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Abstract: Let D be a primitive digraph of order n. The exponent of a vertex x in V(D) is denoted
vp(x), which is the smallest integer g such that for any vertex y, there is a walk of length g from x to y.
Let V(D) = {vq,v2, -+ , vy }. We order the vertices of V(D) so that yp(v1) < yp(v2) < -+ < vp(vy)
is satisfied. Then, for any integer k satisfying 1 < k < n, yp(vy) is called the kth local exponent of D
and is denoted by expp (k). Let DS, (d) represent the set of all doubly symmetric primitive digraphs
with n vertices and d loops, where d is an integer such that 1 < d < n. In this paper, we determine
the upper bound for the kth local exponent of DS, (d), where 1 < k < n. In addition, we find that the
upper bound for the kth local exponent of DS, (d) can be reached, where 1 < k < n.

Keywords: exponent; symmetric digraph; generalized competition index; competition index;
scrambling index

1. Introduction

Let D = (V, E) denote a digraph (directed graph) with n vertices, where the vertex set
V = V(D) and the arc set E = E(D). Loops are permitted, but multiple arcs are not. A walk
from x to y in D, we mean a sequence of vertices x, vy, - - - , ¢,y where each vertex in the
sequence of vertices belongs to V, and a sequence of arcs (x,v1), (v1,v2),- - -, (vt,y) where
each arc in the sequence of arcs belongs to E, and the vertices and arcs are not necessarily

distinct. The number of arcs in W is the length of the walk W. The notation x LN Y means
that there exists a walk of length k from x to y. The distance from vertex x to vertex y in D
is written as dp (x, y)(for short, d(x, y)), which refers to the length of the shortest walk from
x toy. If x = y, then a walk from x to y is a closed walk. A cycle is a closed walk from x to
y with distinct vertices except for x = y.

Let x,y be any pair of vertices in a digraph D. The digraph D is called primitive,
if there exists a positive integer k such that there is a walk of length k from x to y. This
smallest such k is denoted by exp(D), which is called the exponent of D. The greatest
common divisor of the lengths of all the cycles in D is recorded as (D). It is well known
(see [1]) that D is primitive if and only if D is strongly connected and /(D) = 1.

Brualdi and Liu [2] generalized the concept of exponent for a primitive digraph
(primitive matrix). Let D be a primitive digraph with n vertices. The exponent of D can be
broken down into more local exponents [3]. For any pair of vertices x,z € V(D), let yp(x, z)
denote the smallest integer p such that there is a walk of length t from x to z, for each
integer t > p. Since D is a primitive digraph, then yp(x,z) is a finite number. For any
vertex x € V(D), the exponent of vertex x is written as yp (x), which is the smallest integer
g so that for any vertex y € V(D), there exists a walk of length ¢ from x to y. Moreover,
for any vertex z € V(D) and any integer t > yp(x, z), there is a walk of length f from x to
z.So, we have g = max{yp(x,z) : z € V(D)}. Then, for any vertex y € V(D), there is a
walk of length t from x to y for each integer t > gq. Therefore, we have

vp(x) = max{yp(x,z):z € V(D)}.

Let the vertices of D be ordered as vy, vy, - - - , vy, such that
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Yp(v1) < ¥p(v2) < -+ < Yp(Vn).

vp(vg) is called the kth local exponent (generalized exponent) of D, and it is denoted by
expp(k), where 1 < k < n. Then,

expp(1) < expp(2) < --- < expp(n).

Furthermore, we have (D) = max{yp(x) : x € V(D)} = max{yp(x,y) : x,y €
V(D)}. Obviously, the exponent of D equals expp(n). Thatis, v(D) = exp(D) = expp(n).
So, for a primitive digraph D, the local exponents of D are generalizations of the exponent
of D.

Brualdi and Liu [2] proposed a memoryless communication system. In the memoryless
communication system represented by a primitive digraph D of order n, the kth local
exponent is the smallest time for each vertex to simultaneously hold all k bits of the
information. For more details, please refer to [2,3].

For any vertices x and y of a digraph D, (x,y) € E(D) is an arc if and only if
(y,x) € E(D) is an arc, which is represented by x <> y, then such a digraph D is called
a symmetric digraph. An undirected graph (possibly with loops) can be viewed as a
symmetric digraph. For some research on undirected graphs, please see [4-6]. When D is

symmetric, the notation x LN y indicates that there is a walk of length k from x to y.

Let D = (V, E) be a symmetric digraph, we can regard D as an undirected graph.
For convenience, undirected graph terms such as edges, edge set, etc., are used directly to
describe a symmetric digraph. Then, let E(D) denote the set of undirected edges (edges) in
D. Moreover, we assume that the notation [x,y] € E(D) represents that there is an edge in
D with x, y as end vertices.

Let D = (V, E) be a symmetric digraph, where V = {v1,v,, - - - , v, }. If for any vertices
v; and v}, [v;,v;] € E(D) if and only if [v,11_,0,11-j] € E(D), then such a symmetric
digraph D is called a doubly symmetric digraph. Moreover, [v;,v;] and [v,41—, Vp41-]
are called a pair of symmetrical edges, or [v;,v;] is a symmetrical edge of [0, 11—, Vny1-,
where1 <i < nand1 < j < n. The vertices v, 1_;, v; are called a pair of symmetric
vertices, or v; is a symmetric vertex of v, 1_;, where 1 < i < n. According to this definition,
when 7 is odd, v 11 is symmetric to itself. If v; is a loop vertex, then [v;, v;] € E(D) and
[Un+1—is Unt1—i] € E(D). Therefore, fori # n+1—i,if [v;,v;] is aloop, then [0, 41_;, V41—
is also a loop, the loops appear in pairs. A doubly symmetric digraph D is called a doubly
symmetric primitive digraph provided D is primitive.

