Article

The k th Local Exponent of Doubly Symmetric Primitive Digraphs with d Loops

Danmei Chen

Citation: Chen, D. The k th Local Exponent of Doubly Symmetric Primitive Digraphs with d Loops. Symmetry 2022, 14, 1623. https:// doi.org/10.3390/sym14081623

Academic Editors: Juan Luis García Guirao and Sergei D. Odintsov

Received: 1 July 2022
Accepted: 5 August 2022
Published: 7 August 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

College of Sciences, Shanghai Institute of Technology, Shanghai 201418, China; chdm@sit.edu.cn

Abstract

Let D be a primitive digraph of order n. The exponent of a vertex x in $V(D)$ is denoted $\gamma_{D}(x)$, which is the smallest integer q such that for any vertex y, there is a walk of length q from x to y. Let $V(D)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. We order the vertices of $V(D)$ so that $\gamma_{D}\left(v_{1}\right) \leq \gamma_{D}\left(v_{2}\right) \leq \cdots \leq \gamma_{D}\left(v_{n}\right)$ is satisfied. Then, for any integer k satisfying $1 \leq k \leq n, \gamma_{D}\left(v_{k}\right)$ is called the k th local exponent of D and is denoted by $\exp _{D}(k)$. Let $D S_{n}(d)$ represent the set of all doubly symmetric primitive digraphs with n vertices and d loops, where d is an integer such that $1 \leq d \leq n$. In this paper, we determine the upper bound for the k th local exponent of $D S_{n}(d)$, where $1 \leq k \leq n$. In addition, we find that the upper bound for the k th local exponent of $D S_{n}(d)$ can be reached, where $1 \leq k \leq n$.

Keywords: exponent; symmetric digraph; generalized competition index; competition index; scrambling index

1. Introduction

Let $D=(V, E)$ denote a digraph (directed graph) with n vertices, where the vertex set $V=V(D)$ and the arc set $E=E(D)$. Loops are permitted, but multiple arcs are not. A walk from x to y in D, we mean a sequence of vertices $x, v_{1}, \cdots, v_{t}, y$ where each vertex in the sequence of vertices belongs to V, and a sequence of $\operatorname{arcs}\left(x, v_{1}\right),\left(v_{1}, v_{2}\right), \cdots,\left(v_{t}, y\right)$ where each arc in the sequence of arcs belongs to E, and the vertices and arcs are not necessarily distinct. The number of arcs in W is the length of the walk W. The notation $x \xrightarrow{k} y$ means that there exists a walk of length k from x to y. The distance from vertex x to vertex y in D is written as $d_{D}(x, y)$ (for short, $d(x, y)$), which refers to the length of the shortest walk from x to y. If $x=y$, then a walk from x to y is a closed walk. A cycle is a closed walk from x to y with distinct vertices except for $x=y$.

Let x, y be any pair of vertices in a digraph D. The digraph D is called primitive, if there exists a positive integer k such that there is a walk of length k from x to y. This smallest such k is denoted by $\exp (D)$, which is called the exponent of D. The greatest common divisor of the lengths of all the cycles in D is recorded as $l(D)$. It is well known (see [1]) that D is primitive if and only if D is strongly connected and $l(D)=1$.

Brualdi and Liu [2] generalized the concept of exponent for a primitive digraph (primitive matrix). Let D be a primitive digraph with n vertices. The exponent of D can be broken down into more local exponents [3]. For any pair of vertices $x, z \in V(D)$, let $\gamma_{D}(x, z)$ denote the smallest integer p such that there is a walk of length t from x to z, for each integer $t \geq p$. Since D is a primitive digraph, then $\gamma_{D}(x, z)$ is a finite number. For any vertex $x \in V(D)$, the exponent of vertex x is written as $\gamma_{D}(x)$, which is the smallest integer q so that for any vertex $y \in V(D)$, there exists a walk of length q from x to y. Moreover, for any vertex $z \in V(D)$ and any integer $t \geq \gamma_{D}(x, z)$, there is a walk of length t from x to z. So, we have $q=\max \left\{\gamma_{D}(x, z): z \in V(D)\right\}$. Then, for any vertex $y \in V(D)$, there is a walk of length t from x to y for each integer $t \geq q$. Therefore, we have

$$
\gamma_{D}(x)=\max \left\{\gamma_{D}(x, z): z \in V(D)\right\} .
$$

Let the vertices of D be ordered as $v_{1}, v_{2}, \cdots, v_{n}$ such that

$$
\gamma_{D}\left(v_{1}\right) \leq \gamma_{D}\left(v_{2}\right) \leq \cdots \leq \gamma_{D}\left(v_{n}\right)
$$

$\gamma_{D}\left(v_{k}\right)$ is called the k th local exponent (generalized exponent) of D, and it is denoted by $\exp _{D}(k)$, where $1 \leq k \leq n$. Then,

$$
\exp _{D}(1) \leq \exp _{D}(2) \leq \cdots \leq \exp _{D}(n)
$$

Furthermore, we have $\gamma(D)=\max \left\{\gamma_{D}(x): x \in V(D)\right\}=\max \left\{\gamma_{D}(x, y): x, y \in\right.$ $V(D)\}$. Obviously, the exponent of D equals $\exp _{D}(n)$. That is, $\gamma(D)=\exp (D)=\exp _{D}(n)$. So, for a primitive digraph D, the local exponents of D are generalizations of the exponent of D.

Brualdi and Liu [2] proposed a memoryless communication system. In the memoryless communication system represented by a primitive digraph D of order n, the k th local exponent is the smallest time for each vertex to simultaneously hold all k bits of the information. For more details, please refer to [2,3].

For any vertices x and y of a digraph $D,(x, y) \in E(D)$ is an arc if and only if $(y, x) \in E(D)$ is an arc, which is represented by $x \leftrightarrow y$, then such a digraph D is called a symmetric digraph. An undirected graph (possibly with loops) can be viewed as a symmetric digraph. For some research on undirected graphs, please see [4-6]. When D is symmetric, the notation $x \xrightarrow{k} y$ indicates that there is a walk of length k from x to y.

Let $D=(V, E)$ be a symmetric digraph, we can regard D as an undirected graph. For convenience, undirected graph terms such as edges, edge set, etc., are used directly to describe a symmetric digraph. Then, let $E(D)$ denote the set of undirected edges (edges) in D. Moreover, we assume that the notation $[x, y] \in E(D)$ represents that there is an edge in D with x, y as end vertices.

Let $D=(V, E)$ be a symmetric digraph, where $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. If for any vertices v_{i} and $v_{j},\left[v_{i}, v_{j}\right] \in E(D)$ if and only if $\left[v_{n+1-i}, v_{n+1-j}\right] \in E(D)$, then such a symmetric digraph D is called a doubly symmetric digraph. Moreover, $\left[v_{i}, v_{j}\right]$ and $\left[v_{n+1-i}, v_{n+1-j}\right]$ are called a pair of symmetrical edges, or $\left[v_{i}, v_{j}\right]$ is a symmetrical edge of $\left[v_{n+1-i}, v_{n+1-j}\right]$, where $1 \leq i \leq n$ and $1 \leq j \leq n$. The vertices v_{n+1-i}, v_{i} are called a pair of symmetric vertices, or v_{i} is a symmetric vertex of v_{n+1-i}, where $1 \leq i \leq n$. According to this definition, when n is odd, $v_{\frac{n+1}{2}}$ is symmetric to itself. If v_{i} is a loop vertex, then $\left[v_{i}, v_{i}\right] \in E(D)$ and $\left[v_{n+1-i}, v_{n+1-i}\right] \in E(D)$. Therefore, for $i \neq n+1-i$, if $\left[v_{i}, v_{i}\right]$ is a loop, then $\left[v_{n+1-i}, v_{n+1-i}\right]$ is also a loop, the loops appear in pairs. A doubly symmetric digraph D is called a doubly symmetric primitive digraph provided D is primitive.

If a doubly symmetric primitive digraph D contains exactly d loops, then we call D a doubly symmetric primitive digraph with d loops. Let $D S_{n}$ denote the set of all doubly symmetric primitive digraphs of order n. Let $D S_{n}(d)$ denote the set of all doubly symmetric primitive digraphs of order n with d loops, where d is an integer such that $1 \leq d \leq n$. Obviously, we have $D S_{n}(d) \subseteq D S_{n}$.

Let $D \in D S_{n}(d)$. After deleting any pair of symmetrical edges $\left[v_{i}, v_{j}\right]$ and $\left[v_{n+1-i}, v_{n+1-j}\right]$ of D, the obtained digraph D^{\prime} is not a doubly symmetric primitive digraph (that is, D^{\prime} is not connected), then we call $D \in D S_{n}^{\prime}(d)$, where $1 \leq i<j \leq n$. Obviously, we have $D S_{n}^{\prime}(d) \subseteq D S_{n}(d)$.

For example, we consider the k th local exponent of the graph G. Let $V(G)=\left\{v_{1}, v_{2}, \cdots\right.$, $\left.v_{7}\right\}$. Let $E(G)=\left\{\left[v_{i}, v_{i+1}\right] \mid 1 \leq i \leq 6\right\} \cup\left\{\left[v_{4}, v_{4}\right]\right\} . G$ is shown in Figure 1.

Figure 1. G.
We easily get $\gamma_{G}\left(v_{4}\right)=3, \gamma_{G}\left(v_{3}\right)=\gamma_{G}\left(v_{5}\right)=4, \gamma_{G}\left(v_{2}\right)=\gamma_{G}\left(v_{6}\right)=5, \gamma_{G}\left(v_{1}\right)=$ $\gamma_{G}\left(v_{7}\right)=6$. Then, we have $\exp _{G}(1)=3, \exp _{G}(2)=\exp (3)=4, \exp \mathcal{P}_{G}(4)=\exp (5)=$ $5, \exp _{G}(6)=\exp _{G}(7)=6$. Moreover, we have $\gamma(G)=\exp (G)=\exp _{G}(7)=6$.

