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Abstract: The mapping relationship between the symmetry and the conserved quantity inspired
researchers to seek the conserved quantity from the viewpoint of the symmetry for the dynamic
systems. However, the symmetry breaking in the dynamic systems is more common than the
symmetry in the engineering. Thus, as the supplement of our previous work on the symmetry
breaking of infinite-dimensional deterministic dynamic systems, the dynamical symmetry breaking
of infinite-dimensional stochastic systems is discussed in this paper. Following a brief review of the
stochastic (multi-)symplectic for the dynamic system excited by stochastic white noise, two types
of stochastic symmetry breaking factors, including the general stochastic excitation and the general
stochastic parameters of the infinite-dimensional dynamic systems, are investigated in detail. We find
that both the general stochastic excitation and the general stochastic parameters will not break the
local multi-symplectic structure of the dynamic systems. However, the local energy conservation law
will be broken by the general stochastic excitation, as well as by the stochastic parameters, which are
given by the local energy dissipation in this paper. To illustrate the validity of the analytical results,
the stochastic vibration of a clamped single-walled carbon nanotube is investigated and the critical
condition of the appearance of chaos is obtained. The theoretical results obtained can be used to
guide us to construct the structure-preserving method for the stochastic dynamic systems.

Keywords: dynamic symmetry breaking; stochastic system; local multi-symplectic structure;
Hamiltonian

1. Introduction

In 1918, Noether [1] proposed the mapping relationship between the mathematical
symmetry and the physical conservative quality for the dynamic systems, which permitted
the researchers to investigate the physical properties of the dynamic systems by using some
mathematical approaches. This mapping relationship guided the theoretical research of
the dynamic systems until the presentation of the parity non-conservation [2], which is
one of the outstanding contributions of Lee and Yang because it opened another research
field of the physical mechanical system. Subsequently, the mathematical theory and the
physical essence were revealed by Goldstone et al. [3], Higgs [4], Kibble [5], Anderson [6],
Bernstein [7], Adler [8] and Thooft [9].

Non-conservation exists in the practical physical mechanical systems widely, which
breaks the mathematical symmetry and determines many nonlinear characteristics of
the physical mechanical systems. To perform the above task, many symmetry breaking
phenomena were investigated widely, including the chiral symmetry breaking [10–18], the
spontaneous symmetry breaking [19–22], the time-reversal symmetry breaking [23–26] and
so on. Among these symmetry breaking phenomena, the symmetry breaking related to the
time elapse is more complex, which was named as dynamic symmetry breaking [27]. The
physical implications of the dynamic symmetry breaking were presented by Weinberg [28].
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The bifurcations of the wave propagation in the fluid were investigated from the viewpoint
of the dynamic symmetry breaking idea [29,30], which presented a precedent for the
application of the dynamic symmetry breaking on the nonlinear dynamics. Then, the
dynamical symmetry breaking in 4-fermion models in 2 + 1 dimensions was quantitatively
studied [31].

Inspired by the mapping relationship between the symmetry and the conservation
property, the symplectic geometry theory was employed in the construction of the numeri-
cal scheme for the finite-dimensional Hamiltonian systems by Feng [32], which was named
as the symplectic method. To describe the local symmetry of the infinite-dimensional
dynamic system, the multi-symplectic structure, as well as the multi-symplectic integrator,
was proposed by Bridges [33–35]. Both the symplectic method and the multi-symplectic
method were derived from the symmetry of the mechanics [36]. A natural question for the
symmetry of the mechanics is how to formulate the dynamic system with the symmetry
breaking in the approximate (multi-)symplectic form and construct the structure-preserving
scheme. For this topic, the generalized multi-symplectic method was proposed in our previ-
ous work [37] for the infinite-dimensional damping system. Recently, the applications of the
generalized multi-symplectic method on the complex dynamic problems [38–48] illustrated
the structure-preserving characteristics of the generalized multi-symplectic method derived
from the tiny residual of the multi-symplectic structure associated with the existence of the
dynamic symmetry breaking.

In our previous work [49] on the dynamic symmetry breaking of the infinite-dimensional
systems, the chronology of current works on the symmetry breaking were reviewed and the
effects of two typical dynamic symmetry breaking factors on the local energy dissipation
of the infinite-dimensional systems were discussed in detail. These two discussed factors
are definitive, while the stochastic factors resulting in the dynamic symmetry breaking
were neglected. However, indeterminacy exists in the dynamic systems commonly and
it may affect the symmetry of the dynamic systems remarkably, which inspired us to
investigate the effects of the indeterminacy on the dynamic symmetry breaking of the
infinite-dimensional dynamic systems in this paper. The results of the effects of the indeter-
minacy on the dynamic symmetry breaking of the infinite-dimensional dynamic systems
are the mathematical base of the structure-preserving approaches for the stochastic systems,
which can be used to study the local energy dissipation of the stochastic systems.