If a doubly symmetric primitive digraph D contains exactly d loops, then we call D
a doubly symmetric primitive digraph with d loops. Let DS, denote the set of all doubly
symmetric primitive digraphs of order n. Let DS, (d) denote the set of all doubly symmetric
primitive digraphs of order n with d loops, where d is an integer such that 1 < d < n.
Obviously, we have DS, (d) C DS,,.

Let D € DSy (d). After deleting any pair of symmetrical edges [v;, v;] and [0,,41—i, V1]
of D, the obtained digraph D’ is not a doubly symmetric primitive digraph (that is, D’
is not connected), then we call D € DS}, (d), where 1 < i < j < n. Obviously, we have
DS;,(d) € DS, (d).

For example, we consider the kth local exponent of the graph G. Let V(G) = {vq,v2,- - -,
v7}. Let E(G) = {[v;,vis1]|1 <i < 6}U{[vs,v4]}. G isshown in Figure 1.
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Figure 1. G.

We easily get 76(vs) = 3, 76(03) = 76(05) = 4, v6(v2) = 716(ve) =5, v6(v1) =
Y6 (v7) = 6. Then, we have expg(1) = 3,expg(2) = expg(3) = 4,expg(4) = expg(5) =
5,expg(6) = expg(7) = 6. Moreover, we have y(G) = exp(G) = expg(7) = 6.
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Some studies [7-12] have investigated exponents and their generalization. Chen and
Liu [11] studied the kth local exponent of doubly symmetric primitive matrices (primitive
digraphs). Chen and Liu [12] characterized the doubly symmetric primitive digraphs
with the kth local exponent reaching the maximum value. A doubly symmetric primitive
digraph with d loops is a special doubly symmetric primitive digraph. It is important
to mention that the kth local exponent of such a class of digraphs has not been studied
before. Using graph theory methods, we obtain the upper bound of the kth local exponent
of digraphs in DS, (d), where 1 < k < n. Some studies have investigated the scrambling
index [13-16] and generalized competition index [17-23]. Several studies explored the
generalized p-scrambling indices, please refer to [24-26].

Let D € DS, (d). Let V(L(D)) represent the set of d loop vertices in D. Let E(L(D))
denote the set of d loops in D. Let v;, v; be any pair of vertices of the digraph D. If the
walk from v; to v; in D is denoted as Wp(v;, v;) (for short, W(v;,v;)), then |W(v;, v;)| is
used to denote the length of the walk W(v;,v;), and V(W(v;,v;)) is used to denote the
set of all vertices in this walk W (v;,v;). If there is a unique path from v; to v; in D, then
let Pp(v;, v;) (for short, P(v;,v;)) denote the unique path, and let V(Pp(v;,v;)) (for short,
V(P(v;,v;))) denote the set of all vertices on the path. If v; = v;, then V(P(v;,v;)) = {v;} =
{v;}. If a walk W(v;, v;) from v; to v; in D does not pass through a loop vertex, then let
V(W(v;,v;)) N V(L(D)) = @, otherwise V(W(v;,v;)) N V(L(D)) # @. Similarly, if the
unique path from v; to v; passes through a loop vertex, that is V(P(v;,v;)) N V(L(D)) # @,
otherwise V(P(v;,v;)) N V(L(D)) = @.

For a vertex v € V(D) and aset X C V(D), letd(v, X) = min{d(v,v;) : v; € X}. If
v € X,letd(v,X) = 0.For any vertexu € V(D) and v € V(D), if u = v,letd(u,v) = 0.If
T is a set, the notation |T| is used to denote the number of all elements in T. The notation
|a]| is used to denote the largest integer not greater than a, and the notation [b] is used to
denote the smallest integer not less than b.

In this paper, let n,d and k be integers withn > 5,1 <k <#n,1 <d < n. We give the
upper bound of the kth local exponent of digraphs in DS, (d), where 1 < k < n.

2. The Upper Bound for the kth Local Exponent of DS, (d)

In this section, let D = (V,E), where V = {v1,v3,- - , 04 }.

In the case of D € DS, (d), we observe the exponent of any vertex in D, it is easy to
get the following Proposition 1, let us omit the proof.

Proposition 1. Let D € DS, (d) and let v; be any vertex of D, then yp(v;) = yp(Vpi1-i),
wherel <i<mn.

Lemma 1 (Lemma 3.3 [2]). Let D be a primitive digraph with n vertices. Then, expp(k+1) <
expp(k) + 1, where1 <k <n—1.

Remark 1. Lemma 1 is actually very useful. Next, we repeat the proof of Brualdi and Liu (see [2]).
Since D is strongly connected, for any integer k such that 1 < k < n — 1, there is a vertex x that
is joined by an arc to one of the vertices with the k smallest exponents. Therefore, expp(k+1) <
expp(k) + 1, where1 <k <n—1.

Lemma 2. Let D € DSy (d) and let v;,v; be any pair of vertices of D. Then, yp(v;) < yp(v;) +

d(vi,vj).