Some studies [7-12] have investigated exponents and their generalization. Chen and Liu [11] studied the k th local exponent of doubly symmetric primitive matrices (primitive digraphs). Chen and Liu [12] characterized the doubly symmetric primitive digraphs with the k th local exponent reaching the maximum value. A doubly symmetric primitive digraph with d loops is a special doubly symmetric primitive digraph. It is important to mention that the k th local exponent of such a class of digraphs has not been studied before. Using graph theory methods, we obtain the upper bound of the k th local exponent of digraphs in $D S_{n}(d)$, where $1 \leq k \leq n$. Some studies have investigated the scrambling index [13-16] and generalized competition index [17-23]. Several studies explored the generalized μ-scrambling indices, please refer to [24-26].

Let $D \in D S_{n}(d)$. Let $V(L(D))$ represent the set of d loop vertices in D. Let $E(L(D))$ denote the set of d loops in D. Let v_{i}, v_{j} be any pair of vertices of the digraph D. If the walk from v_{i} to v_{j} in D is denoted as $W_{D}\left(v_{i}, v_{j}\right)$ (for short, $W\left(v_{i}, v_{j}\right)$), then $\left|W\left(v_{i}, v_{j}\right)\right|$ is used to denote the length of the walk $W\left(v_{i}, v_{j}\right)$, and $V\left(W\left(v_{i}, v_{j}\right)\right)$ is used to denote the set of all vertices in this walk $W\left(v_{i}, v_{j}\right)$. If there is a unique path from v_{i} to v_{j} in D, then let $P_{D}\left(v_{i}, v_{j}\right)$ (for short, $\left.P\left(v_{i}, v_{j}\right)\right)$ denote the unique path, and let $V\left(P_{D}\left(v_{i}, v_{j}\right)\right)$ (for short, $V\left(P\left(v_{i}, v_{j}\right)\right)$) denote the set of all vertices on the path. If $v_{i}=v_{j}$, then $V\left(P\left(v_{i}, v_{j}\right)\right)=\left\{v_{i}\right\}=$ $\left\{v_{j}\right\}$. If a walk $W\left(v_{i}, v_{j}\right)$ from v_{i} to v_{j} in D does not pass through a loop vertex, then let $V\left(W\left(v_{i}, v_{j}\right)\right) \cap V(L(D))=\varnothing$, otherwise $V\left(W\left(v_{i}, v_{j}\right)\right) \cap V(L(D)) \neq \varnothing$. Similarly, if the unique path from v_{i} to v_{j} passes through a loop vertex, that is $V\left(P\left(v_{i}, v_{j}\right)\right) \cap V(L(D)) \neq \varnothing$, otherwise $V\left(P\left(v_{i}, v_{j}\right)\right) \cap V(L(D))=\varnothing$.

For a vertex $v \in V(D)$ and a set $X \subseteq V(D)$, let $d(v, X)=\min \left\{d\left(v, v_{i}\right): v_{i} \in X\right\}$. If $v \in X$, let $d(v, X)=0$. For any vertex $u \in V(D)$ and $v \in V(D)$, if $u=v$, let $d(u, v)=0$. If T is a set, the notation $|T|$ is used to denote the number of all elements in T. The notation $\lfloor a\rfloor$ is used to denote the largest integer not greater than a, and the notation $\lceil b\rceil$ is used to denote the smallest integer not less than b.

In this paper, let n, d and k be integers with $n \geq 5,1 \leq k \leq n, 1 \leq d \leq n$. We give the upper bound of the k th local exponent of digraphs in $D S_{n}(d)$, where $1 \leq k \leq n$.

2. The Upper Bound for the k th Local Exponent of $D S_{n}(d)$

In this section, let $D=(V, E)$, where $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$.
In the case of $D \in D S_{n}(d)$, we observe the exponent of any vertex in D, it is easy to get the following Proposition 1, let us omit the proof.

Proposition 1. Let $D \in D S_{n}(d)$ and let v_{i} be any vertex of D, then $\gamma_{D}\left(v_{i}\right)=\gamma_{D}\left(v_{n+1-i}\right)$, where $1 \leq i \leq n$.

Lemma 1 (Lemma 3.3 [2]). Let D be a primitive digraph with n vertices. Then, $\exp _{D}(k+1) \leq$ $\exp _{D}(k)+1$, where $1 \leq k \leq n-1$.

Remark 1. Lemma 1 is actually very useful. Next, we repeat the proof of Brualdi and Liu (see [2]). Since D is strongly connected, for any integer k such that $1 \leq k \leq n-1$, there is a vertex x that is joined by an arc to one of the vertices with the k smallest exponents. Therefore, $\exp _{D}(k+1) \leq$ $\exp _{D}(k)+1$, where $1 \leq k \leq n-1$.

Lemma 2. Let $D \in D S_{n}(d)$ and let v_{i}, v_{j} be any pair of vertices of D. Then, $\gamma_{D}\left(v_{j}\right) \leq \gamma_{D}\left(v_{i}\right)+$ $d\left(v_{i}, v_{j}\right)$.

Proof. For any vertex $x \in V(D)$, there is a walk of length t from v_{i} to x, which is $v_{i} \xrightarrow{t} x$, for each integer $t \geq \gamma_{D}\left(v_{i}\right)$. So, there is a walk of length s from v_{j} to x, which is $v_{j} \xrightarrow{d\left(v_{j}, v_{i}\right)}$ $v_{i} \xrightarrow{t} x$, for each integer $s \geq \gamma_{D}\left(v_{i}\right)+d\left(v_{i}, v_{j}\right)$. Therefore, $\gamma_{D}\left(v_{j}\right) \leq \gamma_{D}\left(v_{i}\right)+d\left(v_{i}, v_{j}\right)$.

Lemma 3. Let $D \in D S_{n}(d)$ and let x, y be any pair of vertices of D. If there exists a walk $W(x, y)$ from x to y such that $V(W(x, y)) \cap V(L(D)) \neq \varnothing$, then $\gamma_{D}(x, y) \leq|W(x, y)|$.

Proof. Let $h=|W(x, y)|$. We consider the following.
Case $1 x \in V(D) \backslash V(L(D))$ and $y \in V(D) \backslash V(L(D))$.
Suppose a walk from x to y through a loop vertex is denoted by $x \xrightarrow{a} v_{i} \xrightarrow{h-a} y$, where v_{i} is a loop vertex and a is an integer such that $1 \leq a \leq h-1$. Then, the length of the walk $x \xrightarrow{a} v_{i} \xrightarrow{1} v_{i} \xrightarrow{h-a} y$ is $h+1$. The length of the walk $x \xrightarrow{a} v_{i} \xrightarrow{1} v_{i} \xrightarrow{1} v_{i} \xrightarrow{h-a} y$ is $h+2$. Similarly, we can easily conclude that there is a walk of length s from x to y, for each integer $s \geq h$. So, $\gamma_{D}(x, y) \leq|W(x, y)|$.

Case $2 x \in V(L(D))$ or $y \in V(L(D))$.
Similar to Case 1, it is easy to get that there is a walk of length s from x to y, for each integer $s \geq h$. So, $\gamma_{D}(x, y) \leq|W(x, y)|$.

Therefore, the lemma holds.
Lemma 4 (Lemma 1 [23]). Let $D \in D S_{n}$. If n is odd and x is any vertex of D, then $d\left(x, v_{\frac{n+1}{2}}\right) \leq$ $\frac{n-1}{2}$.

Theorem 1. Let $D \in D S_{n}(d)$. If n is odd and d is odd, then $\exp _{D}(k) \leq \frac{n-1}{2}+\left\lfloor\frac{k}{2}\right\rfloor$, where $1 \leq k \leq n$.

Proof. If d is odd, then $v_{\frac{n+1}{2}}$ is a loop vertex. Let x be any vertex. Then, a shortest path from x to $v_{\frac{n+1}{2}}$ goes through the loop vertex $v_{\frac{n+1}{2}}$. According to Lemma 4, we have $d\left(x, v_{\frac{n+1}{2}}\right) \leq \frac{n-1}{2}$. Furthermore, according to Lemma 3, we have $\gamma_{D}\left(v_{\frac{n+1}{2}}, x\right) \leq d\left(x, v_{\frac{n+1}{2}}\right)$. Further, we have $\gamma_{D}\left(v_{\frac{n+1}{2}}, x\right)=d\left(x, v_{\frac{n+1}{2}}\right)$. So, $\gamma_{D}\left(v_{\frac{n+1}{2}}\right)=\max \left\{d\left(v_{\frac{n+1}{2}}, x\right): x \in V(D)\right\} \leq$ $\frac{n-1}{2}$. Then, we have $\exp _{D}(1) \leq \gamma_{D}\left(v_{\frac{n+1}{2}}\right) \leq \frac{n-1}{2}$. Further, according to Proposition 1, we have $\gamma_{D}\left(v_{1}\right)=\gamma_{D}\left(v_{n}\right), \gamma_{D}\left(v_{2}\right)=\gamma_{D}\left(v_{n-1}\right), \cdots, \gamma_{D}\left(v_{\frac{n-1}{2}}\right)=\gamma_{D}\left(v_{\frac{n+3}{2}}\right)$. So, according to Lemma 1, we conclude $\exp _{D}(2)=\exp _{D}(3) \leq \exp _{D}(1)+1 \leq \frac{n-1}{2}+1, \exp _{D}(4)=$ $\exp _{D}(5) \leq \exp _{D}(1)+2 \leq \frac{n-1}{2}+2, \cdots, \exp _{D}(n-1)=\exp _{D}(n) \leq \exp _{D}(1)+\frac{n-1}{2} \leq \frac{n-1}{2}+$ $\frac{n-1}{2}$. Therefore, we have $\exp _{D}(k) \leq \exp _{D}(1)+\left\lfloor\frac{k}{2}\right\rfloor \leq \frac{n-1}{2}+\left\lfloor\frac{k}{2}\right\rfloor$, where $1 \leq k \leq n$.

