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Abstract: The stochastic modification and irreducible modification in PageRank produce large web
link changes correspondingly. To get a minimal irreducible web link adjustment, a PageRank model
of minimal irreducible adjustment and its lumping method are discussed by Li, Chen, and Song. In
this paper, we provide alternative proofs for the minimal irreducible PageRank by a new type of
similarity transformation matrices. To further provide theorems and fast algorithms on a reduced
matrix, an 4× 4 block matrix partition case of the minimal irreducible PageRank model is utilized
and analyzed. For some real applications of our results, a lumping algorithm used for speeding up
PageRank vector computations is also presented. Numerical results are also reported to show the
efficiency of the proposed algorithm.
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1. Introduction

In modern Internet search engine and web information retrieval domains, a good
ranking method is extremely important due to the fact that it reveals the relative importance
of the corresponding web page. As one of the Markov chain applications in web information
retrieval, PageRank is such a famous web ranking method. It assumes that the importance
of a web page mainly depends on the relative importance of the pages linking to it [1]. In
matrix expression, the iterative procedure of the raw PageRank computation is defined by

π(k+1)T = π(k)T H, where H ∈ Rn×n, π(k) ≥ 0, π(k)Te = 1, k = 0, 1, 2, · · · , (1)

where the matrix H ∈ Rn×n models the web link structure matrix, π(k), k = 0, 1, 2, · · · is an
iterative vector whose entries represent the importance or weight of each page [2,3]. The
web link structure matrix H is given by

hij =


1
ni

, if page i links to page j,

0, otherwise,

where ni, i = 1, 2, · · · , n stands for the number of outlinks of page i. As (1) can not insure
the uniqueness of the PageRank vector, Page and Brin design an n× n matrix by two rank-1
modification procedures [1]

G = αS + (1− α)evT , where S = H + dwT , the damping factor α ∈ (0, 1), (2)
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where the nonnegative vector of unit length w ∈ Rn is the dangling node vector, e ∈ Rn is
a vector of all ones, the nonnegative vector v (v ∈ Rn, ‖v‖1 = 1) is a personalization vector,
and the entries of the dangling node indicator vector d are given by

di =

{
1, if page i does not link to other pages,
0, otherwise.

As we know, some web pages may not have links to other web pages. If web pages
have no outlinks, they are called dangling nodes; otherwise, they are called nondangling
nodes, such as videos, jpg files, or pdf files are common dangling nodes in web pages.
Thus, the above stochastic modification is necessary. The heart of the unique eigenvector
is the irreducibility issue; therefore, the matrix evT (where e and v are defined in (2) ) is
further used to handle this uniqueness problem. The classical PageRank vector is defined
by the principle eigenvector of the Google matrix G with unit 1-norm. It is also to find a
stationary probability distribution vector of a Markov chain. In other words, the PageRank
computation problem is defined by

πTG = πT , G ∈ Rn×n, π ≥ 0, πTe = 1.

However, it may take much time merely to compute a large PageRank vector, since
hyperlink matrices involved stand for even over a billion pages’ link relationships [1,4].
Hence, faster methods are increasingly heated topics. The Arnoldi method can estimate the
first few eigenvalues for nonsymmetric eigenvalue problems, while it may cost expensively
in each iteration. The inverse iteration is not suitable for PageRank since it may need O(n3)
operations by finding an inversion of a large web link matrix. Instead, methods based
on the power method are increasingly attractive recently. The damping factor represents
the coupling degree of the corresponding Markov chain. A large value of the damping
factor stands for a nearly coupled Markov chain. However, as the damping factor increases,
the power method converges slowly [3,5,6]. The lumping or reordering method takes full
advantage of the zero entries in the Google matrix [2]. Some recent methods for computing
PageRank effectively involve Chebyshev polynomial techniques, matrix splitting meth-
ods [7,8], the lumping method [9,10], coupled iteration algorithm [11], Hessenberg-type
method [12], a simpler GMRES accelerated by Chebyshev polynomials [13], and hybrid
methods [14]. Other accelerated methods, theoretical and numerical results are available,
see [7,15,16]. Adding dangling nodes’ links to other web sites will change links between
web pages maximally. If the number of web pages expands, there will be more dangling
node web pages. In addition, every node can be directly connected to other nodes by
adding the matrix evT ; hence, in this case, irreducibility is enforced trivially. In addition, the
web link change is increasingly large, so the adjustment (2) is called maximal irreducible
adjustment. For more details of the PageRank model and computation, see [1–3,17].

Our recent work provides relatively easy alternative proofs for classical PageRank
theoretical analyses by a class of new similarity matrices [18,19]. One may wonder whether
the minimal irreducible PageRank model still has similar theoretical results. To further
reduce the computational overhead, we discuss a level 4 partition of the minimal irreducible
PageRank model matrix. In the level 4 partition of the minimal irreducible Google matrix,
we provide a smaller lumping matrix and take full advantage of zero entries in the minimal
irreducible Google matrix.