Proof. For any vertex x € V(D), there is a walk of length t from v; to x, which is v; 4 X,
d(v;,v;
for each integer t > yp(v;). So, there is a walk of length s from v; to x, which is v; (]—)>

v; - x, for each integer s > yp(v;) + d(v;, vj). Therefore, yp(v;) < vp(v;) +d(v;,v;). O
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Lemma 3. Let D € DS, (d) and let x,y be any pair of vertices of D. If there exists a walk W (x, y)
from x to y such that V(W (x,y)) N V(L(D)) # @, then yp(x,y) < |W(x,y)|.

Proof. Let h = |W(x,y)|. We consider the following.

Caselx € V(D) \ V(L(D))andy € V(D) \ V(L(D)).

Suppose a walk from x to y through a loop vertex is denoted by x < v; hoa, y, where
v; is a loop vertex and 7 is an integer such that 1 < a < h — 1. Then, the length of the walk
x Lo LR v; ha, y is h + 1. The length of the walk x v EN v; RN v; ha, yish+2.
Similarly, we can easily conclude that there is a walk of length s from x to y, for each integer
s > h.So, vp(x,y) < [W(x,y)|.

Case2x € V(L(D)) ory € V(L(D)).

Similar to Case 1, it is easy to get that there is a walk of length s from x to y, for each
integer s > h.So, yp(x,y) < |W(x,y)|.

Therefore, the lemma holds. [

Lemma 4 (Lemma 1 [23]). Let D € DS,,. If n is odd and x is any vertex of D, then d(x,v11) <

2
n—1

Theorem 1. Let D € DS, (d). If n is odd and d is odd, then expp(k) < 51 + {%J, where
1<k<n.

Proof. If d is odd, then v ng1 is a loop vertex. Let x be any vertex. Then, a shortest
path from x to Uns1 goes through the loop vertex Una. According to Lemma 4, we have
d(x, v%l) < ”T_l Furthermore, according to Lemma 3, we have 'yD(v%l, x) <d(x, v%).
Further, we have ’yD(v%,x) = d(x,vnTH). So, ’YD(UnTH) = max{d(vnTH,x) rxeV(D)} <

1-1 Then, we have expp(1) < yp(v ns1 ) < L. Further, according to Proposition 1, we

have yp(v1) = vp(vn), 70(v2) = YD(Vn-1),- -, 1D(Vs1) = TD(Vus3). So, according
to Lemma 1, we conclude expp(2) = expp(3) < expp(1l) +1 < “51 +1, expp(4) =

expp(5) <expp(l)+2 < ”T_l +2,--- ,expp(n—1) =expp(n) < expp(l) + ”2;1 < ”T_l +
”7*1. Therefore, we have expp (k) < expp(1) + {%J < ”7*1 + {%J, wherel <k <n. O

Let D' € DS,(d) and D € DS, (d). If D is a subgraph of D’ such that V(D) = V(D')
and E(D) C E(D’), then expp/ (k) < expp(k), where 1 < k < n. So, if we investigate the
upper bound of the kth local exponent of digraphs in DS,,(d), we only need to investigate
the digraphs in DS}, (d).

Referring to Definition 3 in [23], we give the following Definition 1.

Definition 1. Let D € DS;,(d), where n is odd, d is even such that d > 2. There exist
two connected subgraphs D, = (Vi,Ei) and Dsx = (Vix, Ess) of D, and D, D, satisfy
V(D) = Vo UV, and E(D) = E, UE«« UE(L(D)). Where V,, = {v,11_; : v; € Viu} and
Ev = {[0n41-i,Ons1-j] ¢ [03,0j] € Exs}. Moreover,|V| = |Vis| = 1L |E,| = |Ew| = 5L,

Remark 2. Suppose n is odd and d is even that satisfies d > 2. If D € DS}, (d), then there
are two connected subgraphs D, and D, of D. In addition, there is a unique path for any two
different vertices in D, and D.«, respectively. Moreover, there is a unique path for any two
different vertices in D. Let x,y be any pair of vertices of D such that x € V, and y € V., then
V(P(x, Unga )N V(P(v%ﬂ,y)) = {Z)HTH} (see [23]). After removing d loops from D, the obtained
graph is a tree. Therefore, D is a special tree with loops that satisfies [v;,v;] € E(D) if and only if
[Ons1-i,0n41-j] € E(D), where1 <i < j<n.
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Lemma 5 (Lemma 3 [23]). Let D € DS),(d), where n is odd, d is even such that d > 2. Let
x, y be any pair of vertices of D such that V(P(x,vnTH)) NV(L(D)) = @and V(P (y,vw )N

V(L(D)) = @. Then, there is a walk W(x,y) from x to y such that V(W (x,y)) N V(L(D ) +Q
and [W(x,y)| <n—d+1.

Corollary 1. Let D € DS}, (d), where n is odd, d is even and d > 2. Let x,y be any pair of
vertices of D satisfying V(P(x,v%)) NV(L(D)) = @ and V(P(y,v%)) NV(L(D)) = @.
Then, yp(x,y) <n—d-+1.

Proof. According to Lemma 5, there is a walk W(x,y) from x to y passing through a
loop vertex, and |W(x,y)| < n—d + 1. Moreover, according to Lemma 3, we have
vo(x,y) < |W(x,y)| <n—-d+1. O

In Corollary 1, if x = Uugr @ and x isn’t a loop vertex, then V(P(x, X, Vi )) = {U"T“ }, we
have V(P(x,vnTH)) NV(L(D)) = Q.