Let $D^{\prime} \in D S_{n}(d)$ and $D \in D S_{n}(d)$. If D is a subgraph of D^{\prime} such that $V(D)=V\left(D^{\prime}\right)$ and $E(D) \subseteq E\left(D^{\prime}\right)$, then $\exp _{D^{\prime}}(k) \leq \exp _{D}(k)$, where $1 \leq k \leq n$. So, if we investigate the upper bound of the k th local exponent of digraphs in $D S_{n}(d)$, we only need to investigate the digraphs in $D S_{n}^{\prime}(d)$.

Referring to Definition 3 in [23], we give the following Definition 1.
Definition 1. Let $D \in D S_{n}^{\prime}(d)$, where n is odd, d is even such that $d \geq 2$. There exist two connected subgraphs $D_{*}=\left(V_{*}, E_{*}\right)$ and $D_{* *}=\left(V_{* *}, E_{* *}\right)$ of D, and $D_{*}, D_{* *}$ satisfy $V(D)=V_{*} \cup V_{* *}$ and $E(D)=E_{*} \cup E_{* *} \cup E(L(D))$. Where $V_{*}=\left\{v_{n+1-i}: v_{i} \in V_{* *}\right\}$ and $E_{*}=\left\{\left[v_{n+1-i}, v_{n+1-j}\right]:\left[v_{i}, v_{j}\right] \in E_{* *}\right\}$. Moreover, $\left|V_{*}\right|=\left|V_{* *}\right|=\frac{n+1}{2},\left|E_{*}\right|=\left|E_{* *}\right|=\frac{n-1}{2}$.

Remark 2. Suppose n is odd and d is even that satisfies $d \geq 2$. If $D \in D S_{n}^{\prime}(d)$, then there are two connected subgraphs D_{*} and $D_{* *}$ of D. In addition, there is a unique path for any two different vertices in D_{*} and $D_{* *}$, respectively. Moreover, there is a unique path for any two different vertices in D. Let x, y be any pair of vertices of D such that $x \in V_{*}$ and $y \in V_{* *}$, then $V\left(P\left(x, v_{\frac{n+1}{2}}\right)\right) \cap V\left(P\left(v_{\frac{n+1}{2}}, y\right)\right)=\left\{v_{\frac{n+1}{2}}\right\}$ (see [23]). After removing d loops from D, the obtained graph is a tree. Therefore, D is a special tree with loops that satisfies $\left[v_{i}, v_{j}\right] \in E(D)$ if and only if $\left[v_{n+1-i}, v_{n+1-j}\right] \in E(D)$, where $1 \leq i<j \leq n$.

Lemma 5 (Lemma 3 [23]). Let $D \in D S_{n}^{\prime}(d)$, where n is odd, d is even such that $d \geq 2$. Let x, y be any pair of vertices of D such that $V\left(P\left(x, v_{\frac{n+1}{2}}\right)\right) \cap V(L(D))=\varnothing$ and $V\left(P\left(y, v_{\frac{n+1}{2}}\right)\right) \cap$ $V(L(D))=\varnothing$. Then, there is a walk $W(x, y)$ from x to y such that $V(W(x, y)) \cap V(L(D)) \neq \varnothing$, and $|W(x, y)| \leq n-d+1$.

Corollary 1. Let $D \in D S_{n}^{\prime}(d)$, where n is odd, d is even and $d \geq 2$. Let x, y be any pair of vertices of D satisfying $V\left(P\left(x, v_{\frac{n+1}{2}}\right)\right) \cap V(L(D))=\varnothing$ and $V\left(P\left(y, v_{\frac{n+1}{2}}\right)\right) \cap V(L(D))=\varnothing$. Then, $\gamma_{D}(x, y) \leq n-d+1$.

Proof. According to Lemma 5, there is a walk $W(x, y)$ from x to y passing through a loop vertex, and $|W(x, y)| \leq n-d+1$. Moreover, according to Lemma 3, we have $\gamma_{D}(x, y) \leq|W(x, y)| \leq n-d+1$.

In Corollary 1, if $x=v_{\frac{n+1}{2}}$ and x isn't a loop vertex, then $V\left(P\left(x, v_{\frac{n+1}{2}}\right)\right)=\left\{v_{\frac{n+1}{2}}\right\}$, we have $V\left(P\left(x, v_{\frac{n+1}{2}}\right)\right) \cap V\left(L(D)^{2}\right)=\varnothing$.

Theorem 2. Let $D \in D S_{n}(d)$. If n is odd, d is even and $d \geq 2$, then
(1) If $n \leq 2 d-3$, then $\exp _{D}(k) \leq \frac{n-1}{2}+\left\lfloor\frac{k}{2}\right\rfloor$, where $1 \leq k \leq n$.
(2) If $n \geq 2 d-1$, then

$$
\exp _{D}(k) \leq \begin{cases}n-d+1, & \text { where } 1 \leq k \leq n-2 d+4 \\ n-d+1+\left\lceil\frac{k-(n-2 d+4)}{2}\right\rceil, & \text { where } n-2 d+4 \leq k \leq n\end{cases}
$$

Proof. We only need to consider $D \in D S_{n}^{\prime}(d)$. Since d is even, then $v_{\frac{n+1}{2}}$ isn't a loop vertex. Let x be any vertex. By Lemma 4 , we have $d\left(x, v_{\frac{n+1}{2}}\right) \leq \frac{n-1}{2}$. If the path from $v_{\frac{n+1}{2}}$ to x passes through a loop vertex, that is $V\left(P\left(v_{\frac{n+1}{2}}, x\right)\right) \cap V(L(D)) \neq \varnothing$, then $\gamma_{D}\left(v_{\frac{n+1}{2}}, x\right)=$ $d\left(x, v_{\frac{n+1}{2}}\right) \leq \frac{n-1}{2}$. If vertex x satisfies $V\left(P\left(v_{\frac{n+1}{2}}, x\right)\right) \cap V(L(D))=\varnothing$, according to Corollary 1 , we have $\gamma_{D}\left(v_{\frac{n+1}{2}}, x\right) \leq n-d+1$. Therefore, we have $\gamma_{D}\left(v_{\frac{n+1}{2}}\right) \leq \max \left\{\frac{n-1}{2}, n-d+1\right\}$.
(1) If $n \leq 2 d-3$, then $n-d+1 \leq \frac{n-1}{2}$. Then, we have $\exp _{D}(1) \leq \gamma_{D}\left(v_{\frac{n+1}{2}}\right) \leq \frac{n-1}{2}$. According to Proposition 1, we have $\gamma_{D}\left(v_{1}\right)=\gamma_{D}\left(v_{n}\right), \gamma_{D}\left(v_{2}\right)=\gamma_{D}\left(v_{n-1}\right), \cdots, \gamma_{D}\left(v_{\frac{n-1}{2}}\right)$ $=\gamma_{D}\left(v_{\frac{n+3}{2}}\right)$. Then, according to Lemma 1, we can conclude that $\exp _{D}(2)=\exp _{D}(3) \leq$ $\exp _{D}(1)+1 \leq \frac{n-1}{2}+1, \exp _{D}(4)=\exp _{D}(5) \leq \exp _{D}(1)+2 \leq \frac{n-1}{2}+2, \cdots$. Therefore, we have $\exp _{D}(k) \leq \exp _{D}(1)+\left\lfloor\frac{k}{2}\right\rfloor \leq \frac{n-1}{2}+\left\lfloor\frac{k}{2}\right\rfloor$, where $1 \leq k \leq n$.
(2) If $n \geq 2 d-1$, then $n-d+1 \geq \frac{n+1}{2}$. We have $\exp _{D}(1) \leq \gamma_{D}\left(v_{\frac{n+1}{2}}\right) \leq n-d+1$.

Next, we construct a set $V(M)$ such that $|V(M)| \geq n-2 d+4$, and for any vertex $v_{i} \in V(M), \gamma_{D}\left(v_{i}\right) \leq n-d+1$ holds. Suppose $V(M)=\left\{v: d\left(v, v_{\frac{n+1}{2}}\right) \leq \frac{n-2 d+3}{2}\right\}$. Then, $v_{\frac{n+1}{2}} \in V(M)$.

Suppose $v_{h} \in V(M) \cap V_{*}$ and $v_{h} \neq v_{\frac{n+1}{2}}$. If the vertex sequence of the unique path in D_{*} from v_{h} to $v_{\frac{n+1}{2}}$ is $v_{h}, \cdots, v_{t}, \cdots, v_{\frac{n+1}{2}}$, then the vertex sequence of the unique path in $D_{* *}$ from v_{n+1-h} to $v_{\frac{n+1}{2}}$ is $v_{n+1-h}, \cdots, v_{n+1-t}, \cdots, v_{\frac{n+1}{2}}$. Moreover, $V\left(P\left(v_{h}, v_{\frac{n+1}{2}}\right)\right) \cap$ $V\left(P\left(v_{n+1-h}, v_{\frac{n+1}{2}}\right)\right)=\left\{v_{\frac{n+1}{2}}\right\}$. So, $d\left(v_{h}, v_{\frac{n+1}{2}}\right)=d\left(v_{n+1-h}, v_{\frac{n+1}{2}}\right) \leq \frac{n-2 d+3}{2}$. Therefore, we have $v_{n+1-h} \in V(M)$. Next, we prove that $|V(M)| \geq n-2 d+4$. For any vertex $v_{s} \in V(D)$, if $v_{s} \in V(M)$, then $|V(M)|=n$. If there is a vertex v_{l} satisfying $v_{l} \in V(D) \backslash$ $V(M)$, then $d\left(v_{l}, v_{\frac{n+1}{2}}\right) \geq \frac{n-2 d+3}{2}+1$. So, $V\left(P\left(v_{l}, v_{\frac{n+1}{2}}\right)\right) \cap V(M)=\frac{n-2 d+3}{2}+1$. Moreover, $V\left(P\left(v_{n+1-l}, v_{\frac{n+1}{2}}\right)\right) \cap V(M)=\frac{n-2 d+3}{2}+1$ and $V\left(P\left(v_{l}, v_{\frac{n+1}{2}}\right)\right) \cap V\left(P\left(v_{n+1-l}, v_{\frac{n+1}{2}}\right)\right)=$ $\left\{v_{\frac{n+1}{2}}\right\}$. Then, we have $\left\lvert\,\left(\left.V\left(P\left(v_{l}, v_{\frac{n+1}{2}}\right)\right) \cup V\left(P\left(v_{n+1-l}, v_{\frac{n+1}{2}}^{2}\right)\right) \cap V(M) \right\rvert\,=n-2 d+4\right.$. \right. Therefore, we have $|V(M)| \geq n-2 d+4$. For any vertex $v_{i} \in V(M)$, next we consider $\gamma_{D}\left(v_{i}\right)$.