The remainder of this paper is as follows: Section 2 discusses the main theorems of the
minimal irreducible PageRank model in [20]. Section 3 presents a class of new similarity
matrices which can be used in theoretical analysis. Section 4 provides alternative proofs
for the main results due to Li, Chen, and Song [20]. Section 5 discusses the 4× 4 level
case, and one can derive a solution vector expression by further partitioning the minimal
irreducible Google matrix. Hence, the matrix computation dimension involved is reduced
and the corresponding computation process can speed up. Finally, Section 6 gives some
conclusions of this paper. Throughout the paper, we first revisit the theoretical results of



Symmetry 2022, 14, 1640 3 of 15

Li, Chen, and Song on a minimal irreducible PageRank model [20]. In addition, Matlab
notation is used if necessary.

2. Some Theoretical Results on a Minimal Irreducible PageRank Model

In this section, we focus on underlying theoretical and computational contributions
on a kind of minimal irreducible PageRank by the lumping method. Hence, a minimal
irreducible PageRank model is discussed below.

2.1. A Minimal Irreducible PageRank Model

If all dangling nodes are lumped into a single node, then the Google matrix is said to
be lumpable [9,21]. In general, the matrix M is lumpable with respect to the partition if

Mije = µe, where the scalar µ 6= 0, e =
[
1 1 · · · 1

]T ,

where i 6= j, 1 ≤ i, j ≤ k + 1, and the matrix

PMPT =

 M11 · · · M1,k+1
...

. . .
...

Mk+1,1 · · · Mk+1,k+1

,

and P is a proper permutation matrix.
Suppose that H ∈ Rn×n has k nondangling nodes and n− k dangling nodes, thus

there exists a permutation matrix Π ∈ Rn×n, such that

ΠHΠT =

[
H11 H12

0 0

]
.

Hence,

A = ΠGΠT =αS̄ + (1− α)evT

=α

[
H11 H12
ewT

1 ewT
2

]
+ (1− α)

[
evT

1 evT
2

evT
1 evT

2

]
=

[
αH11 + (1− α)evT

1 αH12 + (1− α)evT
2

e(αwT
1 + (1− α)vT

1 ) e(αwT
2 + (1− α)vT

2 )

]
=

[
A11 A12
euT

1 euT
2

]
, where S̄ = ΠSΠT , (3)

where the dangling node vector w and personalization vector v are partitioned into w1 ∈ Rk,
w2 ∈ Rn−k and v1 ∈ Rk, v2 ∈ Rn−k. Moreover, if

π̄T = π̄T A = π̄TΠGΠT , with π̄ ≥ 0, ‖π̄‖1 = 1, (4)

where A = ΠGΠT , G ∈ Rn×n is the classical Google matrix, and π̄ is the stationary
distribution of A, then the PageRank vector corresponding to (4) is defined by

πT = π̄TΠ.

In [20], Li, Chen, and Song discussed a minimal irreducible Google matrix by changing
S̄ to a bordered matrix

S̃ =

[
n

n+1 S̄ 1
n+1 e

1
n+1 eT 1

n+1

]
=

 n
n+1 H11

n
n+1 H12

1
n+1 e

n
n+1 ewT

1
n

n+1 ewT
2

1
n+1 e

1
n+1 eT 1

n+1 eT 1
n+1

. (5)
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The new PageRank vector of order n + 1 is the solution vector defined by the principle
eigenvector of the new Google matrix S̃,

π̃T = π̃T S̃, or π̃ = S̃Tπ̃, with π̃ ≥ 0, ‖π̃‖1 = 1.

We note that this modification only increases one additional row and column to ensure that
the link matrix is strongly connected, in order to ensure that the new Google matrix S̃ is
irreducible. In this way, the Perron–Frobenius theorem can guarantee the uniqueness of a
positive principle eigenvector π̃ with unit length (‖π̃‖1 = 1). Note that the decomposition
presented in (5) has been studied before in various forms. See, e.g., [22,23]. In Section 4.3,
we mainly studied the first two layers of such decompositions. In addition, another way of
creating a minimal irreducible Google matrix is defined by [24,25]

S̃′ =
[

αS̄ (1− α)e
vT 0

]
=

αH11 αH12 (1− α)e
αewT

1 αewT
2 (1− α)e

vT vT 0

. (6)

In this paper, we mainly discuss the minimal irreducible Google matrix (5). In addition,
we will briefly discuss our results on (6) and leave it as a further question.

In the following, in order to lump the stochastic matrix and show our theoretical
results conveniently, we first permutate the rows and columns of S̃ simultaneously. Thus,
we first permutate S̃, such that

Ŝ = Π̃S̃Π̃T =

 n
n+1 H11

1
n+1 e n

n+1 H12
1

n+1 eT 1
n+1

1
n+1 eT

n
n+1 ewT

1
1

n+1 e n
n+1 ewT

2

,

where the corresponding permutation matrix

Π̃ =

Ik 0 0
0 0 1
0 In−k 0

.

