

Article **The kth Local Exponent of Doubly Symmetric Primitive Digraphs with** *d* **Loops**

Danmei Chen

College of Sciences, Shanghai Institute of Technology, Shanghai 201418, China; chdm@sit.edu.cn

Abstract: Let *D* be a primitive digraph of order *n*. The exponent of a vertex *x* in *V*(*D*) is denoted $\gamma_D(x)$, which is the smallest integer *q* such that for any vertex *y*, there is a walk of length *q* from *x* to *y*. Let $V(D) = \{v_1, v_2, \dots, v_n\}$. We order the vertices of V(D) so that $\gamma_D(v_1) \leq \gamma_D(v_2) \leq \dots \leq \gamma_D(v_n)$ is satisfied. Then, for any integer *k* satisfying $1 \leq k \leq n$, $\gamma_D(v_k)$ is called the *k*th local exponent of *D* and is denoted by $exp_D(k)$. Let $DS_n(d)$ represent the set of all doubly symmetric primitive digraphs with *n* vertices and *d* loops, where *d* is an integer such that $1 \leq d \leq n$. In this paper, we determine the upper bound for the *k*th local exponent of $DS_n(d)$, where $1 \leq k \leq n$. In addition, we find that the upper bound for the *k*th local exponent of $DS_n(d)$ can be reached, where $1 \leq k \leq n$.

Keywords: exponent; symmetric digraph; generalized competition index; competition index; scrambling index

1. Introduction

Let D = (V, E) denote a digraph (directed graph) with *n* vertices, where the vertex set V = V(D) and the arc set E = E(D). Loops are permitted, but multiple arcs are not. A walk from *x* to *y* in *D*, we mean a sequence of vertices x, v_1, \dots, v_t, y where each vertex in the sequence of vertices belongs to *V*, and a sequence of arcs $(x, v_1), (v_1, v_2), \dots, (v_t, y)$ where each arc in the sequence of arcs belongs to *E*, and the vertices and arcs are not necessarily distinct. The number of arcs in *W* is the length of the walk *W*. The notation $x \xrightarrow{k} y$ means that there exists a walk of length *k* from *x* to *y*. The distance from vertex *x* to vertex *y* in *D* is written as $d_D(x, y)$ (for short, d(x, y)), which refers to the length of the shortest walk from *x* to *y*. If x = y, then a walk from *x* to *y* is a closed walk. A cycle is a closed walk from *x* to *y* with distinct vertices except for x = y.

Let x, y be any pair of vertices in a digraph D. The digraph D is called primitive, if there exists a positive integer k such that there is a walk of length k from x to y. This smallest such k is denoted by exp(D), which is called the exponent of D. The greatest common divisor of the lengths of all the cycles in D is recorded as l(D). It is well known (see [1]) that D is primitive if and only if D is strongly connected and l(D) = 1.

Brualdi and Liu [2] generalized the concept of exponent for a primitive digraph (primitive matrix). Let *D* be a primitive digraph with *n* vertices. The exponent of *D* can be broken down into more local exponents [3]. For any pair of vertices $x, z \in V(D)$, let $\gamma_D(x, z)$ denote the smallest integer *p* such that there is a walk of length *t* from *x* to *z*, for each integer $t \ge p$. Since *D* is a primitive digraph, then $\gamma_D(x, z)$ is a finite number. For any vertex $x \in V(D)$, the exponent of vertex *x* is written as $\gamma_D(x)$, which is the smallest integer *q* so that for any vertex $y \in V(D)$, there exists a walk of length *q* from *x* to *y*. Moreover, for any vertex $z \in V(D)$ and any integer $t \ge \gamma_D(x, z)$, there is a walk of length *t* from *x* to *z*. So, we have $q = \max{\gamma_D(x, z) : z \in V(D)}$. Then, for any vertex $y \in V(D)$, there is a walk of length *t* from *x* to *y* for each integer $t \ge q$. Therefore, we have

$$\gamma_D(x) = \max\{\gamma_D(x, z) : z \in V(D)\}.$$

Let the vertices of *D* be ordered as v_1, v_2, \cdots, v_n such that

Citation: Chen, D. The *k*th Local Exponent of Doubly Symmetric Primitive Digraphs with *d* Loops. *Symmetry* **2022**, *14*, 1623. https://doi.org/10.3390/sym14081623

Academic Editors: Juan Luis García Guirao and Sergei D. Odintsov

Received: 1 July 2022 Accepted: 5 August 2022 Published: 7 August 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

$$\gamma_D(v_1) \leq \gamma_D(v_2) \leq \cdots \leq \gamma_D(v_n).$$

 $\gamma_D(v_k)$ is called the *k*th local exponent (generalized exponent) of *D*, and it is denoted by $exp_D(k)$, where $1 \le k \le n$. Then,

$$exp_D(1) \leq exp_D(2) \leq \cdots \leq exp_D(n).$$

Furthermore, we have $\gamma(D) = \max{\{\gamma_D(x) : x \in V(D)\}} = \max{\{\gamma_D(x,y) : x, y \in V(D)\}}$. Obviously, the exponent of *D* equals $exp_D(n)$. That is, $\gamma(D) = exp(D) = exp_D(n)$. So, for a primitive digraph *D*, the local exponents of *D* are generalizations of the exponent of *D*.

Brualdi and Liu [2] proposed a memoryless communication system. In the memoryless communication system represented by a primitive digraph D of order n, the kth local exponent is the smallest time for each vertex to simultaneously hold all k bits of the information. For more details, please refer to [2,3].

For any vertices x and y of a digraph D, $(x, y) \in E(D)$ is an arc if and only if $(y, x) \in E(D)$ is an arc, which is represented by $x \leftrightarrow y$, then such a digraph D is called a symmetric digraph. An undirected graph (possibly with loops) can be viewed as a symmetric digraph. For some research on undirected graphs, please see [4–6]. When D is symmetric, the notation $x \xrightarrow{k} y$ indicates that there is a walk of length k from x to y.

Let D = (V, E) be a symmetric digraph, we can regard D as an undirected graph. For convenience, undirected graph terms such as edges, edge set, etc., are used directly to describe a symmetric digraph. Then, let E(D) denote the set of undirected edges (edges) in D. Moreover, we assume that the notation $[x, y] \in E(D)$ represents that there is an edge in D with x, y as end vertices.

Let D = (V, E) be a symmetric digraph, where $V = \{v_1, v_2, \dots, v_n\}$. If for any vertices v_i and v_j , $[v_i, v_j] \in E(D)$ if and only if $[v_{n+1-i}, v_{n+1-j}] \in E(D)$, then such a symmetric digraph D is called a doubly symmetric digraph. Moreover, $[v_i, v_j]$ and $[v_{n+1-i}, v_{n+1-j}]$ are called a pair of symmetrical edges, or $[v_i, v_j]$ is a symmetrical edge of $[v_{n+1-i}, v_{n+1-j}]$, where $1 \le i \le n$ and $1 \le j \le n$. The vertices v_{n+1-i}, v_i are called a pair of symmetric vertex of v_{n+1-i} , where $1 \le i \le n$. According to this definition, when n is odd, v_{n+1} is symmetric to itself. If v_i is a loop vertex, then $[v_i, v_i] \in E(D)$ and $[v_{n+1-i}, v_{n+1-i}] \in E(D)$. Therefore, for $i \ne n + 1 - i$, if $[v_i, v_i]$ is a loop, then $[v_{n+1-i}, v_{n+1-i}]$ is also a loop, the loops appear in pairs. A doubly symmetric digraph D is called a doubly symmetric primitive digraph provided D is primitive.