2. Review of Stochastic (Multi-)Symplectic Method

As the ground-breaking work on the symmetry of the stochastic systems, Zhu [50–52]
proposed the stochastic averaging method of the quasi-nonintegrable Hamiltonian systems,
in which the external excitation was assumed as the random white noise.

For the following Cauchy problem for the stochastic differential equations in the sense
of Stratonovich:

dP = f(t, P, Q)dt +
m
∑

r=1
σr(t, P, Q) ◦ dwr(t), P(t0) = p

dQ = g(t, P, Q)dt +
m
∑

r=1
γr(t, P, Q) ◦ dwr(t), Q(t0) = q

(1)

Milstein et al. [53] presented the following symplectic structure with several assump-
tions:

dP∧ dQ = dp∧ dq (2)

which implies that the sum of the oriented areas of projections onto the co-ordinate planes
is an integral invariant. Where P, Q, f, g,σr,γr, p, q are n-dimensional vectors, wr(t) is
an independent Wiener process and ‘◦’ is the Stratonovich product. This work [53] is a
supplement for their previous work [54] on the symplectic integration of Hamiltonian
systems with the additive noise.

To describe the local dynamic behaviors of the stochastic infinite-dimensional Hamil-
tonian systems, Jiang et al. [55] and Hong et al. [56] formulated the stochastic nonlinear
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Schrödinger equation and the stochastic Maxwell equation in the following stochastic
multi-symplectic form uniformly:

M∂tz + K∂xz = ∇zS1(z) +∇zS2(z) ◦
.
χ (3)

where M and K are skew-symmetric matrices, z ∈ Rd is a state vector, S1(z) and S2(z) are
the Hamiltonian function and the additional Hamiltonian function, respectively, and

.
χ is

defined as a real-valued white noise, which is delta correlated in time and either smooth or
delta correlated in space.

According to the precise mathematical definition of the white noise, the stochastic
multi-symplectic Hamiltonian system given by Equation (3) can be rewritten as:

Mdtz + K∂xzdt = ∇zS1(z)dt +∇zS2(z) ◦ dW (4)

where W defines a cylindrical Wiener process.
It has been proved that the stochastic multi-symplectic form (4) preserves the following

stochastic multi-symplectic conservation law locally [55,56]:

dtω(t, x) + ∂xκ(t, x)dt = 0 (5)

i.e., ∫ x1

x0

ω(t1, x)dx +
∫ t1

t0

κ(t, x1)dt =
∫ x1

x0

ω(t0, x)dx +
∫ t1

t0

κ(t, x0)dt (6)

where ω(t, x) = 1
2 dz∧Mdz and κ(t, x) = 1

2 dz∧Kdz are the differential two forms associ-
ated with the skew-symmetric matrices M and K, respectively, which were also defined
in the same way in the multi-symplectic theory [33], and (t0, t1) × (x0, x1) is the local
definition domain of z(t, x).

It is necessary to clarify that the above symplectic structure and the local multi-
symplectic structure for the stochastic Hamiltonian systems only exist when the stochastic
excitation is assumed as the white noise process. This assumption implies that, for any time
period t, E(εt) = 0, E(ε2

t ) = σ2, E(εtεt−s) = E(εt−jεt−j−s) = 0 for all j and all s 6= 0. In a
word, the power spectral density of the white noise process is time-independent, which
is the existence prerequisite of the (multi-)symplectic for the stochastic dynamic systems
considered in the current documents. Can this conclusion be generalized to the dynamic
system with the stochastic parameters or subjected to other common stochastic excitations?

3. Dynamical Symmetry Breaking of Stochastic System

It has been mentioned that the stochastic excitation in the white noise form does not
break the local symmetry of the dynamic system in Section 2. However, the white noise
process cannot be found in engineering problems. In addition, the stochastic parameter
is very common in the physical mechanical systems. Thus, in this section, two dynamical
symmetry breaking factors of the stochastic systems will be discussed in detail.