2.2. Some Related Theorems on the Minimal Irreducible PageRank Model

The similarity transformation matrix

L = In−k −
1

n− k
êeT , where ê = e− e1 =

[
0, 1, · · · , 1

]T ∈ Rn−k

is employed by Ipsen and Selee to analyze the theoretical results, and the identity matrix
of order n is denoted by In =

[
e1 e2 · · · en

]
, where ei, i = 1, 2, · · · , n is the ith column

vector of In. If large scale computation problems can be reduced to a relatively small scale,
the computations can be simplified and accelerated. Fortunately, lumping is one of these
methods. In [20], Li, Chen, and Song obtained the following theorems for the new Google
matrix. They showed that the minimal irreducible Google matrix can also be lumped. In
addition, the spectral distribution of the new Google matrix, the relationship between the
eigenvector part associated with the dangling nodes, and the eigenvector part associated
with the nondangling nodes is as follows.

Theorem 1 ([20,26]). Given the stochastic matrix S̄ with spectrum {1, λ2, λ3, · · · , λn}. Then,
the spectral of the matrix

S̃ =

[
n

n+1 S̄ 1
n+1 e

1
n+1 eT 1

n+1

]
is
{

1, n
n+1 λ2, n

n+1 λ3, · · · , n
n+1 λn, 0

}
.
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Theorem 2 ([20]). With the above notation, let

X =

Ik 0 0
0 1 0
0 0 L

, where L = In−k −
1

n− k
êeT and ê = e− e1 =

[
0 1 · · · 1

]T .

Then,

XŜX−1 =

[
Ŝ(1) Ŝ(2)

0 0

]
, where Ŝ(1) =

 n
n+1 H11

1
n+1 e n

n+1 H12e
1

n+1 eT 1
n+1

n−k
n+1

n
n+1 wT

1
1

n+1
n

n+1 wT
2 e

,

so that Ŝ has at least n− k− 1 zero eigenvalues.

Theorem 3 ([20]). With the above notation, let

σT

 n
n+1 H11

1
n+1 e n

n+1 H12e
1

n+1 eT 1
n+1

n−k
n+1

n
n+1 wT

1
1

n+1
n

n+1 wT
2 e

 = σT , σ ∈ Rk+2 ≥ 0, ‖σ‖1 = 1,

and partition σT =
[
σT

1:k σk+1 σk+2
]
, where σk+1 and σk+2 are scalars. Then, the PageRank

vector of S̃ equals

π̃T =

σT
1:k σT

 n
n+1 H12

1
n+1 eT

n
n+1 wT

2

 σk+1

.

3. New Similarity Transformation Matrix

In order to further study the lumping method and make contribution to the PageRank
computation, we derive alternative proofs for related theorems by using new similar-
ity transformation matrices [18,19] and try to establish efficient algorithms to compute
PageRank. To discuss this topic, we begin to introduce some related work.

Suppose that λi is the eigenvalues of A ∈ Rn×n ordered as |λ1| > |λ2| ≥ |λ3| ≥ · · · ≥
|λn| ≥ 0. In [27], Ding and Zhou proposed the following rank-1 updated spectral theorem.

Theorem 4 ([27]). Let u and v be two n−dimensional column vectors such that u is an eigenvector
of A associated with the eigenvalue λ1. Then, the eigenvalues of A+uvT are

{
λ1 + vTu, λ2, · · · , λn

}
,

counting algebraic multiplicity.

Langville and Meyer in their book [3] analyze the spectral distribution of the classical
Google matrix by employing a similarity transformation method. To find the relationship
between PageRank of the nondangling nodes π1 and that of dangling nodes π2, Ipsen and
Selee in [9] employed the similarity transformation matrix

X =

[
Ik 0
0 L

]
, L = In−k −

1
n− k

êeT , ê = e− e1 =
[
0 1 · · · 1

]T . (7)

As it is pointed in [18], the invertible matrix L exists such that the related theorem
holds. However, the matrix L is not unique. In the general case of the Google matrix, if the
matrix L satisfies the condition

Le = e1, where e is a vector of all ones, (8)

then the proof process can be more simpler and shortened. Motivated by the above
conclusion, we further study the case in the new PageRank model. In Theorem 2, if we
exploit the matrix [18]
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X̃ =

[
Ik 0
0 L̃

]
, where L̃ = In−k − êeT

1 , ê = e− e1 =
[
0 1 · · · 1

]T , (9)

and we separate the first row and column of L̃

L̃ =

[
1 0
−e In−k−1

]
, (10)

and partition L in (7) conformally with L̃,

L =

[
1 0

− 1
n−k e In−k−1 − 1

n−k eeT

]
, (11)

where the 2-by-2 block of L in (11) is

In−k−1 −
1

n− k
eeT =


n−k−1

n−k
−1

n−k · · · −1
n−k

−1
n−k

n−k−1
n−k · · · −1

n−k
...