If a doubly symmetric primitive digraph *D* contains exactly *d* loops, then we call *D* a doubly symmetric primitive digraph with *d* loops. Let DS_n denote the set of all doubly symmetric primitive digraphs of order *n*. Let $DS_n(d)$ denote the set of all doubly symmetric primitive digraphs of order *n* with *d* loops, where *d* is an integer such that $1 \le d \le n$. Obviously, we have $DS_n(d) \subseteq DS_n$.

Let $D \in DS_n(d)$. After deleting any pair of symmetrical edges $[v_i, v_j]$ and $[v_{n+1-i}, v_{n+1-j}]$ of D, the obtained digraph D' is not a doubly symmetric primitive digraph (that is, D' is not connected), then we call $D \in DS'_n(d)$, where $1 \le i < j \le n$. Obviously, we have $DS'_n(d) \subseteq DS_n(d)$.

For example, we consider the *k*th local exponent of the graph *G*. Let $V(G) = \{v_1, v_2, \cdots, v_7\}$. Let $E(G) = \{[v_i, v_{i+1}] | 1 \le i \le 6\} \cup \{[v_4, v_4]\}$. *G* is shown in Figure 1.

Figure 1. G.

We easily get $\gamma_G(v_4) = 3$, $\gamma_G(v_3) = \gamma_G(v_5) = 4$, $\gamma_G(v_2) = \gamma_G(v_6) = 5$, $\gamma_G(v_1) = \gamma_G(v_7) = 6$. Then, we have $exp_G(1) = 3$, $exp_G(2) = exp_G(3) = 4$, $exp_G(4) = exp_G(5) = 5$, $exp_G(6) = exp_G(7) = 6$. Moreover, we have $\gamma(G) = exp_G(7) = 6$.

Some studies [7–12] have investigated exponents and their generalization. Chen and Liu [11] studied the *k*th local exponent of doubly symmetric primitive matrices (primitive digraphs). Chen and Liu [12] characterized the doubly symmetric primitive digraphs with the *k*th local exponent reaching the maximum value. A doubly symmetric primitive digraph with *d* loops is a special doubly symmetric primitive digraph. It is important to mention that the *k*th local exponent of such a class of digraphs has not been studied before. Using graph theory methods, we obtain the upper bound of the *k*th local exponent of digraphs in $DS_n(d)$, where $1 \le k \le n$. Some studies have investigated the scrambling index [13–16] and generalized competition index [17–23]. Several studies explored the generalized μ -scrambling indices, please refer to [24–26].

Let $D \in DS_n(d)$. Let V(L(D)) represent the set of d loop vertices in D. Let E(L(D))denote the set of d loops in D. Let v_i, v_j be any pair of vertices of the digraph D. If the walk from v_i to v_j in D is denoted as $W_D(v_i, v_j)$ (for short, $W(v_i, v_j)$), then $|W(v_i, v_j)|$ is used to denote the length of the walk $W(v_i, v_j)$, and $V(W(v_i, v_j))$ is used to denote the set of all vertices in this walk $W(v_i, v_j)$. If there is a unique path from v_i to v_j in D, then let $P_D(v_i, v_j)$ (for short, $P(v_i, v_j)$) denote the unique path, and let $V(P_D(v_i, v_j))$ (for short, $V(P(v_i, v_j))$) denote the set of all vertices on the path. If $v_i = v_j$, then $V(P(v_i, v_j)) = \{v_i\} =$ $\{v_j\}$. If a walk $W(v_i, v_j)$ from v_i to v_j in D does not pass through a loop vertex, then let $V(W(v_i, v_j)) \cap V(L(D)) = \emptyset$, otherwise $V(W(v_i, v_j)) \cap V(L(D)) \neq \emptyset$. Similarly, if the unique path from v_i to v_j passes through a loop vertex, that is $V(P(v_i, v_j)) \cap V(L(D)) \neq \emptyset$, otherwise $V(P(v_i, v_j)) \cap V(L(D)) = \emptyset$.

For a vertex $v \in V(D)$ and a set $X \subseteq V(D)$, let $d(v, X) = \min\{d(v, v_i) : v_i \in X\}$. If $v \in X$, let d(v, X) = 0. For any vertex $u \in V(D)$ and $v \in V(D)$, if u = v, let d(u, v) = 0. If T is a set, the notation |T| is used to denote the number of all elements in T. The notation $\lfloor a \rfloor$ is used to denote the largest integer not greater than a, and the notation $\lceil b \rceil$ is used to denote the smallest integer not less than b.

In this paper, let *n*, *d* and *k* be integers with $n \ge 5$, $1 \le k \le n$, $1 \le d \le n$. We give the upper bound of the *k*th local exponent of digraphs in $DS_n(d)$, where $1 \le k \le n$.

2. The Upper Bound for the *k*th Local Exponent of $DS_n(d)$

In this section, let D = (V, E), where $V = \{v_1, v_2, \cdots, v_n\}$.

In the case of $D \in DS_n(d)$, we observe the exponent of any vertex in D, it is easy to get the following Proposition 1, let us omit the proof.

Proposition 1. Let $D \in DS_n(d)$ and let v_i be any vertex of D, then $\gamma_D(v_i) = \gamma_D(v_{n+1-i})$, where $1 \le i \le n$.

Lemma 1 (Lemma 3.3 [2]). Let *D* be a primitive digraph with *n* vertices. Then, $exp_D(k+1) \le exp_D(k) + 1$, where $1 \le k \le n-1$.

Remark 1. Lemma 1 is actually very useful. Next, we repeat the proof of Brualdi and Liu (see [2]). Since D is strongly connected, for any integer k such that $1 \le k \le n - 1$, there is a vertex x that is joined by an arc to one of the vertices with the k smallest exponents. Therefore, $exp_D(k+1) \le exp_D(k) + 1$, where $1 \le k \le n - 1$.

Lemma 2. Let $D \in DS_n(d)$ and let v_i, v_j be any pair of vertices of D. Then, $\gamma_D(v_j) \le \gamma_D(v_i) + d(v_i, v_j)$.

Proof. For any vertex $x \in V(D)$, there is a walk of length t from v_i to x, which is $v_i \xrightarrow{t} x$, for each integer $t \ge \gamma_D(v_i)$. So, there is a walk of length s from v_j to x, which is $v_j \xrightarrow{d(v_j, v_i)} v_i \xrightarrow{t} x$, for each integer $s \ge \gamma_D(v_i) + d(v_i, v_j)$. Therefore, $\gamma_D(v_j) \le \gamma_D(v_i) + d(v_i, v_j)$. \Box

Lemma 3. Let $D \in DS_n(d)$ and let x, y be any pair of vertices of D. If there exists a walk W(x, y) from x to y such that $V(W(x, y)) \cap V(L(D)) \neq \emptyset$, then $\gamma_D(x, y) \leq |W(x, y)|$.

Proof. Let h = |W(x, y)|. We consider the following.

Case 1 $x \in V(D) \setminus V(L(D))$ and $y \in V(D) \setminus V(L(D))$.

Suppose a walk from *x* to *y* through a loop vertex is denoted by $x \xrightarrow{a} v_i \xrightarrow{h-a} y$, where v_i is a loop vertex and *a* is an integer such that $1 \le a \le h-1$. Then, the length of the walk $x \xrightarrow{a} v_i \xrightarrow{1} v_i \xrightarrow{h-a} y$ is h+1. The length of the walk $x \xrightarrow{a} v_i \xrightarrow{1} v_i \xrightarrow{1} v_i \xrightarrow{h-a} y$ is h+2. Similarly, we can easily conclude that there is a walk of length *s* from *x* to *y*, for each integer $s \ge h$. So, $\gamma_D(x,y) \le |W(x,y)|$.

Case 2 $x \in V(L(D))$ or $y \in V(L(D))$.

Similar to Case 1, it is easy to get that there is a walk of length *s* from *x* to *y*, for each integer $s \ge h$. So, $\gamma_D(x, y) \le |W(x, y)|$.