For any vertex $v_{i} \in V(M)$, let the walk $V\left(W\left(v_{i}, x\right)\right)$ from v_{i} to x be $v_{i} \xrightarrow{d\left(v_{i}, v_{\frac{n+1}{2}}\right)}$ $\xrightarrow{d\left(v_{\frac{n+1}{2}}, x\right)} x$. If the walk $V\left(W\left(v_{i}, x\right)\right)$ passes through a loop vertex, we have $\gamma_{D}\left(v_{i}, x\right) \leq d\left(v_{i}, v_{\frac{n+1}{2}}\right)+d\left(v_{\frac{n+1}{2}}, x\right) \leq \frac{n-2 d+3}{2}+\frac{n-1}{2}=n-d+1$. If the walk $V\left(W\left(v_{i}, x\right)\right)$ doesn't pass through a loop vertex, that is, $V\left(W\left(v_{i}, x\right)\right) \cap V(L(D))=\varnothing$. Then, we have $V\left(P\left(v_{i}, v_{\frac{n+1}{2}}\right)\right) \cap V(L(D))=\varnothing$ and $V\left(P\left(x, v_{\frac{n+1}{2}}\right)\right) \cap V(L(D))=\varnothing$. So, if $V\left(W\left(v_{i}, x\right)\right) \cap$ $V(L(D))=\varnothing$, according to Corollary 1 , we have $\gamma_{D}\left(v_{i}, x\right) \leq n-d+1$. Therefore, we have $\gamma_{D}\left(v_{i}\right) \leq n-d+1$. According to Proposition 1, we have $\gamma_{D}\left(v_{n+1-i}\right)=\gamma_{D}\left(v_{i}\right) \leq n-d+1$. Therefore, we have $\exp _{D}(k) \leq n-d+1$, where $1 \leq k \leq|V(M)|$.

For any vertex v_{j} such that $v_{j} \in V(D) \backslash V(M)$, then $v_{n+1-j} \in V(D) \backslash V(M)$. There is a unique path for any pair of vertices in D. So for any vertex $v_{i} \in V(M)$, we have $d\left(v_{j}, v_{i}\right)=d\left(v_{n+1-j}, v_{n+1-i}\right)$. Suppose $d\left(v_{j}, V(M)\right)=d\left(v_{j}, v_{l}\right)$, where $v_{l} \in V(M)$. We have $d\left(v_{n+1-j}, v_{n+1-l}\right)=d\left(v_{j}, v_{l}\right) \leq d\left(v_{j}, v_{i}\right)=d\left(v_{n+1-j}, v_{n+1-i}\right)$. So, we have $d\left(v_{j}, V(M)\right)=d\left(v_{n+1-j}, V(M)\right)$. Furthermore, according to Lemma 2, we can easily conclude that $\gamma_{D}\left(v_{j}\right)=\gamma_{D}\left(v_{n+1-j}\right) \leq n-d+1+d\left(v_{j}, V(M)\right)$. Since $|V(M)| \geq n-2 d+4$, the conclusion is clearly established.

Therefore, the theorem holds.
Referring to Definition 4 in [23], we give the following Definition 2.
Definition 2. Let $D \in D S_{n}^{\prime}(d)$, where n is even, d is even such that $d \geq 2$.
(1) There exist two connected subgraphs $D_{1}=\left(V_{1}, E_{1}\right)$ and $D_{2}=\left(V_{2}, E_{2}\right)$ of D, and D_{1}, D_{2} satisfy $V(D)=V_{1} \cup V_{2}$ and $E(D)=E_{1} \cup E_{2} \cup\left\{\left[v_{f}, v_{n+1-g}\right]\right\} \cup\left\{\left[v_{n+1-f}, v_{g}\right]\right\} \cup E(L(D))$. Where $V_{1}=\left\{v_{n+1-i}: v_{i} \in V_{2}\right\}$ and $E_{1}=\left\{\left[v_{n+1-i}, v_{n+1-j}\right]:\left[v_{i}, v_{j}\right] \in E_{2}\right\}, v_{f} \in V_{1}$ and $v_{g} \in V_{1}$. Moreover, $\left|V_{1}\right|=\left|V_{2}\right|=\frac{n}{2},\left|E_{1}\right|=\left|E_{2}\right|=\frac{n}{2}-1$.
(2) If $\left\{v_{f}, v_{n+1-f}\right\} \cap V(L(D))=\varnothing$. Let $V\left(H_{1}\right)=\left\{v: V\left(P_{D_{1}}\left(v_{f}, v\right)\right) \cap V(L(D))=\right.$ \varnothing, where $\left.v \in V_{1}\right\}$ and $V\left(H_{2}\right)=\left\{v: V\left(P_{D_{2}}\left(v_{n+1-f}, v\right)\right) \cap V(L(D))=\varnothing\right.$, where $\left.v \in V_{2}\right\}$. Suppose $V(H)=V\left(H_{1}\right) \cup V\left(H_{2}\right)$.

Definition 3. Let $D \in D S_{n}^{\prime}(d)$, where n is even, d is even such that $d \geq 2$. In Definition 2(1), we give the following definition:
(1) Let $W\left(v_{f}, v_{f}\right)$ be $v_{f} \xrightarrow{d_{D_{1}}\left(v_{f}, v_{g}\right)} v_{g} \xrightarrow{d_{D}\left(v_{g}, v_{n+1-f}\right)} v_{n+1-f} \xrightarrow{d_{D_{2}}\left(v_{n+1-f}, v_{n+1-g}\right)} v_{n+1-g}$
$\xrightarrow{d_{D}\left(v_{n+1-g}, v_{f}\right)} v_{f}$, then $W\left(v_{f}, v_{f}\right)$ is a closed walk from v_{f} to v_{f}. Let us write $V\left(W\left(v_{f}, v_{f}\right)\right)=$ $V(R)$.
(2) If $f \neq g$, let $D \in D S_{n, 1}^{\prime}(d)$. If $f=g$, let $D \in D S_{n, 2}^{\prime}(d)$.

Remark 3. Suppose n is even and d is even that satisfies $d \geq 2$. If $D \in D S_{n}^{\prime}(d)$, then there are two connected subgraphs D_{1} and D_{2} of D. Moreover, there is a unique path for any two different vertices in D_{1} and D_{2}, respectively. Since D is connected, then there are edges $\left[v_{f}, v_{n+1-g}\right] \in E(D)$ and $\left[v_{n+1-f}, v_{g}\right] \in E(D)$. Then, $d_{D}\left(v_{g}, v_{n+1-f}\right)=d_{D}\left(v_{n+1-g}, v_{f}\right)=1$. If v_{f} and v_{n+1-f} are not loop vertices, then $v_{f} \in V(H)$ and $v_{n+1-f} \in V(H)$. If $D \in D S_{n, 1}^{\prime}(d)$, then $f \neq g$, and $|V(R)|$ is even such that $|V(R)| \geq 4$. Furthermore, if $D \in D S_{n, 1}^{\prime}(d)$, after removing d loops from D, the obtained graph D^{*} is not a tree. According to Definitions 2 and 3, it is not difficult to see that $\left|V\left(D^{*}\right)\right|=n$ and $\left|E\left(D^{*}\right)\right|=n$. If $D \in D S_{n, 2}^{\prime}(d)$, then $f=g, V(R)=\left\{v_{f}, v_{n+1-f}\right\}$ and $|V(R)|=2$. If $D \in D S_{n, 2}^{\prime}(d)$, then D is a special tree with loops that satisfies $\left[v_{i}, v_{j}\right] \in E(D)$ if and only if $\left[v_{n+1-i}, v_{n+1-j}\right] \in E(D)$, where $1 \leq i<j \leq n$. In fact, $D \in D S_{n, 2}^{\prime}(d)$ can be regarded as a special case of $f=g$ in $D \in D S_{n, 1}^{\prime}(d)$.

In Lemma 2 in [23], let $D \in D S_{n}^{\prime}(d)$, where n is even and d be even such that $d \geq 2$. We can directly get the following Lemma 6.

Lemma 6. Let $D \in D S_{n}^{\prime}(d)$. Let n be even and d be even such that $d \geq 2$. Let x be any vertex of D. Then, for any vertex $v_{s} \in V(R)$, we have $d\left(x, v_{s}\right) \leq \frac{n}{2}$.

Lemma 7 (Lemma 5 [23]). Let $D \in D S_{n}^{\prime}(d)$, where n is even, d is even and $d \geq 2$. Let x, y be any pair of vertices of D such that $x, y \in V(H)$. If $V(R) \cap V(L(D))=\varnothing$, then there exists a walk $W(x, y)$ from x to y such that $V(W(x, y)) \cap V(L(D)) \neq \varnothing$, and $|W(x, y)| \leq n-d+1$.

Corollary 2. Let $D \in D S_{n}^{\prime}(d)$, where n is even, d is even such that $d \geq 2$. Let x, y be any pair of vertices of D satisfying $x, y \in V(H)$. If $V(R) \cap V(L(D))=\varnothing$, then $\gamma_{D}(x, y) \leq n-d+1$.