...
. . .

...
−1

n−k
−1

n−k · · · n−k−1
n−k

.

Unfortunately, it is a typical dense matrix; therefore, it is complex when we analyze it,
and it is expensive when we compute or store it. Furthermore, the matrix (10) is actually [18]

L̃ =


1 0 0 · · · 0
−1 1 0 · · · 0
−1 0 1 · · · 0

...
...

. . . . . .
...

−1 0 · · · 0 1

.

because L̃ is a triangular matrix while L is a dense matrix. Inspired and motivated by the
easier similarity transformation matrix L̃, we consider replacing L with L̃ in X so that an
alternative proof process can be presented, and its process can be simplified and shortened.
Moreover, if

L̃ =


1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
. . . . . .

...
0 0 · · · −1 1


in (9), then the proof process of the above theorems also holds. In other words, this
similarity transformation matrix is not unique at all. Instead of the matrix L used in [9],
we propose a class of invertible matrices L̂, which satisfy the condition (8). Particularly, if
L̂ = L, it becomes the similarity transformation matrix proposed by Ipsen and Selee in [9].
In the following, as we mainly discuss the minimal irreducible PageRank matrix (5), one
may wonder “Could you apply your methods on the results in [24,25]?” Thus, we provide
a remark below.

Remark 1. If we permutate S̃′ by the permutation matrix Π̃, such that S̃′ is reordered asαH11 (1− α)e αH12
vT

1 0 vT
2

αewT
1 (1− α)e αewT

2

.
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Performing a similarity transformation on it, we yieldI 0 0
0 1 0
0 0 L

αH11 (1− α)e αH12
vT

1 0 vT
2

αewT
1 (1− α)e αewT

2

I 0 0
0 1 0
0 0 L−1


=

 αH11 (1− α)e αH12L−1

vT
1 0 vt

2L−1

αLewT
1 (1− α)Le αLewT

2 L−1



=


αH11 (1− α)e αH12L−1e1 αH12L−1[e2 · · · en−k

]
vT

1 0 vT
2 L−1e1 vT

2 L−1[e2 · · · en−k
]

αwT
1 (1− α) αwT

2 L−1e1 αwT
2 L−1[e2 · · · en−k

]
0 0 0 0

,

where the invertible matrix L satisfies Le = e1, e1 =
[
1 0 · · · 0

]
, and e is a column vector of

all ones. Therefore, we preliminarily judge that the new similarity matrix results and theoretical
results are also suitable for this form of minimal irreducibility Google matrix. More detailed work is
under consideration.

4. Alternative Proofs

In this section, we will analyze theoretical results of the minimal irreducible PageR-
ank model based on the similarity transformation matrix (9). Here, we mainly provide
alternative proofs for the minimal irreducible PageRank model.

4.1. An Alternative Proof of Theorem 1

In [20], Li, Chen, and Song completed the proof of Theorem 1 by using the determinant
property: That is,

det

([
n

n+1 S̄ 1
n+1 e

1
n+1 eT 1

n+1

]
− λIn+1

)
= λ(λ− 1)

(
n

n + 1
λ2 − λ

)
· · ·
(

n
n + 1

λn − λ

)
,

Thus, one can conclude that the eigenvalues of S̃ is {1, n
n+1 λ2, · · · , n

n+1 λn, 0}. Here,
we show an alternative proof for Theorem 1 by using the similarity transformation matrix.

Proof. A similarity transformation is done as follows:[
I 1

n e
0 1

]
S̃
[

I − 1
n e

0 1

]
=

[
I 1

n e
0 1

][ n
n+1 S̄ 1

n+1 e
1

n+1 eT 1
n+1

][
I − 1

n e
0 1

]

=

[
n

n+1 S̄ + 1
n(n+1) eeT 0

1
n+1 eT 0

]
.

The eigenvalues of the stochastic matrix S̄ are denoted by {1, λ2, λ3, · · · , λn}. By
Theorem 4, we obtain that the eigenvalues of S̃ are

1
n + 1

(
n +

1
n
· n
)
= 1,

n
n + 1

λ2,
n

n + 1
λ3, · · · ,

n
n + 1

λn,

and the remaining eigenvalue is 0. Thus, we complete the proof.