Theorem 2. Let D € DS, (d). If nis odd, d is even and d > 2, then
(1) Ifn <2d—3, thenexpp(k) < ”T’l + {%J,wherel <k<n.
(2) Ifn>2d—1,then
n—d+1, wherel <k <n-2d+4,
expp (k) < {n—d—l—l—i— [%—‘, wheren —2d +4 <k <n.

Proof. We only need to consider D € DS;,(d). Since d is even, then Uug1 isn’t a loop ver-
tex. Let x be any vertex. By Lemma 4, we have d(x, v% ) < "Tfl If the path from v i1 to
X passes through a loop vertex, that is V(P(U%H,x)) NV(L(D)) # @, then ’yD(v%,x) =
d(x, Ungt ) < L If vertex x satisfies V(P(U%, x))NV(L(D)) = @, according to Corollary 1,
we have Yp(vns1,x) < n—d+ 1. Therefore, we have yp (v %) < max{%31,n—d+1}.

2
(1) Ifn <2d—3,thenn—d+1 < "-L Then, we have expp(1) < 7p(v %)S”T”.Ac—

cording to Proposition 1, we have 'yD(vl) = vp(vn), vp(v2) = vYp(vy_1), - ,’)/D('Unz;l)

= ’)’D(Unzis). Then, according to Lemma 1, we can conclude thatexpp(2) = expp(3) <
expp(1)+1 < 5L 41, expp(4) = expp(5) < expp(1) +2 < 5L +2, - . Therefore,
we have expp (k) < expp(1) + {%J < % + {%J,Where 1<k<n.

2 Ifn>2d—1,thenn—d+1> ”T“.Wehaveexpp(l) < 'yD(v%) <n—-d+1.

Next, we construct a set V(M) such that |[V(M)| > n — 2d + 4, and for any vertex
v; € V(M), vp(v;) < n—d+1holds. Suppose V(M) = {v: d(v,v%) < %‘M} Then,
Uup € V(M).

2
Suppose v, € V(M) NV, and v), # Ungt - If the vertex sequence of the unique path

2
in Dy from v,,1_p, to Ung1 1S Vy1p  Untits ", Ungi - Moreover, V(P(vh,vnzi)) N

2443
) < =

in Dy from vy, to v,1 isvp, - -+, 01, - -+, Vg1, then the vertex sequence of the unique path
2

V(P(Un_;’_l_h,vnTH)) = {UnTH} So, d(vh,v%ﬂ) = d(vnﬂ_h,v%ﬂ . Therefore,

we have v,,1_; € V(M). Next, we prove that |V(M)| > n —2d + 4. For any vertex
vs € V(D), if vs € V(M), then |V(M)| = n. If there is a vertex v; satisfying v; € V(D) \
V(M), then d(vl,v,%l) > 1=2043 1 1. S, V(P(vl,v,%l)) V(M) = "=2%3 1 1. Moreover,
V(P(Ors1-1,0552)) N V(M) = 252 11 and V(P(0},001) O < .
{v,,T“} Then, we have |(V(P(vl,v%1)) UV(P(vy11-1,0001))) NV(M)| = n— 2 +4.
Therefore, we have |V(M)| > n —2d + 4. For any vertex v; € V(M),next we consider yp (v;).

2
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d(vi/0ps1)
For any vertex v; € V(M), let the walk V(W(v;,x)) from v; to x be v; ———
d(v py1.%)
Up1 ——— x. If the walk V(W(v;,x)) passes through a loop vertex, we have

2
vp(v;,x) < d(vi,v%) +d(vnT+1,x) < %”3 + ”T_l =n—d+ 1. If the walk V(W(v;, x))
doesn’t pass through a loop vertex, that is, V(W (v;, x)) N V(L(D)) = @. Then, we have
V(P(vi,v%)) NV(L(D)) = @ and V(P(x,v%)) NV(L(D)) = @. So, if V(W(v;,x)) N
V(L(D)) = @, according to Corollary 1, we have yp(v;, x) < n —d + 1. Therefore, we have
vp(v;) < n—d+ 1. According to Proposition 1, we have yp(v,11_;) = vp(v;) <n—d+1.
Therefore, we have expp(k) <n—d+1, where1 < k < |V(M)|.

For any vertex v; such that v; € V(D) \ V(M), then v, 1_; € V(D) \ V(M). There
is a unique path for any pair of vertices in D. So for any vertex v; € V(M), we have
d(vj,v;) = d(Vy41-j, Vny1-i)- Suppose d(vj, V(M)) = d(vj,v;), where v; € V(M). We have
d(Oni1-j,0ns1-1) = d(vpo) < d(vj,v) = d(Vy41-j,Vn41-i). So, we have
d(v;, V(M)) = d(v,41-j, V(M)). Furthermore, according to Lemma 2, we can easily con-
clude that yp(v;) = yp(vpy1-j) < n—d+1+d(vj, V(M)). Since |V(M)| > n —2d +4,
the conclusion is clearly established.

Therefore, the theorem holds. [

Referring to Definition 4 in [23], we give the following Definition 2.

Definition 2. Let D € DS}, (d), where n is even, d is even such that d > 2.

(1)  There exist two connected subgraphs D1 = (V4, E1) and Dy = (Va, Ep) of D, and Dy, D; sat-
iSfy V(D) =ViUVyand E(D) =E UEU {[Uf, vn—i—l—g]} U {[’()n_H_f, Ug}} U E(L(D)).
Where Vi = {0,411 v; € Vo and Ey = {[vn 414, 0p11-j] : [0, 0j] € B2}, vf € Vi and
vy € Vi. Moreover,|V1| = |V3| = 5,|E1| = |E2| = § — 1.