Proof. According to Lemma 7, there is a walk $W(x, y)$ from x to y passing through a loop vertex, and $|W(x, y)| \leq n-d+1$. Furthermore, according to Lemma 3, we have $\gamma_{D}(x, y) \leq|W(x, y)| \leq n-d+1$.

Theorem 3. Let $D \in D S_{n}(d)$. If n is even, d is even and $d \geq 2$, then
(1) If $n \leq 2 d-2$, then $\exp _{D}(k) \leq \frac{n}{2}-1+\left\lceil\frac{k}{2}\right\rceil$, where $1 \leq k \leq n$.
(2) If $n \geq 2 d$, then

$$
\exp _{D}(k) \leq \begin{cases}n-d+1, & \text { where } 1 \leq k \leq n-2 d+4 \\ n-d+1+\left\lceil\frac{k-(n-2 d+4)}{2}\right\rceil, & \text { where } n-2 d+4 \leq k \leq n\end{cases}
$$

Proof. We only need to consider $D \in D S_{n}^{\prime}(d)$. Let x be any vertex. Let us consider the following two cases.

Case $1 D \in D S_{n, 1}^{\prime}(d)$.
Since $v_{f} \in V_{1}$ and $v_{g} \in V_{1}$, then $v_{n+1-f} \in V_{2}$ and $v_{n+1-g} \in V_{2}$.
Case 1.1 $V(R) \cap V(L(D)) \neq \varnothing$.
Suppose $\left\{v_{m}, v_{n+1-m}\right\} \subseteq V(R) \cap V(L(D))$. Then, v_{m} and v_{n+1-m} are loop vertices. According to Lemma 6 , we have $d\left(x, v_{m}\right) \leq \frac{n}{2}$. Further, $\gamma_{D}\left(v_{m}\right)=\gamma_{D}\left(v_{n+1-m}\right) \leq \frac{n}{2}$. Then, $\exp _{D}(1)=\exp _{D}(2) \leq \gamma_{D}\left(v_{m}\right) \leq \frac{n}{2}$. Therefore, according to Proposition 1 and Lemma 1, we have $\exp _{D}(k) \leq \frac{n}{2}-1+\left\lceil\frac{k}{2}\right\rceil$, where $1 \leq k \leq n$.
(1) If $n \leq 2 d-2$, then the conclusion is clearly established.
(2) If $n \geq 2 d$, for $1 \leq k \leq n-2 d+4$, then $\exp _{D}(k) \leq \frac{n}{2}-1+\left\lceil\frac{k}{2}\right\rceil \leq \frac{n}{2}-1+\frac{n}{2}-d+2=$ $n-d+1$. For $n-2 d+4 \leq k \leq n$, we have $\exp _{D}(k) \leq \frac{n}{2}-1+\left\lceil\frac{k}{2}\right\rceil=\frac{n}{2}-1+$ $\left\lceil\frac{k-(n-2 d+4)}{2}\right\rceil+\frac{n}{2}-d+2=n-d+1+\left\lceil\frac{k-(n-2 d+4)}{2}\right\rceil$.
Case 1.2 $V(R) \cap V(L(D))=\varnothing$.
Then, $v_{f} \in V(H) \cap V(R), v_{n+1-f} \in V(H) \cap V(R)$.
For $x \in V(H)$, according to Corollary 2, we have $\gamma_{D}\left(v_{f}, x\right) \leq n-d+1$.
For any vertex $x \in V_{1} \backslash V(H)$, then $V\left(P_{D_{1}}\left(v_{f}, x\right)\right) \cap V(L(D)) \neq \varnothing$. We have $\gamma_{D}\left(v_{f}, x\right) \leq d_{D_{1}}\left(v_{f}, x\right) \leq \frac{n}{2}$.

For any vertex $x \in V_{2} \backslash V(H)$, then $V\left(P_{D_{2}}\left(v_{n+1-f}, x\right)\right) \cap V(L(D)) \neq \varnothing$. Let the walk
$W_{D}\left(v_{f}, x\right)$ be $v_{f} \xrightarrow{d_{D}\left(v_{f}, v_{n+1-g}\right)} v_{n+1-g} \xrightarrow{d_{D_{2}}\left(v_{n+1-g}, x\right)} x$. Since $V(R) \cap V(L(D))=\varnothing$, then $V\left(P_{D_{2}}\left(v_{n+1-f}, v_{n+1-g}\right)\right) \cap V(L(D))=\varnothing$. In addition, $V\left(P_{D_{2}}\left(v_{n+1-f}, x\right)\right) \cap V(L(D)) \neq \varnothing$. We have $V\left(P_{D_{2}}\left(v_{n+1-g}, x\right)\right) \cap V(L(D)) \neq \varnothing$. So $V\left(W_{D}\left(v_{f}, x\right)\right) \cap V(L(D)) \neq \varnothing$. Moreover, $\left|W_{D}\left(v_{f}, x\right)\right|=1+d_{D_{2}}\left(v_{n+1-g}, x\right) \leq \frac{n}{2}$. We have $\gamma_{D}\left(v_{f}, x\right) \leq\left|W_{D}\left(v_{f}, x\right)\right| \leq \frac{n}{2}$.

Therefore, we have $\gamma_{D}\left(v_{f}\right)=\gamma_{D}\left(v_{n+1-f}\right) \leq \max \left\{\frac{n}{2}, n-d+1\right\}$.
(1) If $n \leq 2 d-2$, then $n-d+1 \leq \frac{n}{2}$. Then, we have $\exp _{D}(1)=\exp _{D}(2) \leq \gamma_{D}\left(v_{f}\right) \leq \frac{n}{2}$. Therefore, according to Proposition 1 and Lemma 1, $\exp _{D}(k) \leq \frac{n}{2}-1+\left\lceil\frac{k}{2}\right\rceil$, where $1 \leq k \leq n$.
(2) If $n \geq 2 d$, then $n-d+1 \geq \frac{n}{2}+1$. We have $\exp _{D}(1)=\exp _{D}(2) \leq \gamma_{D}\left(v_{f}\right) \leq$ $n-d+1$. Next, we construct a set $V\left(L_{1}\right)$ such that $\left|V\left(L_{1}\right)\right| \geq n-2 d+4$, and for any vertex $v_{i} \in V\left(L_{1}\right), \gamma_{D}\left(v_{i}\right) \leq n-d+1$ holds. Let $V\left(L_{11}\right)=\left\{v: d_{D_{1}}\left(v, v_{f}\right) \leq\right.$ $\frac{n-2 d+2}{2}$, where $\left.v \in V_{1}\right\}$. Let $V\left(L_{12}\right)=\left\{v: d_{D_{2}}\left(v, v_{n+1-f}\right) \leq \frac{n-2 d+2}{2}\right.$, where $v \in$ $\left.V_{2}\right\}$. Suppose $V\left(L_{1}\right)=V\left(L_{11}\right) \cup V\left(L_{12}\right)$. Then, $v_{f} \in V\left(L_{1}\right)$ and $v_{n+1-f} \in V\left(L_{1}\right)$. Suppose $v_{h} \in V\left(L_{11}\right)$ and $v_{h} \neq v_{f}$. If the vertex sequence of the unique path in D_{1} from v_{h} to v_{f} is $v_{h}, \cdots, v_{t}, \cdots, v_{f}$, then the vertex sequence of the unique path in D_{2} from v_{n+1-h} to v_{n+1-f} is $v_{n+1-h}, \cdots, v_{n+1-t}, \cdots, v_{n+1-f}$. So, $d_{D_{1}}\left(v_{h}, v_{f}\right)=$ $d_{D_{2}}\left(v_{n+1-h}, v_{n+1-f}\right) \leq \frac{n-2 d+2}{2}$. Therefore, we have $v_{n+1-h} \in V\left(L_{1}\right)$. Next, we prove that $\left|V\left(L_{1}\right)\right| \geq n-2 d+4$. For any vertex $v_{s} \in V(D)$, if $v_{s} \in V\left(L_{1}\right)$, then $\left|V\left(L_{1}\right)\right|=$ n. If there is a vertex v_{l} satisfying $v_{l} \in V(D) \backslash V\left(L_{1}\right)$, we might as well assume $v_{l} \in V_{1}$. Then $d_{D_{1}}\left(v_{l}, v_{f}\right) \geq \frac{n-2 d+2}{2}+1$. So, $V\left(P_{D_{1}}\left(v_{l}, v_{f}\right)\right) \cap V\left(L_{11}\right)=\frac{n-2 d+2}{2}+1$. Moreover, $V\left(P_{D_{2}}\left(v_{n+1-l}, v_{n+1-f}\right)\right) \cap V\left(L_{12}\right)=\frac{n-2 d+2}{2}+1$. Then, $\mid\left(V\left(P_{D_{1}}\left(v_{l}, v_{f}\right)\right) \cup\right.$ $\left.V\left(P_{D_{2}}\left(v_{n+1-l}, v_{n+1-f}\right)\right)\right) \cap V\left(L_{1}\right) \mid=n-2 d+4$. Therefore, we have $\left|V\left(L_{1}\right)\right| \geq n-$ $2 d+4$. Let us assume $v_{i} \in V\left(L_{11}\right)$. Next, we consider $\gamma_{D}\left(v_{i}\right)$.
Case 1.2.1 $x \in V_{1}$.
Let $W_{D_{1}}\left(v_{i}, x\right)$ be the walk from v_{i} to x, which is $v_{i} \xrightarrow{d_{D_{1}}\left(v_{i}, v_{f}\right)} v_{f} \xrightarrow{d_{D_{1}}\left(v_{f}, x\right)} x$. If the walk $W_{D_{1}}\left(v_{i}, x\right)$ passes through a loop vertex, we have $\left|W_{D_{1}}\left(v_{i}, x\right)\right|=d_{D_{1}}\left(v_{i}, v_{f}\right)+d_{D_{1}}\left(v_{f}, x\right) \leq$ $\frac{n-2 d+2}{2}+\frac{n}{2}=n-d+1$. If the walk $W_{D_{1}}\left(v_{i}, x\right)$ does not pass through a loop vertex, we have $x \in V(H)$ and $v_{i} \in V(H)$. According to Corollary 2, then $\gamma_{D}\left(v_{i}, x\right) \leq n-d+1$.