4.2. An Alternative Proof of Theorem 2

Li, Chen, and Song [20] present the proof of Theorem 2 by using the similarity transfor-
mation matrix (7). Now, we validate Theorem 2 by a general invertible matrix L̂ satisfying
L̂e = e1 below.
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Proof. Since

X̃−1 =

Ik 0 0
0 1 0
0 0 L̃−1

, where L̃ = In−k − êeT
1 and L̃−1 = In−k + êeT

1 ,

then

X̃ŜX̃−1 =

 n
n+1 H11

1
n+1 e n

n+1 H12 L̃−1

1
n+1 eT 1

n+1
1

n+1 eT L̃−1

n
n+1 L̃ewT

1
1

n+1 L̃e n
n+1 L̃ewT

2 L̃−1



=


n

n+1 H11
1

n+1 e n
n+1 H12 L̃−1e1

n
n+1 H12 L̃−1[e2 e3 · · · en−k

]
1

n+1 eT 1
n+1

1
n+1 eT L̃−1e1

1
n+1 eT L̃−1[e2 e3 · · · en−k

]
n

n+1 eT
1 L̃ewT

1
1

n+1 eT
1 L̃e n

n+1 eT
1 L̃ewT

2 L̃−1e1
n

n+1 eT
1 L̃ewT

2 L̃−1[e2 e3 · · · en−k
]

0 0 0 0



=


n

n+1 H11
1

n+1 e n
n+1 H12e n

n+1 H12 L̃−1[e2 e3 · · · en−k
]

1
n+1 eT 1

n+1
n−k
n+1

1
n+1 eT L̃−1[e2 e3 · · · en−k

]
n

n+1 wT
1

1
n+1

n
n+1 wT

2 e n
n+1 wT

2 L̃−1[e2 e3 · · · en−k
]

0 0 0 0

,

where e =
[
1 1 · · · 1

]T ∈ Rn−k, eTe = n− k, L̃−1e1 = e, and the last quality follows
form L̃e = e1 (thus, eT

1 L̃e = 1).

Remark 2. During the above proof of Theorem 2, if X̃ is generalized to

X̂ =

Ik 0 0
0 1 0
0 0 L̂

, where an invertible matrix L̂ satisfies L̂e = e,

the proof also holds.

4.3. An Alternative Proof of Theorem 3

In this alternative proof, the similarity matrix is chosen as X̂ . A general invertible
matrix L̂ satisfying L̂e = e1 is applied to validate Theorem 3.

Proof. If

X̂ŜX̂−1 =

[
Ŝ(1) Ŝ(2)

0 0

]
, where Ŝ(1) =

 n
n+1 H11

1
n+1 e n

n+1 H12e
1

n+1 eT 1
n+1

n−k
n+1

n
n+1 wT

1
1

n+1
n

n+1 wT
2 e

,

then the stochastic matrix Ŝ(1) of order k + 2 has the same nonzero eigenvalues as Ŝ. We
obtain that [

σT σT Ŝ(2)
]

is an eigenvector for X̂ŜX̂−1 associated with the eigenvalue λ = 1. This follows from

[
σT σT Ŝ(2)

][Ŝ(1) Ŝ(2)

0 0

]
=
[
σT Ŝ(1) σT Ŝ(2)

]
=
[
σT σT Ŝ(2)

]
.

Therefore,

π̂T =
[
σT σT Ŝ(2)

]
X̂
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is an eigenvector of Ŝ associated with λ = 1. Since Ŝ and Ŝ(1) have the same nonzero
eigenvalues, and the principle eigenvalue of S or Ŝ is distinct, the stationary probability
distribution σ of Ŝ(1) is unique. We repartition

π̂T =
[
σT

1:k σk+1

[
σk+2 σT Ŝ(2)

]]Ik 0 0
0 1 0
0 0 L̂

.

Multiplying out

π̂T =
[
σT

1:k σk+1

[
σk+2 σT Ŝ(2)

]
L̂
]
.

Since [
σk+2 σT Ŝ(2)

]
L̂ =

[
σT ŝ(1)e σT ŝ(1) L̂−1[e2 · · · en−k

]]
L̂

=
[
σT ŝ(1) L̂−1e1 σT ŝ(1) L̂−1[e2 · · · en−k

]]
L̂

= σT ŝ(1),

the first equation uses the fact that

ŝ(1) =
[

n
n+1 HT

12
1

n+1 e n
n+1 w2

]T
, σk+2 = σT ŝ(1)e and Ŝ(2) = ŝ(1) L̂−1[e2 · · · en−k

]
,

and the second equation uses e = L̂−1e1. Hence,

π̂T =
[
σT

1:k σk+1 σT ŝ(1)
]
.

Furthermore,

π̃T = π̂TΠ̃ =
[
σT

1:k σT ŝ(1) σk+1

]
, with ŝ(1) =

[
n

n+1 HT
12

1
n+1 e n

n+1 w2

]T
.

As the claim π̃ is unique, we conclude that π̃ is the stationary probability of the
PageRank model if eTπ̃ = 1. Therefore, we complete the proof.

5. Results for 4-Level Matrix Partition

We will show that the nondangling nodes can also be further classified into two classes.
The nodes which are nondangling but point to only the dangling nodes are further called
“weakly nondangling” nodes. The other nondangling nodes are referred to as “strongly
nondangling” nodes [10]. Therefore, the reduced matrix obtained by lumping dangling
nodes can be further reduced by lumping weakly nondangling nodes, to another single
node. In addition, the further reduced matrix is also stochastic with the same nonzero
eigenvalues as the Google matrix.