Therefore, the lemma holds. \Box

Lemma 4 (Lemma 1 [23]). Let $D \in DS_n$. If n is odd and x is any vertex of D, then $d(x, v_{\frac{n+1}{2}}) \leq \frac{n-1}{2}$.

Theorem 1. Let $D \in DS_n(d)$. If *n* is odd and *d* is odd, then $exp_D(k) \leq \frac{n-1}{2} + \lfloor \frac{k}{2} \rfloor$, where $1 \leq k \leq n$.

Proof. If *d* is odd, then $v_{\frac{n+1}{2}}$ is a loop vertex. Let *x* be any vertex. Then, a shortest path from *x* to $v_{\frac{n+1}{2}}$ goes through the loop vertex $v_{\frac{n+1}{2}}$. According to Lemma 4, we have $d(x, v_{\frac{n+1}{2}}) \leq \frac{n-1}{2}$. Furthermore, according to Lemma 3, we have $\gamma_D(v_{\frac{n+1}{2}}, x) \leq d(x, v_{\frac{n+1}{2}})$. Further, we have $\gamma_D(v_{\frac{n+1}{2}}, x) = d(x, v_{\frac{n+1}{2}})$. So, $\gamma_D(v_{\frac{n+1}{2}}) = \max\{d(v_{\frac{n+1}{2}}, x) : x \in V(D)\} \leq \frac{n-1}{2}$. Then, we have $exp_D(1) \leq \gamma_D(v_{\frac{n+1}{2}}) \leq \frac{n-1}{2}$. Further, according to Proposition 1, we have $\gamma_D(v_1) = \gamma_D(v_n), \gamma_D(v_2) = \gamma_D(v_{n-1}), \cdots, \gamma_D(v_{\frac{n-1}{2}}) = \gamma_D(v_{\frac{n+3}{2}})$. So, according to Lemma 1, we conclude $exp_D(2) = exp_D(3) \leq exp_D(1) + 1 \leq \frac{n-1}{2} + 1, exp_D(4) = exp_D(5) \leq exp_D(1) + 2 \leq \frac{n-1}{2} + 2, \cdots, exp_D(n-1) = exp_D(n) \leq exp_D(1) + \frac{n-1}{2} \leq \frac{n-1}{2} + \frac{n-1}{2}$. Therefore, we have $exp_D(k) \leq exp_D(1) + \lfloor \frac{k}{2} \rfloor \leq \frac{n-1}{2} + \lfloor \frac{k}{2} \rfloor$, where $1 \leq k \leq n$. \Box

Let $D' \in DS_n(d)$ and $D \in DS_n(d)$. If D is a subgraph of D' such that V(D) = V(D')and $E(D) \subseteq E(D')$, then $exp_{D'}(k) \leq exp_D(k)$, where $1 \leq k \leq n$. So, if we investigate the upper bound of the *k*th local exponent of digraphs in $DS_n(d)$, we only need to investigate the digraphs in $DS'_n(d)$.

Referring to Definition 3 in [23], we give the following Definition 1.

Definition 1. Let $D \in DS'_n(d)$, where *n* is odd, *d* is even such that $d \ge 2$. There exist two connected subgraphs $D_* = (V_*, E_*)$ and $D_{**} = (V_{**}, E_{**})$ of *D*, and D_*, D_{**} satisfy $V(D) = V_* \cup V_{**}$ and $E(D) = E_* \cup E_{**} \cup E(L(D))$. Where $V_* = \{v_{n+1-i} : v_i \in V_{**}\}$ and $E_* = \{[v_{n+1-i}, v_{n+1-j}] : [v_i, v_j] \in E_{**}\}$. Moreover, $|V_*| = |V_{**}| = \frac{n+1}{2}$, $|E_*| = |E_{**}| = \frac{n-1}{2}$.

Remark 2. Suppose *n* is odd and *d* is even that satisfies $d \ge 2$. If $D \in DS'_n(d)$, then there are two connected subgraphs D_* and D_{**} of *D*. In addition, there is a unique path for any two different vertices in D_* and D_{**} , respectively. Moreover, there is a unique path for any two different vertices in *D*. Let *x*, *y* be any pair of vertices of *D* such that $x \in V_*$ and $y \in V_{**}$, then $V(P(x, v_{\frac{n+1}{2}})) \cap V(P(v_{\frac{n+1}{2}}, y)) = \{v_{\frac{n+1}{2}}\}$ (see [23]). After removing *d* loops from *D*, the obtained graph is a tree. Therefore, *D* is a special tree with loops that satisfies $[v_i, v_j] \in E(D)$ if and only if $[v_{n+1-i}, v_{n+1-j}] \in E(D)$, where $1 \le i < j \le n$.

Lemma 5 (Lemma 3 [23]). Let $D \in DS'_n(d)$, where n is odd, d is even such that $d \ge 2$. Let x, y be any pair of vertices of D such that $V(P(x, v_{\frac{n+1}{2}})) \cap V(L(D)) = \emptyset$ and $V(P(y, v_{\frac{n+1}{2}})) \cap V(L(D)) = \emptyset$. Then, there is a walk W(x, y) from x to y such that $V(W(x, y)) \cap V(L(D)) \neq \emptyset$, and $|W(x, y)| \le n - d + 1$.

Corollary 1. Let $D \in DS'_n(d)$, where *n* is odd, *d* is even and $d \ge 2$. Let *x*, *y* be any pair of vertices of *D* satisfying $V(P(x, v_{\frac{n+1}{2}})) \cap V(L(D)) = \emptyset$ and $V(P(y, v_{\frac{n+1}{2}})) \cap V(L(D)) = \emptyset$. Then, $\gamma_D(x, y) \le n - d + 1$.

Proof. According to Lemma 5, there is a walk W(x, y) from x to y passing through a loop vertex, and $|W(x, y)| \le n - d + 1$. Moreover, according to Lemma 3, we have $\gamma_D(x, y) \le |W(x, y)| \le n - d + 1$. \Box

In Corollary 1, if $x = v_{\frac{n+1}{2}}$ and x isn't a loop vertex, then $V(P(x, v_{\frac{n+1}{2}})) = \{v_{\frac{n+1}{2}}\}$, we have $V(P(x, v_{\frac{n+1}{2}})) \cap V(L(D)) = \emptyset$.

Theorem 2. Let $D \in DS_n(d)$. If *n* is odd, *d* is even and $d \ge 2$, then

- (1) If $n \le 2d 3$, then $exp_D(k) \le \frac{n-1}{2} + \left| \frac{k}{2} \right|$, where $1 \le k \le n$.
- (2) If $n \ge 2d 1$, then

$$exp_{D}(k) \leq \begin{cases} n-d+1, & \text{where } 1 \leq k \leq n-2d+4 \\ n-d+1 + \left\lceil \frac{k-(n-2d+4)}{2} \right\rceil, & \text{where } n-2d+4 \leq k \leq n \end{cases}$$

Proof. We only need to consider $D \in DS'_n(d)$. Since *d* is even, then $v_{\frac{n+1}{2}}$ isn't a loop vertex. Let *x* be any vertex. By Lemma 4, we have $d(x, v_{\frac{n+1}{2}}) \leq \frac{n-1}{2}$. If the path from $v_{\frac{n+1}{2}}$ to *x* passes through a loop vertex, that is $V(P(v_{\frac{n+1}{2}}, x)) \cap V(L(D)) \neq \emptyset$, then $\gamma_D(v_{\frac{n+1}{2}}, x) = d(x, v_{\frac{n+1}{2}}) \leq \frac{n-1}{2}$. If vertex *x* satisfies $V(P(v_{\frac{n+1}{2}}, x)) \cap V(L(D)) = \emptyset$, according to Corollary 1, we have $\gamma_D(v_{\frac{n+1}{2}}, x) \leq n - d + 1$. Therefore, we have $\gamma_D(v_{\frac{n+1}{2}}) \leq \max\{\frac{n-1}{2}, n - d + 1\}$.