Case 1.2.2 $x \in V_{2}$.
Let the walk $W_{D}\left(v_{i}, x\right)$ be $v_{i} \xrightarrow{d_{D_{1}}\left(v_{i}, v_{f}\right)} v_{f} \xrightarrow{d_{D}\left(v_{f}, v_{n+1-g}\right)} v_{n+1-g} \xrightarrow{d_{D_{2}}\left(v_{n+1-g}, x\right)} x$. If the walk $W_{D}\left(v_{i}, x\right)$ passes through a loop vertex, we have $\left|W_{D}\left(v_{i}, x\right)\right|=d_{D_{1}}\left(v_{i}, v_{f}\right)+1+$ $d_{D_{2}}\left(v_{n+1-g}, x\right) \leq \frac{n-2 d+2}{2}+\frac{n}{2}=n-d+1$. If the walk $W_{D}\left(v_{i}, x\right)$ does not pass through a loop vertex. Then, $v_{i} \in V(H)$. Since $V(R) \cap V(L(D))=\varnothing$, then $V\left(P_{D_{2}}\left(v_{n+1-f}, v_{n+1-g}\right)\right) \cap$ $V(L(D))=\varnothing$. Moreover, $V\left(P_{D_{2}}\left(v_{n+1-g}, x\right)\right) \cap V(L(D))=\varnothing$, we have $V\left(P_{D_{2}}\left(v_{n+1-f}, x\right)\right) \cap$ $V(L(D))=\varnothing$. So, we have $x \in V(H)$. Since $x \in V(H)$ and $v_{i} \in V(H)$, according to Corollary 2 , then $\gamma_{D}\left(v_{i}, x\right) \leq n-d+1$.

Therefore, whether $x \in V_{1}$ or $x \in V_{2}$, we have $\gamma_{D}\left(v_{i}, x\right) \leq n-d+1$. So $\gamma_{D}\left(v_{i}\right) \leq n-d+1$. According to Proposition 1, we have $\gamma_{D}\left(v_{n+1-i}\right)=\gamma_{D}\left(v_{i}\right) \leq$ $n-d+1$. Therefore, we have $\exp _{D}(k) \leq n-d+1$, where $1 \leq k \leq\left|V\left(L_{1}\right)\right|$. For any vertex v_{j} such that $v_{j} \in V_{1} \backslash V\left(L_{11}\right)$, then $v_{n+1-j} \in V_{2} \backslash V\left(L_{12}\right)$. We have $d_{D_{1}}\left(v_{j}, V\left(L_{11}\right)\right)=$ $d_{D_{2}}\left(v_{n+1-j}, V\left(L_{12}\right)\right)$. Furthermore, according to Lemma 2, we can conclude that $\gamma_{D}\left(v_{j}\right)=$ $\gamma_{D}\left(v_{n+1-j}\right) \leq n-d+1+d_{D_{1}}\left(v_{j}, V\left(L_{11}\right)\right)$. Since $\left|V\left(L_{1}\right)\right| \geq n-2 d+4$, the conclusion is clearly established.

Case $2 D \in D S_{n, 2}^{\prime}(d)$.
For $D \in D S_{n, 2}^{\prime}(d)$, it is equivalent to $f=g$ in $D \in D S_{n, 1}^{\prime}(d)$, let us omit it.

3. The k th Local Exponents of H^{*} and $H^{* *}$

In this section, we study the k th local exponents of the special graphs H^{*} and $H^{* *}$.
Definition 4. Suppose $1 \leq d \leq n$. Let $V\left(H^{*}\right)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and $E\left(H^{*}\right)=\left\{\left[v_{i}, v_{i+1}\right] \mid 1 \leq\right.$ $i \leq n-1\} \cup E\left(L\left(H^{*}\right)\right)$, where $E\left(L\left(H^{*}\right)\right)$ are d loops arranged arbitrarily such that $H^{*} \in D S_{n}^{\prime}(d)$.

Definition 5. Suppose d is even and $d \geq 2$. Let $V\left(H^{* *}\right)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and let $E\left(H^{* *}\right)=\left\{\left[v_{i}, v_{i+1}\right] \mid 1 \leq i \leq n-1\right\} \cup\left\{\left[v_{i}, v_{i}\right]:\right.$ where $1 \leq i \leq \frac{d}{2}$ and $\left.n-\frac{d}{2}+1 \leq i \leq n\right\}$.

From the definition of H^{*} and $H^{* *}$, we know that $H^{*} \in D S_{n}^{\prime}(d)$ and $H^{* *} \in D S_{n}^{\prime}(d)$. Furthermore, there is a unique path for any two different vertices in H^{*} and $H^{* *}$, respectively.

Remark 4. In Figure 2, n can be either odd or even. In Figure 3, since n is odd and $n \geq 2 d-1$, then $v_{\frac{n+1}{2}}$ is not a loop vertex. In Figure 4 , since n is even and $n \geq 2 d$, then $v_{\frac{n}{2}}$ and $v_{\frac{n}{2}+1}$ are not loop vertices.

Figure 2. The H^{*} for d is even and $d \geq 2$.

Figure 3. The $H^{* *}$ for n is odd, d is even such that $d \geq 2$, and $n \geq 2 d-1$.

Figure 4. The $H^{* *}$ for n is even, d is even such that $d \geq 2$, and $n \geq 2 d$.
Theorem 4. If n is odd and d is odd, then $\exp _{H^{*}}(k)=\frac{n-1}{2}+\left\lfloor\frac{k}{2}\right\rfloor$, where $1 \leq k \leq n$.
Proof. Since d is odd, then $v_{\frac{n+1}{2}}$ is a loop vertex. We have $\gamma_{H^{*}}\left(v_{\frac{n+1}{2}}\right)=\max \left\{d\left(v_{\frac{n+1}{2}}, x\right): x \in\right.$ $\left.V\left(H^{*}\right)\right\}=d\left(v_{\frac{n+1}{2}}, v_{n}\right)=\frac{n-1}{2}$. Moreover, according to Lemma 2, we have $\gamma_{H^{*}}\left(v_{\frac{n+1}{2}-a}\right) \leq$ $\gamma_{H^{*}}\left(v_{\frac{n+1}{2}}\right)+d\left(v_{\frac{n+1}{2}-a}, v_{\frac{n+1}{2}}\right)=\frac{n-1}{2}+a$, where $1 \leq a \leq \frac{n-1}{2}$. Further, $\gamma_{H^{*}}\left(v_{\frac{n+1}{2}-a}\right)=$ $\gamma_{H^{*}}\left(v_{\frac{n+1}{2}+a}\right)=\gamma_{H^{*}}\left(v_{\frac{n+1}{2}-a^{\prime}}, v_{n}\right)=d\left(v_{\frac{n+1}{2}-a^{\prime}}, v_{n}\right)=\frac{n-1}{2}+a$, where $1 \leq a \leq \frac{n-1}{2}$. Therefore, the theorem now holds.

Theorem 5. If n is odd, d is even and $d \geq 2$, then
(1) If $n \leq 2 d-3$, then $\exp _{H^{*}}(k)=\frac{n-1}{2}+\left\lfloor\frac{k}{2}\right\rfloor$, where $1 \leq k \leq n$.
(2) $n \geq 2 d-1$, then

$$
\exp _{H^{* *}}(k)= \begin{cases}n-d+1, & \text { where } 1 \leq k \leq n-2 d+4 \\ n-d+1+\left\lceil\frac{k-(n-2 d+4)}{2}\right\rceil, & \text { where } n-2 d+4 \leq k \leq n\end{cases}
$$

Proof. Since d is even, then $v_{\frac{n+1}{2}}$ is not a loop vertex.
(1) $\quad H^{*}$ is shown in Figure 2. Let x be any vertex of H^{*}. If $V\left(P\left(v_{\frac{n+1}{2}}, x\right)\right) \cap V\left(L\left(H^{*}\right)\right) \neq \varnothing$, then $\gamma_{H^{*}}\left(v_{\frac{n+1}{2}}, x\right)=d\left(v_{\frac{n+1}{2}}, x\right) \leq \frac{n-1}{2}$. If $V\left(P\left(v_{\frac{n+1}{2}}, x\right)\right) \cap V\left(L\left(H^{*}\right)\right)=\varnothing$, according to Corollary 1, we have $\gamma_{H^{*}}\left(v_{\frac{n+1}{2}}, x\right) \leq n-d+1$. Then, $\gamma_{H^{*}}\left(v_{\frac{n+1}{2}}\right) \leq \max \left\{\frac{n-1}{2}, n-\right.$ $d+1\}$. If $n \leq 2 d-3$, then $n-d+1 \leq \frac{n-1}{2}$. Then, we have $\gamma_{H^{*}}\left(v_{\frac{n+1}{2}}\right) \leq \frac{n-1}{2}$. Further, $\gamma_{H^{*}}\left(v_{\frac{n+1}{2}}, v_{n}\right)=d\left(v_{\frac{n+1}{2}}, v_{n}\right)=\frac{n-1}{2}$. Therefore, $\gamma_{H^{*}}\left(v_{\frac{n+1}{2}}\right)=\frac{n-1}{2}$. Let a be an integer satisfying $1 \leq a \leq \frac{n-1}{2}$. According to Lemma 2, we have $\gamma_{H^{*}}\left(v_{\frac{n+1}{2}-a}\right) \leq$ $d\left(v_{\frac{n+1}{2}-a^{\prime}} v_{\frac{n+1}{2}}\right)+\gamma_{H^{*}}\left(v_{\frac{n+1}{2}}\right)=a+\frac{n-1}{2}$. Further, we have $\gamma_{H^{*}}\left(v_{\frac{n+1}{2}-a^{\prime}}, v_{n}\right)=d\left(v_{\frac{n+1}{2}-a^{\prime}}\right.$ $\left.v_{n}\right)=\frac{n-1}{2}+a$. Then, $\gamma_{H^{*}}\left(v_{\frac{n+1}{2}-a}\right)=\gamma_{H^{*}}\left(v_{\frac{n+1}{2}+a}\right)=\frac{n-1}{2}+a$ by Proposition 1, where $1 \leq a \leq \frac{n-1}{2}$. Therefore, we have $\exp _{H^{*}}(k)=\frac{n-1}{2}+\left\lfloor\frac{k}{2}\right\rfloor$, where $1 \leq k \leq n$.
(2) $H^{* *}$ is shown in Figure 3. If $n \geq 2 d-1$, then $n-d+1 \geq \frac{n+1}{2}$. Since $n \geq 5$ and $n \geq 2 d-1$, then $\frac{d}{2} \leq \frac{n+1}{4} \leq \frac{n-1}{2}$ and $n-\frac{d}{2}+1 \geq n-\frac{n+1}{4}+1 \geq \frac{n+3}{2}$. Then, $v_{\frac{n+1}{2}}$ is not a loop vertex.