5.1. Derivation

To lump dangling nodes and weakly nondangling nodes [10] to a level 4 matrix
partition, we permutate the matrix S in (3) such that

S̄ = ΠSΠT =

H(11)
11 H(12)

11 H(1)
12

0 0 H(2)
12

ewT
k1

ewT
k2

ewT
2

,

where H(11)
11 ∈ Rk1×k1 , H(12)

11 ∈ Rk1×k2 , H(1)
12 ∈ Rk1×(n−k), H(2)

12 ∈ Rk2×(n−k), w2 ∈ Rn−k, k1,
and k2 are the number of strongly nondangling nodes and weakly nondangling nodes,
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respectively. Moveover, k = k1 + k2 and S̄e = e. After the adjustment by Li, Chen, and
Song [20], the new Google matrix in 4× 4 block form is

G =


n

n+1 H(11)
11

n
n+1 H(12)

11
n

n+1 H(1)
12

1
n+1 e

0 0 n
n+1 H(2)

12
1

n+1 e
n

n+1 ewT
k1

n
n+1 ewT

k2
n

n+1 ewT
2

1
n+1 e

1
n+1 eT 1

n+1 eT 1
n+1 eT 1

n+1

. (12)

We define the permutation matrix

Π1 =


I 0 0 0
0 I 0 0
0 0 0 1
0 0 I 0


to permutate the third and fourth row and column of G simultaneously. Performing
Π1GΠT

1 yields

Π1GΠT
1 =


n

n+1 H(11)
11

n
n+1 H(12)

11
1

n+1 e n
n+1 H(1)

12

0 0 1
n+1 e n

n+1 H(2)
12

1
n+1 eT 1

n+1 eT 1
n+1

1
n+1 eT

n
n+1 ewT

k1
n

n+1 ewT
k2

1
n+1 e n

n+1 ewT
2

.

Let

X =


Ik1 0 0 0
0 Ik2 0 0
0 0 1 0
0 0 0 L̂

, where L̂ ∈ R(n−k)×(n−k) is an invertible matrix with L̂e = e1,

then

XΠ1GΠT
1 X−1 =


n

n+1 H(11)
11

n
n+1 H(12)

11
1

n+1 e n
n+1 H(1)

12 L̂−1

0 0 1
n+1 e n

n+1 H(2)
12 L̂−1

1
n+1 eT 1

n+1 eT 1
n+1

1
n+1 eT L̂−1

n
n+1 L̂ewT

k1
n

n+1 L̂ewT
k2

1
n+1 L̂e n

n+1 L̂ewT
2 L̂−1



=


n

n+1 H(11)
11

n
n+1 H(12)

11
1

n+1 e n
n+1 H(1)

12 L̂−1

0 0 1
n+1 e n

n+1 H(2)
12 L̂−1

1
n+1 eT 1

n+1 eT 1
n+1

1
n+1 eT L̂−1

n
n+1 e1wT

k1
n

n+1 e1wT
k2

1
n+1 e1

n
n+1 e1wT

2 L̂−1



=



n
n+1 H(11)

11
n

n+1 H(12)
11

1
n+1 e n

n+1 H(1)
12 e n

n+1 H(1)
12 L̂−1[e2 · · · en−k

]
0 0 1

n+1 e n
n+1 H(2)

12 e n
n+1 H(2)

12 L̂−1[e2 · · · en−k
]

1
n+1 eT 1

n+1 eT 1
n+1

n−k
n+1

1
n+1 eT L̂−1[e2 · · · en−k

]
n

n+1 wT
k1

n
n+1 wT

k2
1

n+1
n

n+1 wT
2 e n

n+1 wT
2 L̂−1[e2 · · · en−k

]
0 0 0 0 0

.

Denote by

G1 =


n

n+1 H(11)
11

n
n+1 H(12)

11
1

n+1 e n
n+1 H(1)

12 e
0 0 1

n+1 e n
n+1 H(2)

12 e
1

n+1 eT 1
n+1 eT 1

n+1
n−k
n+1

n
n+1 wT

k1
n

n+1 wT
k2

1
n+1

n
n+1 wT

2 e

,
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and then we permutate the second and fourth block row and column of G1 simultaneously
by a permutation matrix Π2,

Π2G1ΠT
2 =


I 0 0 0
0 0 0 1
0 0 1 0
0 I 0 0




n
n+1 H(11)

11
n

n+1 H(12)
11

1
n+1 e n

n+1 H(1)
12 e

0 0 1
n+1 e n

n+1 H(2)
12 e

1
n+1 eT 1

n+1 eT 1
n+1

n−k
n+1

n
n+1 wT

k1
n

n+1 wT
k2

1
n+1

n
n+1 wT

2 e




I 0 0 0
0 0 0 1
0 0 1 0
0 I 0 0


T

=


n

n+1 H(11)
11

n
n+1 H(1)

12 e 1
n+1 e n

n+1 H(12)
11

n
n+1 wT

k1
n

n+1 wT
2 e 1

n+1
n

n+1 wT
k2

1
n+1 eT n−k

n+1
1

n+1
1

n+1 eT

0 n
n+1 H(2)

12 e 1
n+1 e 0

.