(2)  If {vf, 0041} NV(L(D)) = @. Let V(H1) = {v : V(Pp,(vf,v)) NV(L(D)) =
@, wherev € V1 } and V(Hy) = {v: V(Pp,(vu41-£,0)) N V(L(D)) = @, where v € V,}.
Suppose V(H) = V(H;) U V(Hy).

Definition 3. Let D € DS, (d), where n is even, d is even such that d > 2. In Definition 2(1), we
give the following definition:

dp, (v5,vg) d Ont1-f) dpy (Vni1-f0nt1-g)
(1) Let W(vy,v5) be vf D g D Ons1-f (A Do s Unt1-g

dp (Vp+1-4,0¢)
—

V(R).
(2) Iff #gletD e DS, (d).If f =g, let D € DS, ,(d).

vf, then W(vy, vy) is a closed walk from vy to vy. Let us write V(W (vs, vf)) =

Remark 3. Suppose n is even and d is even that satisfies d > 2. If D € DS}, (d), then there are two
connected subgraphs D1 and D, of D. Moreover, there is a unique path for any two different vertices
in Dy and Dy, respectively. Since D is connected, then there are edges [vf, v, 11-g] € E(D) and
[Vns1-f,0g] € E(D). Then, dp(vg, vyy1—f) = dp(vni1-g,0f) = 1. If vg and v, ¢ are not
loop vertices, then vy € V(H) and v, 1y € V(H).If D € DS, |(d), then f # g, and |V (R)|
is even such that |V (R)| > 4. Furthermore, if D € DS/ ,(d), after removing d loops from D, the
obtained graph D* is not a tree. According to Deﬁnitiéns 2 and 3, it is not difficult to see that
|V(D*)| = nand |[E(D*)| = n.If D € DS, ,(d), then f = g, V(R) = {vf,v,41 ¢} and
|[V(R)| = 2.If D € DS, ,(d), then D is a special tree with loops that satisfies [v;,v;] € E(D)
if and only if [vy114,041-] € E(D), where 1 < i < j < n.In fact, D € DS, ,(d) can be
regarded as a special case of f = gin D € DS, |(d).

In Lemma 2 in [23], let D € DS),(d), where n is even and d be even such that d > 2.
We can directly get the following Lemma 6.
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Lemma 6. Let D € DS),(d). Let n be even and d be even such that d > 2. Let x be any vertex of
D. Then, for any vertex vs € V(R), we have d(x,vs) < 7.

Lemma 7 (Lemma 5 [23]). Let D € DS),(d), where n is even, d is even and d > 2. Let x,y be
any pair of vertices of D such that x,y € V(H).If V(R) N V(L(D)) = @, then there exists a walk
W(x,y) from x to y such that V(W (x,y)) NV (L(D)) # @, and |W(x,y)| <n—d+1.

Corollary 2. Let D € DS, (d), where n is even, d is even such that d > 2. Let x,y be any pair of
vertices of D satisfying x,y € V(H).If V(R)NV(L(D)) = @, then yp(x,y) <n—d+1.

Proof. According to Lemma 7, there is a walk W(x,y) from x to y passing through a
loop vertex, and |W(x,y)| < n —d + 1. Furthermore, according to Lemma 3, we have
oy < Wy <n—-d+1. O

Theorem 3. Let D € DS, (d). If n is even, d is even and d > 2, then

(1) Ifn<2d—2,thenexpp(k) <5 —1+ [ﬂ,wherel <k<n.
(2) Ifn > 2d, then

n—d+1, wherel <k <n-—2d+4,
n—d+1+ [%—‘, wheren —2d+4 <k < n.

expp (k) < {

Proof. We only need to consider D € DS;,(d). Let x be any vertex. Let us consider the
following two cases.

Case1D € DS, ,(d).

Since vy € V3 and vg € Vi, then v, 11 € Vo and v41-4 € V2.

Case 1.1 V(R)NV(L(D)) # @.

Suppose {vm, vy11-m} € V(R) N V(L(D)). Then, vy, and v,,,1_,, are loop vertices.
According to Lemma 6, we have d(x,v,;,) < 4. Further, yp(vm) = Yp(Vp+1-m) < 5. Then,
expp(1) = expp(2) < yp(vm) < 5. Therefore, according to Proposition 1 and Lemma 1,

we have expp(k) < 5 —1+ [g—‘,where 1<k<n.

(1) Ifn <2d — 2, then the conclusion is clearly established.
() Ifn22d,for1§k§n—2d+4,thenexpp(k)S%—l—i-[%—‘S%— +5—d+2=
n—d+1. Forn—-2d+4 <k < n,we have expp(k) < 5 —1
[ ] g —d 2= —d 14 [l

Case 1.2 V(R)NV(L(D)) = @.

Then, vy € V(H)NV(R), 0,11 € V(H) N V(R).

For x € V(H), according to Corollary 2, we have yp(vs,x) <n—d +

For any vertex x € V; \ V(H), then V(Pp,(vs,x)) N V(L(D))
Yo(vg, %) < dp, (07,7) < L.