3.1. Case of General Stochastic Excitation

Considering the general stochastic excitation acting on the infinite-dimensional sys-
tems without any deterministic dynamical symmetry breaking factors presented in [49],
the first-order approximate symmetric form of the systems can be formally written as:

M∂tz +
n

∑
i=1

Ki∂xi z = ∇z[S(z) + S̃(F, z, ∂tz, ∂ttz)], z ∈ Rd (7)

where M and Ki (i = 1, 2, · · · , n) are the skew-symmetric matrices, z ∈ Rd is a state vector,
S(z) and S̃(F, z, ∂tz, ∂ttz) are the Hamiltonian function and the additional Hamiltonian
function associated with the stochastic excitation, respectively, and F is the generalized
force vector.
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Not limited to the white noise process, S̃(F, z, ∂tz, ∂ttz) describes the general stochas-
tic excitation depending on the stochastic generalized force, as well as the zero/first/second-
order derivatives of the stochastic generalized displacement, which implies that there are
two types of stochastic excitation (one is the stochastic generalized force acting on the
structure; another is the stochastic generalized displacement occurring on the boundary of
the structure). According to the multi-symplectic theory [33–35], the local multi-symplectic
structure will not be broken because the additional Hamiltonian function S̃(F, z, ∂tz, ∂ttz)
is independent of t and xi explicitly, that is:

n
∑

i=1

∫ x1
i

x0
i

ω(t1, x1, x2, · · · , xn)dxi +
∫ t1

t0

n
∑

i=1
κi(t, x1, · · · x1

i , · · · , xn)dt

=
n
∑

i=1

∫ x1
i

x0
i

ω(t0, x1, x2, · · · , xn)dxi +
∫ t1

t0

n
∑

i=1
κi(t, x1, · · · x0

i , · · · , xn)dt
(8)

However, from the energy viewpoint, the local energy of the system with the additional
Hamiltonian function S̃(F, z, ∂tz, ∂ttz) is not always conservative.

For the stochastic generalized force acting on the structure, the local ((t0, t1)× (x0
1, x1

1)×
(x0

2, x1
2)× · · · × (x0

n, x1
n)) energy conservation law will not be affected by the stochastic gen-

eralized force if, and only if: ∫ t1

t0

∫ x1

x0
E(F)dxdt = 0 (9)

where x = (x1, x2, · · · , xn)
T, x0 = (x0

1, x0
2, · · · , x0

n)
T, x1 = (x1

1, x1
2, · · · , x1

n)
T.

If the stochastic generalized force is a white noise, the mathematical expectation of
the stochastic force is zero, i.e., E(F) = 0, which implies that the integration formulated
by Equation (9) is zero in any time interval and the local energy conservation law will
not be broken by the white noise. Otherwise, the local energy dissipation will occur if∫ t1

t0

∫ x1

x0 E(F)dxdt 6= 0. The local energy dissipation in the domain (t0, t1) × (x0
1, x1

1) ×
(x0

2, x1
2)× · · · × (x0

n, x1
n) can be formulated formally as:

∫ t1

t0

∫ x1

x0
E(F)dxdt = 0 ∆̃e =

∫ t1

t0

∫ x1

x0
E(F)dxdt (10)

The effects of the local energy of the structure subjected to the stochastic generalized
displacement occurring on the boundary of the structure are determined by the property
of the boundary of the structure. If the boundary does not permit the displacement along
the direction of the stochastic displacement, the change in the local energy of the structure
is zero. Otherwise, the change in the local energy of the structure is not zero. Because
of the universality of the stochastic excitation, the change in the local energy cannot be
formulated explicitly.

3.2. Case of General Stochastic Parameters

In addition to the stochastic force acting on the structure, another stochastic factor
affecting the symmetry of the dynamic systems is the stochastic parameters of the structure.
For example, the mass distribution, the stiffness distribution and the damping distribution
of the structure are stochastic because of the stochastic manufacturing errors.

Without any deterministic dynamical symmetry breaking factors presented in [49], the
first-order approximate symmetric form of the systems with the stochastic parameters can
be formally written as:

M̃∂tz +
n

∑
i=1

K̃i∂xi z = ∇zS(z), z ∈ Rd (11)
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where M̃ and K̃i (i = 1, 2, · · · , n) are stochastic skew-symmetric matrices. Generally, the
matrices M̃ and K̃i (i = 1, 2, · · · , n) are the probability density functions respective to
x = (x1, x2, · · · , xn)

T, i.e., Equation (11) can be rewritten as:

M̃(x1, x2, · · · , xn)∂tz +
n

∑
i=1

K̃i(x1, x2, · · · , xn)∂xi z = ∇zS(z), z ∈ Rd (12)

According to the multi-symplectic theory [33] for the deterministic infinite-dimensional
systems, the local multi-symplectic structure (8) will not be broken by the stochastic param-
eters.