- (1) If $n \leq 2d-3$, then $n-d+1 \leq \frac{n-1}{2}$. Then, we have $exp_D(1) \leq \gamma_D(v_{\frac{n+1}{2}}) \leq \frac{n-1}{2}$. According to Proposition 1, we have $\gamma_D(v_1) = \gamma_D(v_n), \gamma_D(v_2) = \gamma_D(v_{n-1}), \cdots, \gamma_D(v_{\frac{n-1}{2}})$ $= \gamma_D(v_{\frac{n+3}{2}})$. Then, according to Lemma 1, we can conclude that $exp_D(2) = exp_D(3) \leq exp_D(1)+1 \leq \frac{n-1}{2}+1, exp_D(4) = exp_D(5) \leq exp_D(1)+2 \leq \frac{n-1}{2}+2, \cdots$. Therefore, we have $exp_D(k) \leq exp_D(1) + \lfloor \frac{k}{2} \rfloor \leq \frac{n-1}{2} + \lfloor \frac{k}{2} \rfloor$, where $1 \leq k \leq n$.
- (2) If $n \ge 2d 1$, then $n d + 1 \ge \frac{n+1}{2}$. We have $exp_D(1) \le \gamma_D(v_{\frac{n+1}{2}}) \le n d + 1$.

Next, we construct a set V(M) such that $|V(M)| \ge n - 2d + 4$, and for any vertex $v_i \in V(M)$, $\gamma_D(v_i) \le n - d + 1$ holds. Suppose $V(M) = \{v : d(v, v_{\frac{n+1}{2}}) \le \frac{n-2d+3}{2}\}$. Then, $v_{\frac{n+1}{2}} \in V(M)$.

Suppose $v_h \in V(M) \cap V_*$ and $v_h \neq v_{\frac{n+1}{2}}$. If the vertex sequence of the unique path in D_* from v_h to $v_{\frac{n+1}{2}}$ is $v_h, \dots, v_t, \dots, v_{\frac{n+1}{2}}$, then the vertex sequence of the unique path in D_{**} from v_{n+1-h} to $v_{\frac{n+1}{2}}$ is $v_{n+1-h}, \dots, v_{n+1-t}, \dots, v_{\frac{n+1}{2}}$. Moreover, $V(P(v_h, v_{\frac{n+1}{2}})) \cap$ $V(P(v_{n+1-h}, v_{\frac{n+1}{2}})) = \{v_{\frac{n+1}{2}}\}$. So, $d(v_h, v_{\frac{n+1}{2}}) = d(v_{n+1-h}, v_{\frac{n+1}{2}}) \leq \frac{n-2d+3}{2}$. Therefore, we have $v_{n+1-h} \in V(M)$. Next, we prove that $|V(M)| \geq n - 2d + 4$. For any vertex $v_s \in V(D)$, if $v_s \in V(M)$, then |V(M)| = n. If there is a vertex v_l satisfying $v_l \in V(D) \setminus$ V(M), then $d(v_l, v_{\frac{n+1}{2}}) \geq \frac{n-2d+3}{2} + 1$. So, $V(P(v_l, v_{\frac{n+1}{2}})) \cap V(M) = \frac{n-2d+3}{2} + 1$. Moreover, $V(P(v_{n+1-l}, v_{\frac{n+1}{2}})) \cap V(M) = \frac{n-2d+3}{2} + 1$ and $V(P(v_l, v_{\frac{n+1}{2}})) \cap V(P(v_{n+1-l}, v_{\frac{n+1}{2}})) =$ $\{v_{\frac{n+1}{2}}\}$. Then, we have $|(V(P(v_l, v_{\frac{n+1}{2}})) \cup V(P(v_{n+1-l}, v_{\frac{n+1}{2}}))) \cap V(M)| = n - 2d + 4$. Therefore, we have $|V(M)| \geq n - 2d + 4$. For any vertex $v_i \in V(M)$, next we consider $\gamma_D(v_i)$. For any vertex $v_i \in V(M)$, let the walk $V(W(v_i, x))$ from v_i to x be $v_i \xrightarrow{d(v_i, v_{n+1})} \longrightarrow v_{n+1} \xrightarrow{d(v_{n+1}, x)} x$. If the walk $V(W(v_i, x))$ passes through a loop vertex, we have $\gamma_D(v_i, x) \leq d(v_i, v_{n+1}) + d(v_{n+1}, x) \leq \frac{n-2d+3}{2} + \frac{n-1}{2} = n - d + 1$. If the walk $V(W(v_i, x))$ doesn't pass through a loop vertex, that is, $V(W(v_i, x)) \cap V(L(D)) = \emptyset$. Then, we have $V(P(v_i, v_{n+1})) \cap V(L(D)) = \emptyset$ and $V(P(x, v_{n+1})) \cap V(L(D)) = \emptyset$. So, if $V(W(v_i, x)) \cap V(L(D)) = \emptyset$, according to Corollary 1, we have $\gamma_D(v_i, x) \leq n - d + 1$. Therefore, we have $exp_D(k) \leq n - d + 1$, where $1 \leq k \leq |V(M)|$.

For any vertex v_j such that $v_j \in V(D) \setminus V(M)$, then $v_{n+1-j} \in V(D) \setminus V(M)$. There is a unique path for any pair of vertices in D. So for any vertex $v_i \in V(M)$, we have $d(v_j, v_i) = d(v_{n+1-j}, v_{n+1-i})$. Suppose $d(v_j, V(M)) = d(v_j, v_l)$, where $v_l \in V(M)$. We have $d(v_{n+1-j}, v_{n+1-l}) = d(v_j, v_l) \leq d(v_j, v_i) = d(v_{n+1-j}, v_{n+1-i})$. So, we have $d(v_j, V(M)) = d(v_{n+1-j}, V(M))$. Furthermore, according to Lemma 2, we can easily conclude that $\gamma_D(v_j) = \gamma_D(v_{n+1-j}) \leq n - d + 1 + d(v_j, V(M))$. Since $|V(M)| \geq n - 2d + 4$, the conclusion is clearly established.

Therefore, the theorem holds. \Box

Referring to Definition 4 in [23], we give the following Definition 2.

Definition 2. Let $D \in DS'_n(d)$, where *n* is even, *d* is even such that $d \ge 2$.

- (1) There exist two connected subgraphs $D_1 = (V_1, E_1)$ and $D_2 = (V_2, E_2)$ of D, and D_1, D_2 satisfy $V(D) = V_1 \cup V_2$ and $E(D) = E_1 \cup E_2 \cup \{[v_f, v_{n+1-g}]\} \cup \{[v_{n+1-f}, v_g]\} \cup E(L(D))$. Where $V_1 = \{v_{n+1-i} : v_i \in V_2\}$ and $E_1 = \{[v_{n+1-i}, v_{n+1-j}] : [v_i, v_j] \in E_2\}$, $v_f \in V_1$ and $v_g \in V_1$. Moreover, $|V_1| = |V_2| = \frac{n}{2}$, $|E_1| = |E_2| = \frac{n}{2} - 1$.
- (2) If $\{v_f, v_{n+1-f}\} \cap V(L(D)) = \emptyset$. Let $V(H_1) = \{v : V(P_{D_1}(v_f, v)) \cap V(L(D)) = \emptyset$, where $v \in V_1\}$ and $V(H_2) = \{v : V(P_{D_2}(v_{n+1-f}, v)) \cap V(L(D)) = \emptyset$, where $v \in V_2\}$. Suppose $V(H) = V(H_1) \cup V(H_2)$.