For any vertex x € V, \ V(H), then V(Pp, (v, 11-f,x)) N V(L(D)) # @. Let the walk

dp(vf,0n41— dp, (Vn+1-g
Wp(vy, x) be vf M Unyl—g M x. Since V(R) N V(L(D @, then
)

) =
V(Pp,(vp41-f nt1-4)) N V(L(D)) = @. In addition, V(Pp,(v,11-f,x)) N V(L(D)) # @.
We have V(Pp, (vn41-¢,%)) N V(L(D)) # @.So V(Wp(vs,x)) NV(L(D)) # @. Moreover,
[Wp(vs,x)| = 1+dp,(vp41-g,x) < 5. Wehave yp(vf, x) < [Wp(vg, x)| < 5.
Therefore, we have vp(vf) = yp(v,11-f) < max{z,n—d+1}.

;é @ We have

(1) Ifn<2d-2thenn—d+1< 7. Then, wehaveexpp(l)=expp(2) <p(vf) < 7.

Therefore, according to Proposition 1 and Lemma 1, expp (k) < 5 — 1+ [ﬂ , where
1<k<n.
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(2 Ifn > 2d,thenn—d+1 > 7+ 1. We have expp(l) = expp(2) < 7p(vy) <
n —d + 1. Next, we construct a set V(L1) such that |V(Ly)| > n —2d + 4, and for
any vertex v; € V(L1), yp(v;) < n—d+1holds. Let V(Ly1) = {v : dp,(v,vf) <
%M, where v € V1}. Let V(L12) = {v : dp,(v,0,41-f) < %M, where v €
Va}. Suppose V(Ly) = V(L11) U V(L1p). Then, vy € V(Ly) and v,41_ 5 € V(Ly).
Suppose v, € V(Ly1) and v, # vy. If the vertex sequence of the unique path in
D; from vy, to vgis vy, - -+, v, - -+, Uy, then the vertex sequence of the unique path
in Dy from v, .1y to Upt1—f 1S Upgi—phy o, Uptlety - - rOnt1—f- So, le (Uh, Z)f) =
dp, (Vni1-n, Vng1-f) < %‘”2. Therefore, we have v,,,1_j € V(L1). Next, we prove
that |V(L1)| > n — 2d + 4. For any vertex v; € V(D), if v; € V(L1), then |V (Ly)| =
n. If there is a vertex v; satisfying v; € V(D) \ V(L;), we might as well assume
U] € Vl. Then dD] (Ul,Uf) > %HHZ + 1. SO, V(PDl(Ul,Z)f)) N V(LH) = %‘m + 1.
Moreover, V(Pp, (vy41-1, Oyt1—f)) N V(L12) = =352 + 1. Then, | (V(Pp, (v}, vf)) U
V(Pp, (vy41-1,0n41-f))) N V(L1)| = n — 2d + 4. Therefore, we have |V (Ly)| > n —
2d + 4. Let us assume v; € V(L17). Next, we consider yp(v;).

Case1.2.1 x € V.

dp, (vj,0f) dp, (vg,x)
v

Let Wp, (v;, x) be the walk from v; to x, which is v, x. If the walk
Wp, (v;, x) passes through a loop vertex, we have |Wp, (v;, x)| = dp, (v;,vf) +dp, (vf, x) <
%‘m + 5 = n—d+ 1. If the walk Wp, (v;, x) does not pass through a loop vertex, we
have x € V(H) and v; € V(H). According to Corollary 2, then yp(v;, x) <n—d+ 1.

Case1.22x € V5.
dp, (v;,vr) dp(v,0p41— dp, (Vy11-¢,X)
Let the walk Wp(v;, x) be v; R vy Dyt y) Unil-g 2 STy If the

walk Wp(v;, x) passes through a loop vertex, we have [Wp(v;, x)| = dp, (v;,v5) +1+
dp, (Vny1-g,x) < %‘”2 + 5 = n —d+ 1. If the walk Wp(v;, x) does not pass through a
loop vertex. Then, v; € V(H). Since V(R) N V(L(D)) = @, then V(Pp, (v 41-f, Un+1-g)) N
V(L(D)) = @.Moreover, V(Pp, (v,41-¢4,x)) NV(L(D)) = @, wehave V(Pp, (v, 11 x)) N
V(L(D)) = @. So, we have x € V(H). Since x € V(H) and v; € V(H), according to
Corollary 2, then yp(v;, x) <n—d+1.

Therefore, whether x € V; or x € V,, we have yp(v;,x) < n—d+ 1. So
yp(v;) < n—d+ 1. According to Proposition 1, we have yp(v,11-;) = vp(v;)) <
n —d + 1. Therefore, we have expp(k) < n—d+1, where 1 < k < |V(Ly)|. For any
vertex v; such that v; € V1 \ V(L11), then v, 1 j € V2 \ V(L12). We have dp, (vj, V(L11)) =
dp,(vny1-j, V(L12)). Furthermore, according to Lemma 2, we can conclude that yp(v;) =
YD (Ony1-j) <n—d+1+dp,(vj,V(L11)). Since |[V(Ly)| > n — 2d + 4, the conclusion is
clearly established.

Case2 D € DS, ,(d).

For D € DS} ,(d), it is equivalent to f = g in D € DS, |(d), let us omitit. [

3. The kth Local Exponents of H* and H**
In this section, we study the kth local exponents of the special graphs H* and H**.

Definition 4. Suppose1 < d < n.Let V(H*) = {v1,vp,- -+ ,vn} and E(H*) = {[v;, vj11]|1 <
i <n—1}UE(L(H*)), where E(L(H*)) are d loops arranged arbitrarily such that H* € DS/, (d).