Suppose any integer a satisfies $d-1 \leq a \leq \frac{n+1}{2}$. Since $d \geq 2$, then $a \geq d-1 \geq \frac{d}{2}$. Let x be any vertex of $H^{* *}$. Let the walk $W\left(v_{a}, x\right)$ be $v_{a} \xrightarrow{d\left(v_{a}, v_{\frac{n+1}{2}}\right)} v_{\frac{n+1}{2}} \xrightarrow{d\left(v_{\frac{n+1}{2}}, x\right)}$ x. If $V\left(W\left(v_{a}, x\right)\right) \cap V\left(L\left(H^{* *}\right)\right) \neq \varnothing$, then $\gamma_{H^{* *}}\left(v_{a}, x\right) \leq\left(\frac{n+1}{2}-a\right)+\frac{n-1}{2}=n-a$. If $V\left(W\left(v_{a}, x\right)\right) \cap V\left(L\left(H^{* *}\right)\right)=\varnothing$, we have $V\left(P\left(x, v_{\frac{n+1}{2}}\right)\right) \cap V(L(D))=\varnothing$ and $V\left(P\left(v_{a}, v_{\frac{n+1}{2}}\right)\right)$ $\cap V(L(D))=\varnothing$. According to Corollary 1, we have $\gamma_{H^{* *}}\left(v_{a}, x\right) \leq n-d+1$. Therefore, we have $\gamma_{H^{* *}}\left(v_{a}\right) \leq \max \{n-a, n-d+1\}=n-d+1$, where $d-1 \leq a \leq \frac{n+1}{2}$. Since $d \geq 2$ and $d-1 \leq a \leq \frac{n+1}{2}$, then $\frac{n+1}{2} \leq n-a+1 \leq n-d+2 \leq n-\frac{d}{2}+1$. Further, $\gamma_{H^{* *}}\left(v_{a}, v_{n-a+1}\right)=d\left(v_{a}, v_{\frac{d}{2}}\right)+d\left(v_{\frac{d}{2}}, v_{n-a+1}\right)=d\left(v_{a}, v_{n-\frac{d}{2}+1}\right)+d\left(v_{n-\frac{d}{2}+1}, v_{n-a+1}\right)=$ $n-d+1$. Therefore, $\gamma_{H^{* *}}\left(v_{a}\right)=n-d+1$, where $d-1 \leq a \leq \frac{n+1}{2}$. According to Proposition 1, if $\frac{n+1}{2} \leq a \leq n-d+2$, we have $\gamma_{H^{* *}}\left(v_{a}\right)=\gamma_{H^{* *}}\left(v_{n-a+1}\right)=n-d+1$. So, for $d-1 \leq a \leq n-d+2$, we have $\gamma_{H^{* *}}\left(v_{a}\right)=n-d+1$. Therefore, we have $\exp _{H^{* *}}(k)=n-d+1$, where $1 \leq k \leq n-2 d+4$.

Suppose a satisfies $1 \leq a \leq d-1$. We have $\gamma_{H^{* *}}\left(v_{a}\right) \leq d\left(v_{a}, v_{d-1}\right)+\gamma_{H^{* *}}\left(v_{d-1}\right)=$ $n-d+1+(d-1-a)=n-a$. Moreover, $\gamma_{H^{* *}}\left(v_{a}\right)=\gamma_{H^{* *}}\left(v_{n-a+1}\right)=d\left(v_{a}, v_{n}\right)=n-a$. So, we can get $\exp _{H^{* *}}(k)=n-d+1+\left\lceil\frac{k-(n-2 d+4)}{2}\right\rceil$, where $n-2 d+4 \leq k \leq n$.

Therefore, the theorem now holds.

Theorem 6. If n is even, d is even and $d \geq 2$, then
(1) If $n \leq 2 d-2$, then $\exp _{H^{*}}(k)=\frac{n}{2}-1+\left\lceil\frac{k}{2}\right\rceil$, where $1 \leq k \leq n$.
(2) $n \geq 2 d$, then

$$
\exp _{H^{* *}}(k)= \begin{cases}n-d+1, & \text { where } 1 \leq k \leq n-2 d+4 \\ n-d+1+\left\lceil\frac{k-(n-2 d+4)}{2}\right\rceil, & \text { where } n-2 d+4 \leq k \leq n\end{cases}
$$

Proof. (1) H^{*} is shown in Figure 2. We have $H^{*} \in D S_{n, 2}^{\prime}(d), f=g=\frac{n}{2}$ or $f=g=\frac{n}{2}+1$. Let us assume $f=g=\frac{n}{2}$, then $n+1-f=n+1-g=\frac{n}{2}+1$. If $n \leq 2 d-2$, let us consider the following two cases.

Case $1\left\{v_{\frac{n}{2}}, v_{\frac{n}{2}+1}\right\} \cap V\left(L\left(H^{*}\right)\right) \neq \varnothing$.
It is easy to see that $\gamma_{H^{*}}\left(v_{\frac{n}{2}}\right)=\gamma_{H^{*}}\left(v_{\frac{n}{2}+1}\right)=\max \left\{d\left(v_{\frac{n}{2}}, x\right): x \in V\left(H^{*}\right)\right\}=$ $d\left(v_{\frac{n}{2}}, v_{n}\right)=\frac{n}{2}$. Suppose a satisfies $1 \leq a \leq \frac{n}{2}-1$. According to Lemma 2, we can get $\gamma_{H^{*}}\left(v_{\frac{n}{2}-a}\right) \leq d\left(v_{\frac{n}{2}-a}, v_{\frac{n}{2}}\right)+\gamma_{H^{*}}\left(v_{\frac{n}{2}}\right)=\frac{n}{2}+a$. Further, $\gamma_{H^{*}}\left(v_{\frac{n}{2}-a}\right)=\gamma_{H^{*}}\left(v_{\frac{n}{2}-a}, v_{n}\right)=$ $d\left(v_{\frac{n}{2}-a}, v_{n}\right)=\frac{n}{2}+a$. According to Proposition 1, we have $\gamma_{H^{*}}\left(v_{\frac{n}{2}-a}\right)=\gamma_{H^{*}}\left(v_{\frac{n}{2}+a+1}\right)=$ $\frac{n}{2}+a$, where $1 \leq a \leq \frac{n}{2}-1$. Therefore, we have $\exp _{H^{*}}(k)=\frac{n}{2}-1+\left\lceil\frac{k}{2}\right\rceil$, where $1 \leq k \leq n$.

Case $2\left\{v_{\frac{n}{2}}, v_{\frac{n}{2}+1}\right\} \cap V\left(L\left(H^{*}\right)\right)=\varnothing$.
Let x be any vertex of H^{*}. If $V\left(P\left(v_{\frac{n}{2}}, x\right)\right) \cap V\left(L\left(H^{*}\right)\right) \neq \varnothing$, then $\gamma_{H^{*}}\left(v_{\frac{n}{2}}, x\right)=$ $d\left(v_{\frac{n}{2}}, x\right) \leq \frac{n}{2}$. If $V\left(P\left(v_{\frac{n}{2}}, x\right)\right) \cap V\left(L\left(H^{*}\right)\right)=\varnothing$, according to Corollary 2 , we have $\gamma_{H^{*}}\left(v_{\frac{n}{2}}, x\right)$ $\leq n-d+1$. Then, $\gamma_{H^{*}}\left(v_{\frac{n}{2}}\right) \leq \max \left\{\frac{n}{2}, n-d+1\right\}=\frac{n}{2}$. Further, we have $\gamma_{H^{*}}\left(v_{\frac{n}{2}}\right)=$ $\gamma_{H^{*}}\left(v_{\frac{n}{2}}, v_{n}\right)=d\left(v_{\frac{n}{2}}, v_{n}\right)=\frac{n}{2}$. Let a satisfy that $1 \leq a \leq \frac{n}{2}-1$. Then, $\gamma_{H^{*}}\left(v_{\frac{n}{2}-a}\right) \leq$ $d\left(v_{\frac{n}{2}-a}, v_{\frac{n}{2}}\right)+\gamma_{H^{*}}\left(v_{\frac{n}{2}}\right)=\frac{n}{2}+a$. Further, we have $\gamma_{H^{*}}\left(v_{\frac{n}{2}-a}\right)=\gamma_{H^{*}}\left(v_{\frac{n}{2}-a}, v_{n}\right)=d\left(v_{\frac{n}{2}-a}, v_{n}\right)$ $=\frac{n^{2}}{2}+a$. According to Proposition 1, $\gamma_{H^{*}}\left(v_{\frac{n}{2}+1+a}\right)=\gamma_{H^{*}}\left(v_{\frac{n}{2}-a}\right)=\frac{n}{2}+a$, where $0 \leq a \leq$ $\frac{n}{2}-1$. Therefore, we have $\exp _{H^{*}}(k)=\frac{n}{2}-1+\left\lceil\frac{k}{2}\right\rceil$, where $1 \leq k \leq n$.
(2) $H^{* *}$ is shown in Figure 4. We have $H^{* *} \in D S_{n, 2}^{\prime}(d), f=g=\frac{n}{2}$ or $f=g=\frac{n}{2}+1$. Let us assume $f=g=\frac{n}{2}$, then $n+1-f=n+1-g=\frac{n}{2}+1$. If $n \geq 2 d$, then $n-d+1 \geq$ $\frac{n}{2}+1$. Since $n \geq 6$ and $n \geq 2 d$, then $\frac{d}{2} \leq \frac{n}{4} \leq \frac{n}{2}-1$ and $n-\frac{d}{2}+1 \geq n-\frac{n}{4}+1 \geq \frac{n}{2}+2$. Then $v_{\frac{n}{2}}$ and $v_{\frac{n}{2}+1}$ are not loop vertices.