Following the outline of our previous work [49], to formulate the local energy dissipation

derived from the stochastic parameters, we define ẽ = S(z)− 1
2

n
∑

i=1

〈
K̃i(x1, x2, · · · , xn)∂xiz, z

〉
as the modified energy density and f̃i =

1
2

〈
K̃i(x1, x2, · · · , xn)∂tz, z

〉
(i = 1, 2, · · · , n) as

the modified energy fluxes for system (12). The partial derivative of f̃i with respect to
xi (i = 1, 2, · · · , n) is:

∂xi f̃i = 1
2

〈
[∂xi K̃i(x1, x2, · · · , xn)]∂tz, z

〉
+ 1

2

〈
K̃i(x1, x2, · · · , xn)∂txi z, z

〉
+ 1

2

〈
K̃i(x1, x2, · · · , xn)∂tz, ∂xi z

〉
= 1

2

〈
∂xi [K̃i(t, x1, x2, · · · , xn)]∂tz, z

〉
− dS(z)/dt

(13)

Then, the local energy dissipation resulting from the stochastic parameters can be
formulated as:

∆̃e = ∂t ẽ +
n

∑
i=1

∂xi f̃i =
1
2

n

∑
i=1

〈
∂xi [K̃i(x1, x2, · · · , xn)]∂tz, z

〉
(14)

A brief summary for the dynamical symmetry breaking of the infinite-dimensional
stochastic system follows: the local multi-symplectic structure will not be broken by the
above two stochastic factors, while the local energy dissipation will depend on the above
stochastic factors, which is formulated by Equations (10) and (14), respectively.

4. Symmetry Breaking of the Dynamic Model Controlling the Stochastic Vibration
of SWCNT

Because of the tiny size and the high sensitivity of the carbon nanotube devices [57],
both the geometric parameters and the tiny external excitation can be considered as a series
of stochastic variables. Thus, the dynamic model controlling the stochastic vibration of
the embedded single-walled carbon nanotube can be formulated referring to our previous
work [58] when the damping of the nanotube is neglected:

E0 Ĩ∂xxxxu + ρÃ∂ttu + ku− F̃(t, x)− EÃ
2L̃

∂xxu
∫ L̃

0
(∂xu)

2

dx = 0 (15)

where the geometric parameters (Ã, Ĩ, L̃) and the external excitation (F̃(t, x)) are stochastic,
and the elastic constant k of the elastic medium is a constant. In this section, we only
highlight the effects of the stochastic parameters on the symmetry of the dynamic system.
Thus, we assume the external excitation F̃(t, x) as a stochastic white noise.

Generally, both the cross-section area and the length of the SWCNT obey normal
distributions. Thus, in a random small interval (t, t + ∆t), we can assume the density
functions of Ã and L̃ as:

Ã(x) ∼ N(A0, σ2
1 ), L̃(x) ∼ N(L0, σ2

2 ) (16)

where A0 = E(Ã), σ2
1 = D(Ã), L0 = E(L̃), σ2

2 = D(L̃). Then,
_
I =

Ĩ−A2
0/4

σ2
1 /16

∼ χ2 (χ2

distribution) approximately.
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With the intermediate variables defined by ∂tu = v, ∂xz = w, ∂xw = ψ, ∂xψ = q,
Equation (15) can be rewritten as the following first-order form:

M̃dtz + K̃∂xzdt = ∇zS1(z)dt +∇zS2(z) ◦ dW (17)

where S1(z) = ku2 − 1
2 ρÃv2 + 1

2 EĨψ2 − EĨwq, S2(z) = F̃(t, x) + EÃ
2L̃

ψ
∫ L̃

0 w2dx,

z = (u, v, w, ψ, q)T, and the skew-symmetric matrices are:

M̃ =


0 ρÃ 0 0 0
−ρÃ 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

, K̃ =


0 0 0 0 EĨ
0 0 0 0 0
0 0 0 −EĨ 0
0 0 EĨ 0 0
−EĨ 0 0 0 0


Then, in a local domain (t0, t1) × (x0, x1), a stochastic multi-symplectic structure

of Equation (17) can be formulated as Equation (6), in which ω(t, x) = 1
2 dz ∧ M̃dz,

κ(t, x) = 1
2 dz∧ K̃dz. The local energy dissipation can be calculated by Equation (14).