Definition 5. Suppose d is even and d > 2. Let V(H*) = {vy,vy,---,0,} and let
E(H™) = {[o;,vi1][1 <i<n—1}U{[o;,v;] : where1 <i < Tandn— 3 +1<i<n}.

From the definition of H* and H**, we know that H* € DS},(d) and H** € DS}, (d).
Furthermore, there is a unique path for any two different vertices in H* and H**, respectively.
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Remark 4. In Figure 2, n can be either odd or even. In Figure 3, since n is odd and n > 2d — 1,
then v g1 is not a loop vertex. In Figure 4, since n is even and n > 2d, then vn and Vg are not

loop vertices.

0j

NI=

vnfid +1
7 .

U1 i On—ip+1 Un

Q'Q A,

Figure 2. The H* for d is even and d > 2.

0 Unt1 [

T ... n77+1 LR vn

LS/ESW

01

Y S L -

Figure 3. The H** for n is odd, d is even such thatd > 2, and n > 2d — 1.

(%

NI

0 vs U1 Ui o

SRR S - =

Figure 4. The H** for n is even, d is even such thatd > 2, and n > 2d.

Theorem 4. If n is odd and d is odd, then expp~ (k) = ”2;1 + EJ, where1l < k < n.

Proof. Since d is odd, then v, 41 is a loop vertex. We have yg+ (0,1 ) = max{d(vu1,x) : x €

nil
! e >

V(H*)} = d(vr%],vn) = =1 Moreover, according to Lemma 2, we have yp+ (v %ﬂ)

yH*(v%)—}—d(v%ﬂ_ﬂ,v%) = 51 + 4, where 1 < a < 71 Further, vy (v Ung1_ 2 =

,YH*(U”T“-&-a) = 7H*(U"T“—a/v”) = d(v%l_a,vn) = ”T_l +a,wherel <a < ”21. Therefore,
the theorem now holds. [

Theorem 5. If n is odd, d is even and d > 2, then

(1) Ifn <2d -3, then expy~(k) = ”Tfl + {%J,wherel <k<n.
(2) n>2d—1,then

n—d+1, where1l <k <n-—2d-+4,

**k =
expre+ (k) {n—d—i—l—l—[k(”zw—‘, wheren —2d +4 <k < n.

Proof. Since d is even, then v, is not a loop vertex.
2

(1) H*is shown in Figure 2. Let x be any vertex of H*. If V(P(v.1,x)) NV(L(H")) # @,

2

then vy (Vng1, %) = d(vui1,x) < 5L I V(P(vas,x)) NV(L(H")) = @, according

2 2 2
to Corollary 1, we have yp- (vnzj,x) <n—d+1. Then, yy- (ZJWTH) < max{"T_l,n -

d+1}.1fn < 2d —3,then n —d+1 < "7l Then, we have yy+(van) < %5t

= [ES W)

2
Further, fyH*(v,,H,vn) =d(v ns1, 0 n) = “5=. Therefore, ')’H*(vn+l) = -1 Letabe
an integer satlsfymg 1<a< ”2 Accordmg to Lemma 2, we have yu+ (v %1%) <
d(va +17a,'0nT+1)+')/H*('Un2i1) a+ 151 Further,wehaveWH*(vnH o Un) = d(vnzjfa,

vy) 1 + a. Then, vy~ ('Un+1 o)) = VH (UWTH_H[) 1 +aby Proposition 1, where
1<a< = L Therefore, we have expp+(k) = ”Tfl + {%J,Where 1<k<n.

(2) H*is shown in Figure 3. If n > 2d —1,thenn —d+1 > ”erl Since n > 5 and
n>2d—1theng§”+1<” andn—§+1>n ”H—b—1>”+3 Then, 0,41 is

2
not a loop vertex.
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Suppose any integer a satisfiesd —1 < a < "T“ Sinced > 2,thena>d—1>

A(va,0 11) d(vq1.%
Let x be any vertex of H**. Let the walk W(v,, x) be v, — 2 Ve —————
2

x. If V(W(va,x)) N V(L(H™)) # @, then ype(va,x) < (" —a)+ 5L = n—a. If
V(W(vg,x))NV(L(H**)) = @, wehave V(P(x,v%)) NV(L(D)) = @and V(P (vu,vnTH))
NV(L(D)) = @. According to Corollary 1, we have g+ (v,,x) < n —d + 1. Therefore,
we have vy (v;) < max{n —an—d+1} =n—d+1, whered —1<a < ”+1 . Since
d>2andd—-1<a < ”T“,then'zil <n—-a+1<n-d+2<n-4 —I—l.Fur—
ther, =+ (Va, Uy _q11) = d(va,v%) +d(v%,vn,ﬂ+1) = d(va,vn_%H) +d(vn_%+1,vn7u+l) =
n —d + 1. Therefore, yy«+(v,) = n—d+1, whered -1 < a < ”TH According to
Proposition 1, if "TH <a <n-—d+2,wehave yg=(v,) = Y= (Vp_gi1) = n—d+1.
So, ford—1 < a < n—d+2, we have yy=+(v;) = n —d + 1. Therefore, we have
expp~(k) =n—d+1,wherel <k <n-—2d+4.

Suppose a satisfies 1 < a < d — 1. We have vy« (vs) < d(va,v4_1) + v (v4_1) =
n—d+1+(d—1—a) =n—a. Moreover, yg+(vs) = vy (Vy_qs1) = d(Va,vy) = n —a.
So, we can get expys+ (k) =n—d+1+ [%W,Wheren —2d+4<k<n.