Suppose any integer a satisfies $d-1 \leq a \leq \frac{n}{2}$. Since $d \geq 2$, then $a \geq d-1 \geq \frac{d}{2}$. Let x be any vertex of $H^{* *}$. Let the walk $W\left(v_{a}, x\right)$ be $v_{a} \xrightarrow{d\left(v_{a}, v_{\frac{n}{2}}\right)} v_{\frac{n}{2}} \xrightarrow{d\left(v_{\frac{n}{2}}, x\right)} x$. If $V\left(W\left(v_{a}, x\right)\right) \cap$ $V\left(L\left(H^{* *}\right)\right) \neq \varnothing$, then $\gamma_{H^{* *}}\left(v_{a}, x\right) \leq\left(\frac{n}{2}-a\right)+\frac{n}{2}=n-a$. If $V\left(W\left(v_{a}, x\right)\right) \cap V\left(L\left(H^{* *}\right)\right)=\varnothing$,
we have $V\left(P\left(v_{a}, v_{\frac{n}{2}}\right)\right) \cap V(L(D))=\varnothing$ and $V\left(P\left(x, v_{\frac{n}{2}}\right)\right) \cap V(L(D))=\varnothing$. According to Corollary 2, we have $\gamma_{H^{* *}}\left(v_{a}, x\right) \leq n-d+1$. So $\gamma_{H^{* *}}\left(v_{a}\right) \leq \max \{n-a, n-d+1\}=$ $n-d+1$, where $d-1 \leq a \leq \frac{n}{2}$. Since $d \geq 2$ and $d-1 \leq a \leq \frac{n}{2}$, then $\frac{n}{2}+1 \leq n-a+$ $1 \leq n-d+2 \leq n-\frac{d}{2}+1$. Further, we have $\gamma_{H^{* *}}\left(v_{a}\right)=\gamma_{H^{* *}}\left(v_{a}, v_{n-a+1}\right)=d\left(v_{a}, v_{\frac{d}{2}}\right)+$ $d\left(v_{\frac{d}{2}}, v_{n-a+1}\right)=d\left(v_{a}, v_{n-\frac{d}{2}+1}\right)+d\left(v_{n-\frac{d}{2}+1}, v_{n-a+1}\right)=n-d+1$, where $d-1 \leq a \leq \frac{n}{2}$. According to Proposition 1, if $\frac{n}{2}+1 \leq a \leq n-d+2$, we have $\gamma_{H^{* *}}\left(v_{a}\right)=\gamma_{H^{* *}}\left(v_{n-a+1}\right)=$ $n-d+1$. So, for $d-1 \leq a \leq n-d+2$, we have $\gamma_{H^{* *}}\left(v_{a}\right)=n-d+1$. Therefore, we have $\exp _{H^{* *}}(k)=n-d+1$, where $1 \leq k \leq n-2 d+4$.

Suppose a satisfies $1 \leq a \leq d-1$. We have $\gamma_{H^{* *}}\left(v_{a}\right) \leq d\left(v_{a}, v_{d-1}\right)+\gamma_{H^{* *}}\left(v_{d-1}\right)=$ $n-d+1+(d-1-a)=n-a$. Moreover, $\gamma_{H^{* *}}\left(v_{a}\right)=\gamma_{H^{* *}}\left(v_{n-a+1}\right)=d\left(v_{a}, v_{n}\right)=n-a$. So, we can get $\exp _{H^{* *}}(k)=n-d+1+\left\lceil\frac{k-(n-2 d+4)}{2}\right\rceil$, where $n-2 d+4 \leq k \leq n$.

Therefore, the theorem now holds.
It can be seen from Theorems 4-6, the upper bound for the k th local exponent of doubly symmetric primitive digraphs of order n with d loops can be reached, where $1 \leq k \leq n$.

4. Conclusions

In this paper, we study the upper bound for the k th local exponent of doubly symmetric primitive digraphs of order n with d loops, where d is an integer such that $1 \leq d \leq n$. For the class of doubly symmetric primitive digraphs, we get the upper bound for the k th local exponent, where $1 \leq k \leq n$. Furthermore, for the class of doubly symmetric primitive digraphs, we find that the upper bound for the k th local exponent can be reached, where $1 \leq k \leq n$. The upper bounds of the generalized μ-scrambling indices for a doubly symmetric primitive digraph are not given. It would be meaningful and interesting to solve the problems in future research.

Funding: This paper is supported by Shanghai Institute of Technology (YJ2021-55).
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Acknowledgments: We would like to thank the editor and reviewers for their valuable suggestions and comments which greatly improved the article.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Brualdi, R.A.; Ryser, H.J. Combinatorial Matrix Theory; Cambridge University Press: Cambridge, UK, 1991.
2. Brualdi, R.A.; Liu, B. Generalized exponents of primitive directed graphs. J. Graph Theory 1990, 14, 483-499. [CrossRef]
3. Brualdi, R.A.; Shao, J.Y. Generalized exponents of primitive symmetric digraphs. Discret. Appl. Math. 1997, 74, 275-293. [CrossRef]
4. Cruz, R.; Gutman, I.; Rada, J. Sombor index of chemical graphs. Appl. Math. Comput. 2021, 399, 126018. [CrossRef]
5. Rather, B.A.; Pirzada, S.; Naikoo, T.A.; Shang, Y. On Laplacian Eigenvalues of the Zero-Divisor Graph Associated to the Ring of Integers Modulo n. Mathematics 2021, 9, 482. [CrossRef]
6. Nath, R.K.; Fasfous, W.N.T.; Das, K.C.; Shang, Y. Common Neighborhood Energy of Commuting Graphs of Finite Groups. Symmetry 2021, 13, 1651. [CrossRef]
7. Shao, J. The exponent set of symmetric primitive matrices. Sci. Sin. Ser. A 1987, 30, 348-358.
8. Zhou, B.; Shen, J. On generalized exponents of tournaments. Taiwan. J. Math. 2002, 6, 565-572. [CrossRef]
9. Gao, Y.; Shao, Y. Generalized exponents of primitive two-colored digraphs. Linear Algebra Appl. 2009, 430, 1550-1565. [CrossRef]
10. Miao, Z.; Zhang, K. The local exponent sets of primitive digraphs. Linear Algebra Appl. 2000, 307, 15-33. [CrossRef]
11. Chen, S.; Liu, B. The k th local exponent of doubly symmetric primitive matrices. Appl. Math. Lett. 2006, 19, 392-397. [CrossRef]
12. Chen, S.; Liu, B. Matrices with maximum k th local exponent in the class of doubly symmetric primitive matrices. Discret. Math. 2008, 308, 3386-3392. [CrossRef]
13. Akelbek, M.; Kirkland, S. Coefficients of ergodicity and the scrambling index. Linear Algebra Appl. 2009, 430, 1111-1130. [CrossRef]
14. Akelbek, M.; Kirkland, S. Primitive digraphs with the largest scrambling index. Linear Algebra Appl. 2009, 430, $1099-1110$. [CrossRef]
15. Chen, S.; Liu, B. The scrambling index of symmetric primitive matrices. Linear Algebra Appl. 2010, 433, 1110-1126. [CrossRef]
16. Kim, H.K. Scrambling index set of primitive digraphs. Linear Algebra Appl. 2013, 439, 1886-1893. [CrossRef]
17. Kim, H.K. Generalized competition index of a primitive digraph. Linear Algebra Appl. 2010, 433, 72-79. [CrossRef]
18. Sim, M.S.; Kim, H.K. On generalized competition index of a primitive tournament. Discret. Math. 2011, 311, 2657-2662. [CrossRef]
19. Kim, H.K.; Park, S.G. A bound of generalized competition index of a primitive digraph. Linear Algebra Appl. 2012, 436, 86-98. [CrossRef]
20. Kim, H.K.; Lee, S.H. Generalized competition indices of symmetric primitive digraphs. Discret. Appl. Math. 2012, 160, 1583-1590. [CrossRef]
21. Shao, Y.; Gao, Y. The m-competition indices of symmetric primitive digraphs with loop. Ars Combin. 2013, 108, 217-223.
22. Fang, W.; Gao, Y.; Shao, Y.; Gao, W.; Jing, G.; Li, Z. The generalized competition indices of primitive minimally strong digraphs. Linear Algebra Appl. 2016, 493, 206-226. [CrossRef]
23. Chen, D.; Li, X. The Generalized Competition Indices of Doubly Symmetric Primitive Digraphs with d Loops. Symmetry 2022, 14, 1192. [CrossRef]
24. Huang, Y.; Liu, B. Generalized scrambling indices of a primitive digraph. Linear Algebra Appl. 2010, 433, 1798-1808. [CrossRef]
25. Zhang, L.; Huang, T.Z. Bounds on the generalized μ-scrambling indices of primitive digraphs. Int. J. Comput. Math. 2012, 89, 17-29. [CrossRef]
26. Zhang, L.; Mou, G.F.; Liu, F.; Li, Z.S. Some bounds of the generalized μ-scrambling indices of primitive digraphs with d loops. J. Inequal. Appl. 2021, 2021, 128. [CrossRef]