Denote by

X1 =


I 0 0 0
0 1 0 0
0 0 1 0
0 0 0 L̂

, where L̂ ∈ Rk2×k2 is an invertible matrix with L̂e = e1.

Then,

X1Π2G1ΠT
2 X−1

1 =


n

n+1 H(11)
11

n
n+1 H(1)

12 e 1
n+1 e n

n+1 H(12)
11 L̂−1

n
n+1 wT

k1
n

n+1 wT
2 e 1

n+1
n

n+1 wT
k2

L̂−1

1
n+1 eT n−k

n+1
1

n+1
1

n+1 eT L̂−1

0 n
n+1 L̂H(2)

12 e 1
n+1 L̂e 0



=


n

n+1 H(11)
11

n
n+1 H(1)

12 e 1
n+1 e n

n+1 H(12)
11 L̂−1e1

n
n+1 H(12)

11 L̂−1[e2 · · · en−k
]

n
n+1 wT

k1
n

n+1 wT
2 e 1

n+1
n

n+1 wT
k2

L̂−1e1
n

n+1 wT
k2

L̂−1[e2 · · · en−k
]

1
n+1 eT n−k

n+1
1

n+1
1

n+1 eT L̂−1e1
1

n+1 eT L̂−1[e2 · · · en−k
]

0 n
n+1

1
n+1 0 0

0 0 0 0 0



=


n

n+1 H(11)
11

n
n+1 H(1)

12 e 1
n+1 e n

n+1 H(12)
11 e n

n+1 H(12)
11 L̂−1[e2 · · · en−k

]
n

n+1 wT
k1

n
n+1 wT

2 e 1
n+1

n
n+1 wT

k2
e n

n+1 wT
k2

L̂−1[e2 · · · en−k
]

1
n+1 eT n−k

n+1
1

n+1
k2

n+1
1

n+1 eT L̂−1[e2 · · · en−k
]

0 n
n+1

1
n+1 0 0

0 0 0 0 0

,

due to the fact that H(2)
12 e = e, and e = L̂−1e1.

Let

G2 =


n

n+1 H(11)
11

n
n+1 H(1)

12 e 1
n+1 e n

n+1 H(12)
11 e

n
n+1 wT

k1
n

n+1 wT
2 e 1

n+1
n

n+1 wT
k2

e
1

n+1 eT n−k
n+1

1
n+1

k2
n+1

0 n
n+1

1
n+1 0

. (13)

Then, we obtain a PageRank vector expression for this level 4 partition by using
Theorem 3.

Theorem 5. Using the above notations and defining G2 by (13), then G2 of order k1 + 3 with the
same nonzero eigenvalues as the full new Google matrix G is stochastic. Let

σ̂T = σ̂TG2, σ̂ ≥ 0, σ̂Te = 1, where G2 ∈ R(k1+3)×(k1+3).
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Partition σ̂T =
[
σ̂T

1:k1+1 σ̂k1+2 σ̂k1+3

]
, where σ̂k1+2 and σ̂k1+3 are scalars. Then, we define

the vector

σT =

σ̂T
1:k1+1 σ̂T


n

n+1 H(12)
11

n
n+1 wT

k2
1

n+1 eT

0

 σ̂k1+2

 ∈ Rk1+k2+2,

and the vector σ satisfies σTG1 = σT . Thus, the PageRank vector πn+1 for G ∈ R(n+1)×(n+1) is
given by

πT
n+1 =

σT
1:k1+k2

σT


n

n+1 H(1)
12

n
n+1 H(2)

12
1

n+1 eT

n
n+1 wT

2

 σk1+k2+1

.

Proof. The proof is technical modifications of the proof in Section 4.3; therefore, it is omitted
here.

Thus, we claim that the new similarity matrix
[

I 0
0 L

]
, where L satisfies (8), can lead

to a dimension reduction of an involved minimal irreducible web link matrix in its 4-level
matrix partition form. After obtaining a smaller vector σ̂T of G2, the PageRank vector
can recover according to Theorem 5. Now, we present the output of the corresponding
algorithm in Algorithm 1.

Algorithm 1 Lumping algorithm for a minimal irreducible PageRank model (5)

Input: An initial nonnegative vector σ̂T =
[
σ̂T

1:k1
σ̂k1+1 σ̂k1+2 σ̂k1+3

]
, σ̂T ≥ 0, ‖σ̂T‖ =

1, a prescribed tolerance ε.
Output: The PageRank vector πT

n .
Choose an initial vector σ̂T =

[
σ̂T

1:k1
σ̂k1+1 σ̂k1+2 σ̂k1+3

]
∈ Rk1+3, σ̂T ≥ 0, ‖σ̂T‖ = 1.