Definition 3. Let $D \in DS'_n(d)$, where *n* is even, *d* is even such that $d \ge 2$. In Definition 2(1), we give the following definition:

- (1) Let $W(v_f, v_f)$ be $v_f \xrightarrow{d_{D_1}(v_f, v_g)} v_g \xrightarrow{d_D(v_g, v_{n+1-f})} v_{n+1-f} \xrightarrow{d_{D_2}(v_{n+1-f}, v_{n+1-g})} v_{n+1-g}$ $\xrightarrow{d_D(v_{n+1-g}, v_f)} v_f$, then $W(v_f, v_f)$ is a closed walk from v_f to v_f . Let us write $V(W(v_f, v_f)) = V(R)$.
- (2) If $f \neq g$, let $D \in DS'_{n,1}(d)$. If f = g, let $D \in DS'_{n,2}(d)$.

Remark 3. Suppose *n* is even and *d* is even that satisfies $d \ge 2$. If $D \in DS'_n(d)$, then there are two connected subgraphs D_1 and D_2 of *D*. Moreover, there is a unique path for any two different vertices in D_1 and D_2 , respectively. Since *D* is connected, then there are edges $[v_f, v_{n+1-g}] \in E(D)$ and $[v_{n+1-f}, v_g] \in E(D)$. Then, $d_D(v_g, v_{n+1-f}) = d_D(v_{n+1-g}, v_f) = 1$. If v_f and v_{n+1-f} are not loop vertices, then $v_f \in V(H)$ and $v_{n+1-f} \in V(H)$. If $D \in DS'_{n,1}(d)$, then $f \neq g$, and |V(R)| is even such that $|V(R)| \ge 4$. Furthermore, if $D \in DS'_{n,1}(d)$, after removing *d* loops from *D*, the obtained graph D^* is not a tree. According to Definitions 2 and 3, it is not difficult to see that $|V(D^*)| = n$ and $|E(D^*)| = n$. If $D \in DS'_{n,2}(d)$, then f = g, $V(R) = \{v_f, v_{n+1-f}\}$ and |V(R)| = 2. If $D \in DS'_{n,2}(d)$, then *D* is a special tree with loops that satisfies $[v_i, v_j] \in E(D)$ if and only if $[v_{n+1-i}, v_{n+1-j}] \in E(D)$, where $1 \le i < j \le n$. In fact, $D \in DS'_{n,2}(d)$ can be regarded as a special case of f = g in $D \in DS'_{n,1}(d)$.

In Lemma 2 in [23], let $D \in DS'_n(d)$, where *n* is even and *d* be even such that $d \ge 2$. We can directly get the following Lemma 6. **Lemma 6.** Let $D \in DS'_n(d)$. Let n be even and d be even such that $d \ge 2$. Let x be any vertex of D. Then, for any vertex $v_s \in V(R)$, we have $d(x, v_s) \le \frac{n}{2}$.

Lemma 7 (Lemma 5 [23]). Let $D \in DS'_n(d)$, where *n* is even, *d* is even and $d \ge 2$. Let *x*, *y* be any pair of vertices of *D* such that $x, y \in V(H)$. If $V(R) \cap V(L(D)) = \emptyset$, then there exists a walk W(x, y) from *x* to *y* such that $V(W(x, y)) \cap V(L(D)) \neq \emptyset$, and $|W(x, y)| \le n - d + 1$.

Corollary 2. Let $D \in DS'_n(d)$, where *n* is even, *d* is even such that $d \ge 2$. Let *x*, *y* be any pair of vertices of *D* satisfying $x, y \in V(H)$. If $V(R) \cap V(L(D)) = \emptyset$, then $\gamma_D(x, y) \le n - d + 1$.

Proof. According to Lemma 7, there is a walk W(x, y) from x to y passing through a loop vertex, and $|W(x, y)| \le n - d + 1$. Furthermore, according to Lemma 3, we have $\gamma_D(x, y) \le |W(x, y)| \le n - d + 1$. \Box

Theorem 3. Let $D \in DS_n(d)$. If *n* is even, *d* is even and $d \ge 2$, then

- (1) If $n \le 2d 2$, then $exp_D(k) \le \frac{n}{2} 1 + \lfloor \frac{k}{2} \rfloor$, where $1 \le k \le n$.
- (2) If $n \ge 2d$, then

$$exp_D(k) \le \begin{cases} n-d+1, & where \ 1 \le k \le n-2d+4, \\ n-d+1 + \left\lceil \frac{k-(n-2d+4)}{2} \right\rceil, & where \ n-2d+4 \le k \le n. \end{cases}$$

Proof. We only need to consider $D \in DS'_n(d)$. Let *x* be any vertex. Let us consider the following two cases.

Case 1 $D \in DS'_{n,1}(d)$.

Since $v_f \in V_1$ and $v_g \in V_1$, then $v_{n+1-f} \in V_2$ and $v_{n+1-g} \in V_2$. Case 1.1 $V(R) \cap V(L(D)) \neq \emptyset$.

Suppose $\{v_m, v_{n+1-m}\} \subseteq V(R) \cap V(L(D))$. Then, v_m and v_{n+1-m} are loop vertices. According to Lemma 6, we have $d(x, v_m) \leq \frac{n}{2}$. Further, $\gamma_D(v_m) = \gamma_D(v_{n+1-m}) \leq \frac{n}{2}$. Then, $exp_D(1) = exp_D(2) \leq \gamma_D(v_m) \leq \frac{n}{2}$. Therefore, according to Proposition 1 and Lemma 1, we have $exp_D(k) \leq \frac{n}{2} - 1 + \lfloor \frac{k}{2} \rfloor$, where $1 \leq k \leq n$.

- (1) If $n \le 2d 2$, then the conclusion is clearly established.
- (2) If $n \ge 2d$, for $1 \le k \le n 2d + 4$, then $exp_D(k) \le \frac{n}{2} 1 + \left\lceil \frac{k}{2} \right\rceil \le \frac{n}{2} 1 + \frac{n}{2} d + 2 = n d + 1$. For $n 2d + 4 \le k \le n$, we have $exp_D(k) \le \frac{n}{2} 1 + \left\lceil \frac{k}{2} \right\rceil = \frac{n}{2} 1 + \left\lceil \frac{k (n 2d + 4)}{2} \right\rceil + \frac{n}{2} d + 2 = n d + 1 + \left\lceil \frac{k (n 2d + 4)}{2} \right\rceil$. Case 1.2 $V(R) \cap V(L(D)) = \emptyset$.

Then, $v_f \in V(H) \cap V(R)$, $v_{n+1-f} \in V(H) \cap V(R)$.

For $x \in V(H)$, according to Corollary 2, we have $\gamma_D(v_f, x) \le n - d + 1$.

For any vertex $x \in V_1 \setminus V(H)$, then $V(P_{D_1}(v_f, x)) \cap V(L(D)) \neq \emptyset$. We have $\gamma_D(v_f, x) \leq d_{D_1}(v_f, x) \leq \frac{n}{2}$.

For any vertex $x \in V_2 \setminus V(H)$, then $V(P_{D_2}(v_{n+1-f}, x)) \cap V(L(D)) \neq \emptyset$. Let the walk $W_D(v_f, x)$ be $v_f \xrightarrow{d_D(v_f, v_{n+1-g})} v_{n+1-g} \xrightarrow{d_{D_2}(v_{n+1-g}, x)} x$. Since $V(R) \cap V(L(D)) = \emptyset$, then $V(P_{D_2}(v_{n+1-f}, v_{n+1-g})) \cap V(L(D)) = \emptyset$. In addition, $V(P_{D_2}(v_{n+1-f}, x)) \cap V(L(D)) \neq \emptyset$. We have $V(P_{D_2}(v_{n+1-g}, x)) \cap V(L(D)) \neq \emptyset$. So $V(W_D(v_f, x)) \cap V(L(D)) \neq \emptyset$. Moreover, $|W_D(v_f, x)| = 1 + d_{D_2}(v_{n+1-g}, x) \leq \frac{n}{2}$. We have $\gamma_D(v_f, x) \leq |W_D(v_f, x)| \leq \frac{n}{2}$. Therefore, we have $\gamma_D(v_f) = \gamma_D(v_{n+1-f}) \leq \max\{\frac{n}{2}, n-d+1\}$.