Therefore, the theorem now holds. [

Theorem 6. If n is even, d is even and d > 2, then

(1) Ifn<2d—2, thenexpy-(k) =% —1+ {%i‘,wherel <k<n.
(2) n > 2d,then

) n—d+1, wherel <k <n-—2d-+4,
eXpr N n—d—f—l—i—[k*(";iz’iﬂ)—‘, wheren —2d +4 <k <n.
Proof. (1) H* is shown in Figure 2. We have H* € DS, ,(d), f =g=j50r f=g=75+1.

Letusassume f = ¢ = 5, thenn+1—f=n+1-¢= 5 +1.1f n < 2d — 2, let us consider
the following two cases.

Case 1 {vy, vy 1} NV(L(H")) # .

It is easy to see that yp+(vs) = yu+(vg 1) = max{d(vy,x) : x € V(H")} =
d(vy,vn) = 5. Suppose a satisfies 1 < a < 5 — 1. According to Lemma 2, we can get
Y+ (V3 ) < d(vﬂ—ar ) +ym+(vg) = 5 +a. Further, yy+(vz ) = yu-(vs 4, 0n) =
d(v%_a,vn) =7 +a Accordmg to Proposition 1, we have yy+ (v%_a) = v+ (U%HH) =
5 +a,where1 < a < 5 — 1. Therefore, we have expp+ (k) = 5—1+ {g-‘, where 1 < k < n.

Case 2 {vy, vy 11} NV(L(H)) = @.

Let x be any vertex of H*. If V(P(vy,x)) N V(L(H")) # @, then yp«(vy,x) =

d(vy,x) < 5.1V (P(vg,x))NV(L(H)) = @ accordmgtoCorollaryZ wehave'yH*(v%,x
< n-— d+1 Then, 'yH*(vn) < max{z,n —d+1} = 7. Further, we have yy-(vy) =
Ty (vn vy) = d(vg vn) = 4. Let a satisfy that 1 < a S % — 1. Then, ’)/H*(Un ) <
d(v %,a,v%) + vy (v%) = %—i—a.Further,wehave'yH* (v%,ﬂ) = Yy v%,a,vn) =d(v %,a,vn)
= 5 +a. According to Proposition 1, 'yH*(UnHH) =yu+(vs ) =5 +a,where0 < a <
% — 1. Therefore, we have expy« (k) = 5 — 1+ [J,where 1<k<n

(2) H** is shown in Figure 4. We have H** € DS, ,(d), f = g = % orf=g=%5+1
Letusassume f = ¢ = 5, thenn+1—-f=n+1-g¢g=40+4+11fn Z 2d,thenn —d+1>

n—

% +1.Sincen > 6 and n ZZd,then% <E<5- 1andn—f—|—1
Then vy and vy 4, are not loop vertices.

T+1>5+2

Suppose any integer a satisfiesd —1 < a < 7.Sinced > 2,thena >d —1 > % Let x
d(va,vn) d(vn,x)
be any vertex of H**. Let the walk W(v,, x) be v, 0 2 x. If V(W(vg,x)) N

V(L(H**)) # @, then vy (vg,x) < (5 —a)+ 5 =n—a.If V?W(va,x)) NV(L(H*)) =Q,
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we have V(P(vﬂ,v%)) NV(L(D)) = @ and V(P(x,v%)) NV(L(D)) = @. According to
Corollary 2, we have vy« (vq,x) < n—d+1.So yg=(vs) < max{n —a,n—d+1} =
n—d+1,whered —1<a < 7.Sinced >2andd—-1<a< 4, theng+1<n—a+
1 <n—d+2<n-4+1 Further, we have vy (va) = Yo (Va, Un_gs1) = d(vu,v%) +
d(v%,vn,aﬂ) = d(va,vn_%H) +d(v _%H,vn,aﬂ) =n—d+1,whered-1<a < 7.
According to Proposition 1,if 5 +1 < a <n —d +2, we have yp« (v7) = Yo (Vn—aq1) =
n—d+1.S0,ford —1<a<n—d+2,wehave yg«(v;) = n —d + 1. Therefore, we have
expp~(k) =n—d+1,wherel <k <n-—2d+4.

Suppose a satisfies 1 < a < d — 1. We have yp+(v,) < d(vs,v4-1) + Y= (v4-1) =
n—d+1+(d—1—a) =n—a. Moreover, Yy (v,) = Y (Vy_ar1) = d(va,0y) =n —a.
So, we can get expys+ (k) =n—d+1+ [H"%Mw,wheren —2d+4<k<n.
Therefore, the theorem now holds. [

It can be seen from Theorems 46, the upper bound for the kth local exponent of doubly
symmetric primitive digraphs of order n with d loops can be reached, where 1 < k < n.

4. Conclusions

In this paper, we study the upper bound for the kth local exponent of doubly symmetric
primitive digraphs of order n with d loops, where d is an integer such that 1 < d < n.
For the class of doubly symmetric primitive digraphs, we get the upper bound for the
kth local exponent, where 1 < k < n. Furthermore, for the class of doubly symmetric
primitive digraphs, we find that the upper bound for the kth local exponent can be reached,
where 1 < k < n. The upper bounds of the generalized p-scrambling indices for a doubly
symmetric primitive digraph are not given. It would be meaningful and interesting to solve
the problems in future research.
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