of solution can be proved following the similar proof of Lemma 2.

5. Numerical Examples

In order to observe the application of parabolic variational inequalities (3), we consider
an American call option. An American option is the extension of a European option. An
American option is a contract in which the investor has the right to purchase a certain
amount of risky assets at a predetermined price K during the duration [0, T]. Let S be the
risk asset price, then American barrier option C at time t can be written as{

min{LC, C−max(ex − K, 0)} = 0, (x, t) ∈ R× [0, T],
V(T, x) = max(ex − K, 0), x ∈ R,

(48)

where x = lnS,

LC = ∂tV +
1
2

σ2∂xxV + (r− q− 1
2

σ2)∂xV − rV.

Here σ is the volatility of risk assets, q is the return rate of risk assets, and r is the yield of
risk-free assets.

Compared with American options, European options can only be exercised on the
expiration date T. The American barrier option c at time t can be written as{

Lc = 0, (x, t) ∈ R× [0, T],
V(T, x) = max(ex − K, 0), x ∈ R,

(49)

Calculate the price of European options and American options written on the stock
price exp{x0} at time 0. Define space step h and time step ∆t and denote xi = i× h for
i = 0,±1,±2, · · · , and tk = k×∆t, for k = 0, 1, 2, · · · , NT . Similar to the discussion in [1–3],
the value of American call options satisfies the explicit difference scheme:{

(1 + r∆t)Vk
j = max{(1− α)Vk+1

j + 1
2 (α + β)Vk+1

j+1 + 1
2 (α− β)Vk+1

j−1 , Vn
j },

Vn
j = max{exp{j∆x} − K, 0}, (50)

where α = σ2 ∆t
∆x2 , β = (r− q− 1

2 σ2) ∆t
∆x ,

∆t · Lk
j Vk

j = −(1 + r∆t)Vk
j + (1− α)Vk+1

j +
1
2
(α + β)Vk+1

j+1 +
1
2
(α− β)Vk+1

j−1 .

The value of European call options satisfies the explicit difference scheme{
(1 + r∆t)Vk

j = (1− α)Vk+1
j + 1

2 (α + β)Vk+1
j+1 + 1

2 (α− β)Vk+1
j−1 ,

Vn
j = max{exp{j∆x} − K, 0}. (51)

Next, we numerically simulate the difference scheme (50) and (51) to compare the differ-
ence between the variational inequality (48) and the corresponding parabolic Equation (49).
The parameters’ values are chosen as K = 18, r = 0.1, σ = 0.2, T = 1, ∆t = 0.1, h = 0.1. The
results are shown in Figures 1–3. We found that the value of European and American options
is increasing with the increase of stock price. Compared with Figures 1–3, it can be found that
American options and European options have the same value when dividends are not paid
(q = 0). It is unwise to implement American options in advance in this case. When the rate
of return q > 0, the American option value obtained by variational inequality (49) is greater
than the corresponding European option value. This shows that the early exercise clause of
American options brings additional value compared with European Options.
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Figure 1. American and European call options with different stock prices (q = 0).
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Figure 2. American and European call options with different stock prices (q = 0.1).
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Figure 3. American and European call options with different stock prices (q = 0.2).
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6. Discussion

In this paper, we study the existence and uniqueness of solutions of variational
inequality (1) by penalty function βε(uε − u0). Since the penalty function βε(·) is controlled
by ε, we integrate it into the degenerate parabolic operator Lu and form a new parabolic
operator Lεuε. More importantly, the weak solution of the penalty problem under this
operator exists. After giving some estimates of the penalty problem, the existence of weak
solutions is given by the convergence method. The uniqueness of the weak solution is
proved by the method of proof and Lemma 2.

Compared with other literature, Ref. [8] analyzes the existence and uniqueness of
solutions to variational inequality problems by using quasi-linear parabolic operators. The
advantage of [8] is that a nonlinear term related to u is constructed in the Quasilinear
Parabolic operator. In this connection, this paper constructs a nonlinear term related to4u
of Lu using L2 norm. Ref. [10] is similar to [8], and studies variational inequalities formed
by linear parabolic operators with a nonlinear term related to u .

Refs. [12–16] study the existence, uniqueness, solvability, and stability of solutions
of parabolic equations. Since these literature works are not concerned with variational
inequalities, it is not necessary to give the comparison principle of parabolic operator and
construct penalty functions when analyzing the existence.

7. Conclusions

This paper studies a class of variational inequalities with degenerate parabolic operators
min{Lu, u− u0} = 0, (x, t) ∈ QT ,
u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T],
u(x, 0) = u0(x), x ∈ Ω,

with a degenerate parabolic operator, which satisfies

Lu = ∂tu− a(u)∆u− f (x, t), γ > 0.

The existence and uniqueness of the solutions in the weak sense are proved by using
the penalty method and the reduction method. However, there are some problems that
have not been solved: when 0 < p(x, t) < 2, we cannot use Lemmas 2 and 3 to prove
Lemmas 4–6. We will continue to study this problem in the future.
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