(1) If $n \le 2d - 2$, then $n - d + 1 \le \frac{n}{2}$. Then, we have $exp_D(1) = exp_D(2) \le \gamma_D(v_f) \le \frac{n}{2}$. Therefore, according to Proposition 1 and Lemma 1, $exp_D(k) \le \frac{n}{2} - 1 + \lfloor \frac{k}{2} \rfloor$, where $1 \le k \le n$.

If $n \geq 2d$, then $n-d+1 \geq \frac{n}{2}+1$. We have $exp_D(1) = exp_D(2) \leq \gamma_D(v_f) \leq 1$ (2) n - d + 1. Next, we construct a set $V(L_1)$ such that $|V(L_1)| \ge n - 2d + 4$, and for any vertex $v_i \in V(L_1)$, $\gamma_D(v_i) \le n - d + 1$ holds. Let $V(L_{11}) = \{v : d_{D_1}(v, v_f) \le v_{D_1}(v, v_f) \le v_{D$ $\frac{n-2d+2}{2}$, where $v \in V_1$ }. Let $V(L_{12}) = \{v : d_{D_2}(v, v_{n+1-f}) \leq \frac{n-2d+2}{2}$, where $v \in V_1$ V_2 . Suppose $V(L_1) = V(L_{11}) \cup V(L_{12})$. Then, $v_f \in V(L_1)$ and $v_{n+1-f} \in V(L_1)$. Suppose $v_h \in V(L_{11})$ and $v_h \neq v_f$. If the vertex sequence of the unique path in D_1 from v_h to v_f is $v_h, \dots, v_t, \dots, v_f$, then the vertex sequence of the unique path in D_2 from v_{n+1-h} to v_{n+1-f} is $v_{n+1-h}, \dots, v_{n+1-t}, \dots, v_{n+1-f}$. So, $d_{D_1}(v_h, v_f) = v_{n+1-h}$ $d_{D_2}(v_{n+1-h}, v_{n+1-f}) \leq \frac{n-2d+2}{2}$. Therefore, we have $v_{n+1-h} \in V(L_1)$. Next, we prove that $|V(L_1)| \ge n - 2d + 4$. For any vertex $v_s \in V(D)$, if $v_s \in V(L_1)$, then $|V(L_1)| = 1$ *n*. If there is a vertex v_l satisfying $v_l \in V(D) \setminus V(L_1)$, we might as well assume $v_l \in V_1$. Then $d_{D_1}(v_l, v_f) \geq \frac{n-2d+2}{2} + 1$. So, $V(P_{D_1}(v_l, v_f)) \cap V(L_{11}) = \frac{n-2d+2}{2} + 1$. Moreover, $V(P_{D_2}(v_{n+1-l}, v_{n+1-f})) \cap V(L_{12}) = \frac{n-2d+2}{2} + 1$. Then, $|(V(P_{D_1}(v_l, v_f))) \cup V(V_{12})| = \frac{n-2d+2}{2} + 1$. $V(P_{D_2}(v_{n+1-l}, v_{n+1-f}))) \cap V(L_1) = n - 2d + 4$. Therefore, we have $|V(L_1)| \ge n - 2d + 4$. 2d + 4. Let us assume $v_i \in V(L_{11})$. Next, we consider $\gamma_D(v_i)$.

Case 1.2.1 $x \in V_1$.

Let $W_{D_1}(v_i, x)$ be the walk from v_i to x, which is $v_i \xrightarrow{d_{D_1}(v_i, v_f)} v_f \xrightarrow{d_{D_1}(v_f, x)} x$. If the walk $W_{D_1}(v_i, x)$ passes through a loop vertex, we have $|W_{D_1}(v_i, x)| = d_{D_1}(v_i, v_f) + d_{D_1}(v_f, x) \le \frac{n-2d+2}{2} + \frac{n}{2} = n - d + 1$. If the walk $W_{D_1}(v_i, x)$ does not pass through a loop vertex, we have $x \in V(H)$ and $v_i \in V(H)$. According to Corollary 2, then $\gamma_D(v_i, x) \le n - d + 1$.

Case 1.2.2 $x \in V_2$.

Let the walk $W_D(v_i, x)$ be $v_i \xrightarrow{d_{D_1}(v_i, v_f)} v_f \xrightarrow{d_D(v_f, v_{n+1-g})} v_{n+1-g} \xrightarrow{d_{D_2}(v_{n+1-g}, x)} x$. If the walk $W_D(v_i, x)$ passes through a loop vertex, we have $|W_D(v_i, x)| = d_{D_1}(v_i, v_f) + 1 + d_{D_2}(v_{n+1-g}, x) \le \frac{n-2d+2}{2} + \frac{n}{2} = n - d + 1$. If the walk $W_D(v_i, x)$ does not pass through a loop vertex. Then, $v_i \in V(H)$. Since $V(R) \cap V(L(D)) = \emptyset$, then $V(P_{D_2}(v_{n+1-f}, v_{n+1-g})) \cap V(L(D)) = \emptyset$. Moreover, $V(P_{D_2}(v_{n+1-g}, x)) \cap V(L(D)) = \emptyset$, we have $V(P_{D_2}(v_{n+1-f}, x)) \cap V(L(D)) = \emptyset$. So, we have $x \in V(H)$. Since $x \in V(H)$ and $v_i \in V(H)$, according to Corollary 2, then $\gamma_D(v_i, x) \le n - d + 1$.

Therefore, whether $x \in V_1$ or $x \in V_2$, we have $\gamma_D(v_i, x) \leq n - d + 1$. So $\gamma_D(v_i) \leq n - d + 1$. According to Proposition 1, we have $\gamma_D(v_{n+1-i}) = \gamma_D(v_i) \leq n - d + 1$. Therefore, we have $exp_D(k) \leq n - d + 1$, where $1 \leq k \leq |V(L_1)|$. For any vertex v_j such that $v_j \in V_1 \setminus V(L_{11})$, then $v_{n+1-j} \in V_2 \setminus V(L_{12})$. We have $d_{D_1}(v_j, V(L_{11})) = d_{D_2}(v_{n+1-j}, V(L_{12}))$. Furthermore, according to Lemma 2, we can conclude that $\gamma_D(v_j) = \gamma_D(v_{n+1-j}) \leq n - d + 1 + d_{D_1}(v_j, V(L_{11}))$. Since $|V(L_1)| \geq n - 2d + 4$, the conclusion is clearly established.

Case 2 $D \in DS'_{n,2}(d)$.

For $D \in DS'_{n,2}(d)$, it is equivalent to f = g in $D \in DS'_{n,1}(d)$, let us omit it. \Box

3. The *k*th Local Exponents of *H*^{*} and *H*^{**}

In this section, we study the *k*th local exponents of the special graphs H^* and H^{**} .

Definition 4. Suppose $1 \le d \le n$. Let $V(H^*) = \{v_1, v_2, \dots, v_n\}$ and $E(H^*) = \{[v_i, v_{i+1}] | 1 \le i \le n-1\} \cup E(L(H^*))$, where $E(L(H^*))$ are d loops arranged arbitrarily such that $H^* \in DS'_n(d)$.