For the existence of the stochastic parameters and the external stochastic excitation,
the analytical condition of the existence of the chaos in the embedded SWCNT clamped
at both ends cannot be obtained following our previous work [58]. To illustrate the above
mapping relationship between the symmetry breaking and the local energy dissipation, the
structure-preserving numerical scheme presented in [58] is employed with zero damping
and stochastic parameters, as well as the stochastic white noise excitation to reproduce the
local energy dissipation of the dynamic system given by Equation (15).

Some parameters of the carbon nanotube are assumed as: A0 = 2.3562× 10−18 m2,
L0 = 100 nm, σ2

1 = 0.01× 10−36 m4, σ2
2 = 5 nm2, and E(F) increases from 5× 10−11 N to

10× 10−11 N. The stochastic vibration of the carbon nanotube is simulated by using the
structure-preserving numerical scheme and the stochastic chaos is reproduced with the
following boundary conditions and the initial conditions.

u(0, t) = ∂u
∂x (0, t) = u(L̃, t) = ∂u

∂x (L̃, t) = 0
u(x, 0) = 0

(18)

Figures 1 and 2 show the Poincaré section when E(F) = 9.25 × 10−11 N and
E(F) = 9.3× 10−11 N, respectively. Figures 3 and 4 show the maximum Lyapunov expo-
nents (denoted by MLEs in the figures) when E(F) = 9.25 × 10−11 N and
E(F) = 9.3× 10−11 N, respectively.
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In the Poincaré section presented in Figure 1, the number of the points is finite, while
the number of the points in the Poincaré section presented in Figure 2 is infinite. In addition,
the maximum Lyapunov exponents with E(F) = 9.25× 10−11 N shown in Figure 3 are
negative, while the maximum Lyapunov exponents with E(F) = 9.3× 10−11 N shown in
Figure 4 are positive. Both the infinite number of the points in the Poincaré section and the
positive maximum Lyapunov exponent are the proofs that the stochastic vibration of the
SWCNT goes into chaos when E(F) = 9.3× 10−11 N.

Comparing the Poincaré section and the maximum Lyapunov exponents presented
in the above figures, we can find that the critical condition of the appearance of the
chaos in the embedded SWCNT clamped at both ends considered in this paper is about
E(F) ≥ 9.3× 10−11 N, which is larger than that obtained in our previous work [58]. It
can be concluded that the effect of the stochastic parameters, as well as the stochastic
excitation on the vibration of the clamped SWCNT is increasing the critical condition of the
appearance of the chaos in the SWCNT remarkably. Reproducing the critical condition of
the appearance of the chaos during the stochastic vibration accurately is just benefited from
the calculation on the local energy dissipation referring to the theoretical results presented
in Section 3.

5. Conclusions and Remarks

As the foundation of the structure-preserving method, the symmetry mapping to the
conserved quantity and the symmetry breaking resulting in the energy dissipation of the
dynamic systems have aroused considerable interests in the last century. To generalize the
results of our previous work on the symmetry breaking of the infinite-dimensional deter-
ministic systems, the dynamical symmetry breaking of the infinite-dimensional stochastic
systems is investigated in this paper. Referring to the exploratory works on the stochastic
symplectic method for the finite-dimensional stochastic systems and the stochastic multi-
symplectic method for the infinite-dimensional stochastic systems, two typical dynamical
symmetry breaking factors of the infinite-dimensional stochastic systems are discussed.
One is the stochastic excitation and another is the stochastic parameters. We find that
the local multi-symplectic structure of the system is not broken by the above two factors
according to the classic multi-symplectic theory, but the local energy conservation law
of the system is broken by the above two factors. The effect of the stochastic excitation
with the non-zero mathematical expectation and the effect of the stochastic parameters on
the local energy conservation law are formulated by the local energy dissipation, which
is the main contribution of this work. The mathematical expression on the local energy
dissipation of the stochastic dynamic system permits us to develop the structure-preserving
method to study the nonlinear dynamic behaviors of the stochastic dynamic systems in
detail, such as chaos and bifurcation phenomena. To help the researchers to perform the
stochastic multi-symplectic scheme for the infinite-dimensional dynamic system with the
stochastic parameters, the local energy dissipation resulting from the stochastic parame-
ters is proposed. In the example of the stochastic vibration of the clamped SWCNT, the
effect of the stochastic parameters, as well as the stochastic excitation, on the vibration of
the clamped SWCNT is reproduced and the dynamical symmetry breaking result of the
infinite-dimensional stochastic systems is illustrated.
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