Set τ = 1.
while τ ≥ ε do

σ̃T
1:k1

= n
n+1 σ̂T

1:k1
H(11)

11 + n
n+1 σ̂k1+1wT

k1
+ 1

n+1 ·
1

n+1 eT ;

σ̃k1+1 = n
n+1 σ̂T

1:k1
H(1)

12 e + n
n+1 wT

2 eσ̂k1+1 +
n−k
n+1 ·

1
n+1 + n

n+1 σ̂k1+3;

% σ̂k1+2 = 1
n+1 (by direct computation);

σ̃k1+3 = 1− σ̂T
1:k1

e− σ̂k1+1 − 1
n+1 ;

σ̂ = σ̃;
τ = ‖σ̃− σ̂‖1;

end while
Compute x = σ̂T

[
n

n+1 H(12)
11

n
n+1 wT

k2
1

n+1 eT 0
]T

;

Recover σT by σT =
[
σ̂T

1:k1+1 x σ̂k1+2

]
;

Compute y = σT
[

n
n+1 H(1)

12
n

n+1 H(2)
12

1
n+1 eT n

n+1 wT
2

]T
;

Obtain the PageRank vector πn+1 =
[
σT

1:k1+k2
y σk1+k2+1

]
.

The power method applied to G2 involves a sparse matrix vector multiplied by a small
matrix of order k1 + 3 as well as several vector operations. The final step in Algorithm 1
recovers minimal irreducible PageRank vector according to Theorem 5. As the dangling
nodes are further excluded from each iteration of the power method, Algorithm 1 has the
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same convergence rate as that of the power method applied to G but is much faster due to
a reduced matrix computation.

5.2. Numerical Experiments

In this subsection, the web link matrix “wiki-Vote” which has 8297 Web pages and
103689 hyperlinks is used in our numerical example. There are 2187 dangling nodes and
905 “weakly nondangling” nodes in this web link matrix. We compare the power method,
LDNA [20], and Algorithm 1 for computing (5) as follows:

1. The original method [17], i.e., the power method applied to a full matrix G in (12).
2. LDNA algorithm in [20]. Lumping all dangling nodes into a single node, the power

method is applied to the (k + 2)× (k + 2) matrix Ŝ(1) in Theorem 2.
3. Algorithm 1 (called as Algorithm 1). Lumping two classes of nodes, the power method

applied to the (k1 + 3)× (k1 + 3) matrix G2 in (13).

The parameters v and w are chosen as v = w = 1
n e in the above algorithms, where

e is a vector of all ones. The overall termination criterion is triggered once the residual
norm is below ε = 10− 10. Suppose that three algorithms all need N iterations until they
reach the convergence criterion. Tables 1 and 2 give the residues and operation costs of
three algorithms, respectively. Here, nnz(H) denotes the number of nonzero entries of
matrix H. A sparse matrix-vector product requires O(nnz(H)) operations. From Table 1,
we can observe that Algorithm 1 produces the least residual norms compared with the
other two algorithms. In addition, we also obtain the fact that the above three algorithms
have almost the same convergence rate. We can find that the LDNA algorithm saves about
O((n− k)(N− 1)) operations, and Algorithm 1 saves aboutO((n− k1)(N− 1)) operations
from Table 2. Because Algorithm 1 computes the PageRank vector by lumping the dangling
and “weakly nondangling” nodes and applies the power method to the smallest matrix, it
needs the least operations.

Table 1. Comparison of residues for three algorithms.

Iteration Original LDNA Algorithm 1

10 3.0192e− 04 1.9117e− 04 1.2928e− 04
20 1.2539e− 06 7.0788e− 07 4.5348e− 07
30 6.0013e− 09 3.3144e− 09 1.9865e− 09
36 2.4952e− 10 1.3619e− 10 7.8191e− 11

Table 2. Comparison of operation costs for three algorithms.

Algorithms Bounds for Operations

Original O((nnz(H) + n)N)
LDNA O((nnz(H11) + k)N) + O(nnz(H12) + k)

Algorithm 1 O((nnz([H(11)
11 H(1)

12 ]) + k1)N) +O(nnz([H(12)
11 H12]) + k1)

6. Conclusions

In this paper, we have presented some new proofs and provided a novel efficient
algorithm for computing a kind of minimal irreducible PageRank. Firstly, the spectral
distribution of the new Google matrix is also validated by a similarity transformation
method except for the determinant method. The simple and generalized similarity trans-
formation matrix method is easier for validating Theorems 2 and 3 in the new PageRank
model. Secondly, the new Google matrix of an 4× 4 block partition is further lumped to
reduce the order of the involved computation matrix. Some theoretical results are discussed.
Thirdly, as one real application of our results, the power method can operate on a smaller
matrix than before. Therefore, the computational cost is reduced. For further work, we
can consider how to choose an extrapolation method operating on a reduced matrix to
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accelerate the computation of web information retrieval models. The extrapolation method
combined with a lumping method is also worth studying.
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