Definition 5. Suppose *d* is even and $d \ge 2$. Let $V(H^{**}) = \{v_1, v_2, \dots, v_n\}$ and let $E(H^{**}) = \{[v_i, v_{i+1}] | 1 \le i \le n-1\} \cup \{[v_i, v_i] : where 1 \le i \le \frac{d}{2} \text{ and } n - \frac{d}{2} + 1 \le i \le n\}.$

From the definition of H^* and H^{**} , we know that $H^* \in DS'_n(d)$ and $H^{**} \in DS'_n(d)$. Furthermore, there is a unique path for any two different vertices in H^* and H^{**} , respectively. **Remark 4.** In Figure 2, *n* can be either odd or even. In Figure 3, since *n* is odd and $n \ge 2d - 1$, then $v_{\frac{n+1}{2}}$ is not a loop vertex. In Figure 4, since *n* is even and $n \ge 2d$, then $v_{\frac{n}{2}}$ and $v_{\frac{n}{2}+1}$ are not loop vertices.

Figure 2. The H^* for *d* is even and $d \ge 2$.

Figure 3. The H^{**} for *n* is odd, *d* is even such that $d \ge 2$, and $n \ge 2d - 1$.

$$\underbrace{v_1 \quad \dots \quad v_{\frac{d}{2}} \quad \dots \quad v_{\frac{n}{2}} \quad \dots \quad v_{\frac{n}{2}+1} \quad \dots \quad v_{n-\frac{d}{2}+1} \quad \dots \quad v_n}_{\bigcirc}$$

Figure 4. The H^{**} for *n* is even, *d* is even such that $d \ge 2$, and $n \ge 2d$.

Theorem 4. If *n* is odd and *d* is odd, then $exp_{H^*}(k) = \frac{n-1}{2} + \lfloor \frac{k}{2} \rfloor$, where $1 \le k \le n$.

Proof. Since *d* is odd, then $v_{\frac{n+1}{2}}$ is a loop vertex. We have $\gamma_{H^*}(v_{\frac{n+1}{2}}) = \max\{d(v_{\frac{n+1}{2}}, x) : x \in V(H^*)\} = d(v_{\frac{n+1}{2}}, v_n) = \frac{n-1}{2}$. Moreover, according to Lemma 2, we have $\gamma_{H^*}(v_{\frac{n+1}{2}-a}) \leq \gamma_{H^*}(v_{\frac{n+1}{2}}) + d(v_{\frac{n+1}{2}-a}, v_{\frac{n+1}{2}}) = \frac{n-1}{2} + a$, where $1 \leq a \leq \frac{n-1}{2}$. Further, $\gamma_{H^*}(v_{\frac{n+1}{2}-a}) = \gamma_{H^*}(v_{\frac{n+1}{2}-a}, v_n) = d(v_{\frac{n+1}{2}-a}, v_n) = \frac{n-1}{2} + a$, where $1 \leq a \leq \frac{n-1}{2}$. Therefore, the theorem now holds. \Box

Theorem 5. If *n* is odd, *d* is even and $d \ge 2$, then

- (1) If $n \le 2d 3$, then $exp_{H^*}(k) = \frac{n-1}{2} + \left\lfloor \frac{k}{2} \right\rfloor$, where $1 \le k \le n$.
- (2) $n \ge 2d 1$, then

$$exp_{H^{**}}(k) = \begin{cases} n-d+1, & \text{where } 1 \le k \le n-2d+4, \\ n-d+1 + \left\lceil \frac{k-(n-2d+4)}{2} \right\rceil, & \text{where } n-2d+4 \le k \le n. \end{cases}$$

Proof. Since *d* is even, then $v_{\frac{n+1}{2}}$ is not a loop vertex.

- $\begin{array}{ll} \text{(1)} & H^* \text{ is shown in Figure 2. Let } x \text{ be any vertex of } H^*. \text{ If } V(P(v_{\frac{n+1}{2}},x)) \cap V(L(H^*)) \neq \emptyset, \\ \text{ then } \gamma_{H^*}(v_{\frac{n+1}{2}},x) = d(v_{\frac{n+1}{2}},x) \leq \frac{n-1}{2}. \text{ If } V(P(v_{\frac{n+1}{2}},x)) \cap V(L(H^*)) = \emptyset, \text{ according to Corollary 1, we have } \gamma_{H^*}(v_{\frac{n+1}{2}},x) \leq n-d+1. \text{ Then, } \gamma_{H^*}(v_{\frac{n+1}{2}}) \leq \max\{\frac{n-1}{2},n-d+1\}. \text{ If } n \leq 2d-3, \text{ then } n-d+1 \leq \frac{n-1}{2}. \text{ Then, we have } \gamma_{H^*}(v_{\frac{n+1}{2}}) \leq \frac{n-1}{2}. \\ \text{Further, } \gamma_{H^*}(v_{\frac{n+1}{2}},v_n) = d(v_{\frac{n+1}{2}},v_n) = \frac{n-1}{2}. \text{ Therefore, } \gamma_{H^*}(v_{\frac{n+1}{2}}) = \frac{n-1}{2}. \text{ Let } a \text{ be an integer satisfying } 1 \leq a \leq \frac{n-1}{2}. \text{ According to Lemma 2, we have } \gamma_{H^*}(v_{\frac{n+1}{2}-a}) \leq d(v_{\frac{n+1}{2}-a},v_{\frac{n+1}{2}}) + \gamma_{H^*}(v_{\frac{n+1}{2}}) = a + \frac{n-1}{2}. \text{ Further, we have } \gamma_{H^*}(v_{\frac{n+1}{2}-a},v_n) = d(v_{\frac{n+1}{2}-a}) \leq d(v_{\frac{n+1}{2}-a},v_{\frac{n+1}{2}}) + \gamma_{H^*}(v_{\frac{n+1}{2}-a}) = \gamma_{H^*}(v_{\frac{n+1}{2}+a}) = \frac{n-1}{2} + a \text{ by Proposition 1, where } 1 \leq a \leq \frac{n-1}{2}. \text{ Therefore, we have } exp_{H^*}(k) = \frac{n-1}{2} + \left|\frac{k}{2}\right|, \text{ where } 1 \leq k \leq n. \end{array}$
- (2) H^{**} is shown in Figure 3. If $n \ge 2d 1$, then $n d + 1 \ge \frac{n+1}{2}$. Since $n \ge 5$ and $n \ge 2d 1$, then $\frac{d}{2} \le \frac{n+1}{4} \le \frac{n-1}{2}$ and $n \frac{d}{2} + 1 \ge n \frac{n+1}{4} + 1 \ge \frac{n+3}{2}$. Then, $v_{\frac{n+1}{2}}$ is not a loop vertex.

Suppose any integer *a* satisfies $d-1 \le a \le \frac{n+1}{2}$. Since $d \ge 2$, then $a \ge d-1 \ge \frac{d}{2}$. Let *x* be any vertex of H^{**} . Let the walk $W(v_a, x)$ be $v_a \xrightarrow{d(v_a, v_{n+1})} v_{\frac{n+1}{2}} \xrightarrow{d(v_{\frac{n+1}{2}}, x)} x$. If $V(W(v_a, x)) \cap V(L(H^{**})) \ne \emptyset$, then $\gamma_{H^{**}}(v_a, x) \le (\frac{n+1}{2}-a) + \frac{n-1}{2} = n-a$. If $V(W(v_a, x)) \cap V(L(H^{**})) = \emptyset$, we have $V(P(x, v_{\frac{n+1}{2}})) \cap V(L(D)) = \emptyset$ and $V(P(v_a, v_{\frac{n+1}{2}})) \cap V(L(D)) = \emptyset$. According to Corollary 1, we have $\gamma_{H^{**}}(v_a, x) \le n-d+1$. Therefore, we have $\gamma_{H^{**}}(v_a) \le \max\{n-a, n-d+1\} = n-d+1$, where $d-1 \le a \le \frac{n+1}{2}$. Since $d \ge 2$ and $d-1 \le a \le \frac{n+1}{2}$, then $\frac{n+1}{2} \le n-a+1 \le n-d+2 \le n-\frac{d}{2}+1$. Further, $\gamma_{H^{**}}(v_a, v_{n-a+1}) = d(v_a, v_{\frac{d}{2}}) + d(v_{\frac{d}{2}}, v_{n-a+1}) = d(v_a, v_{n-\frac{d}{2}+1}) + d(v_{n-\frac{d}{2}+1}, v_{n-a+1}) = n-d+1$. Therefore, $\gamma_{H^{**}}(v_a) = n-d+1$, where $d-1 \le a \le \frac{n+1}{2}$. According to Proposition 1, if $\frac{n+1}{2} \le a \le n-d+2$, we have $\gamma_{H^{**}}(v_a) = \gamma_{H^{**}}(v_{n-a+1}) = n-d+1$. So, for $d-1 \le a \le n-d+2$, we have $\gamma_{H^{**}}(v_a) = n-d+1$. Therefore, we have $exp_{H^{**}}(k) = n-d+1$, where $1 \le k \le n-2d+4$.

Suppose *a* satisfies $1 \le a \le d - 1$. We have $\gamma_{H^{**}}(v_a) \le d(v_a, v_{d-1}) + \gamma_{H^{**}}(v_{d-1}) = n - d + 1 + (d - 1 - a) = n - a$. Moreover, $\gamma_{H^{**}}(v_a) = \gamma_{H^{**}}(v_{n-a+1}) = d(v_a, v_n) = n - a$. So, we can get $exp_{H^{**}}(k) = n - d + 1 + \left\lceil \frac{k - (n - 2d + 4)}{2} \right\rceil$, where $n - 2d + 4 \le k \le n$. Therefore, the theorem new holds.

Therefore, the theorem now holds. \Box

Theorem 6. If *n* is even, *d* is even and $d \ge 2$, then

- (1) If $n \le 2d 2$, then $exp_{H^*}(k) = \frac{n}{2} 1 + \left|\frac{k}{2}\right|$, where $1 \le k \le n$.
- (2) $n \ge 2d$, then

$$exp_{H^{**}}(k) = \begin{cases} n-d+1, & \text{where } 1 \le k \le n-2d+4, \\ n-d+1 + \left\lceil \frac{k-(n-2d+4)}{2} \right\rceil, & \text{where } n-2d+4 \le k \le n. \end{cases}$$

Proof. (1) H^* is shown in Figure 2. We have $H^* \in DS'_{n,2}(d)$, $f = g = \frac{n}{2}$ or $f = g = \frac{n}{2} + 1$. Let us assume $f = g = \frac{n}{2}$, then $n + 1 - f = n + 1 - g = \frac{n}{2} + 1$. If $n \le 2d - 2$, let us consider the following two cases.

Case 1 { $v_{\frac{n}{2}}$, $v_{\frac{n}{2}+1}$ } \cap $V(L(H^*)) \neq \emptyset$.

It is easy to see that $\gamma_{H^*}(v_{\frac{n}{2}}) = \gamma_{H^*}(v_{\frac{n}{2}+1}) = \max\{d(v_{\frac{n}{2}}, x) : x \in V(H^*)\} = d(v_{\frac{n}{2}}, v_n) = \frac{n}{2}$. Suppose *a* satisfies $1 \le a \le \frac{n}{2} - 1$. According to Lemma 2, we can get $\gamma_{H^*}(v_{\frac{n}{2}-a}) \le d(v_{\frac{n}{2}-a}, v_{\frac{n}{2}}) + \gamma_{H^*}(v_{\frac{n}{2}}) = \frac{n}{2} + a$. Further, $\gamma_{H^*}(v_{\frac{n}{2}-a}) = \gamma_{H^*}(v_{\frac{n}{2}-a}, v_n) = d(v_{\frac{n}{2}-a}, v_n) = \frac{n}{2} + a$. According to Proposition 1, we have $\gamma_{H^*}(v_{\frac{n}{2}-a}) = \gamma_{H^*}(v_{\frac{n}{2}+a+1}) = \frac{n}{2} + a$, where $1 \le a \le \frac{n}{2} - 1$. Therefore, we have $exp_{H^*}(k) = \frac{n}{2} - 1 + \lfloor \frac{k}{2} \rfloor$, where $1 \le k \le n$. Case $2\{v_{\frac{n}{2}}, v_{\frac{n}{2}+1}\} \cap V(L(H^*)) = \emptyset$.

Let x be any vertex of H^* . If $V(P(v_{\frac{n}{2}}, x)) \cap V(L(H^*)) \neq \emptyset$, then $\gamma_{H^*}(v_{\frac{n}{2}}, x) = d(v_{\frac{n}{2}}, x) \leq \frac{n}{2}$. If $V(P(v_{\frac{n}{2}}, x)) \cap V(L(H^*)) = \emptyset$, according to Corollary 2, we have $\gamma_{H^*}(v_{\frac{n}{2}}, x) \leq n - d + 1$. Then, $\gamma_{H^*}(v_{\frac{n}{2}}) \leq \max\{\frac{n}{2}, n - d + 1\} = \frac{n}{2}$. Further, we have $\gamma_{H^*}(v_{\frac{n}{2}}) = \gamma_{H^*}(v_{\frac{n}{2}}, v_n) = d(v_{\frac{n}{2}}, v_n) = \frac{n}{2}$. Let a satisfy that $1 \leq a \leq \frac{n}{2} - 1$. Then, $\gamma_{H^*}(v_{\frac{n}{2}-a}) \leq d(v_{\frac{n}{2}-a}, v_{\frac{n}{2}}) + \gamma_{H^*}(v_{\frac{n}{2}}) = \frac{n}{2} + a$. Further, we have $\gamma_{H^*}(v_{\frac{n}{2}-a}) = \gamma_{H^*}(v_{\frac{n}{2}-a}, v_n) = d(v_{\frac{n}{2}-a}, v_n) = \frac{n}{2} + a$. According to Proposition 1, $\gamma_{H^*}(v_{\frac{n}{2}+1+a}) = \gamma_{H^*}(v_{\frac{n}{2}-a}) = \frac{n}{2} + a$, where $0 \leq a \leq \frac{n}{2} - 1$. Therefore, we have $exp_{H^*}(k) = \frac{n}{2} - 1 + \left\lceil \frac{k}{2} \right\rceil$, where $1 \leq k \leq n$.

(2) H^{**} is shown in Figure 4. We have $H^{**} \in DS'_{n,2}(d)$, $f = g = \frac{n}{2}$ or $f = g = \frac{n}{2} + 1$. Let us assume $f = g = \frac{n}{2}$, then $n + 1 - f = n + 1 - g = \frac{n}{2} + 1$. If $n \ge 2d$, then $n - d + 1 \ge \frac{n}{2} + 1$. Since $n \ge 6$ and $n \ge 2d$, then $\frac{d}{2} \le \frac{n}{4} \le \frac{n}{2} - 1$ and $n - \frac{d}{2} + 1 \ge n - \frac{n}{4} + 1 \ge \frac{n}{2} + 2$. Then $v_{\frac{n}{2}}$ and $v_{\frac{n}{2}+1}$ are not loop vertices.

Suppose any integer *a* satisfies $d-1 \le a \le \frac{n}{2}$. Since $d \ge 2$, then $a \ge d-1 \ge \frac{d}{2}$. Let *x* be any vertex of H^{**} . Let the walk $W(v_a, x)$ be $v_a \xrightarrow{d(v_a, v_{\frac{n}{2}})} v_{\frac{n}{2}} \xrightarrow{d(v_{\frac{n}{2}}, x)} x$. If $V(W(v_a, x)) \cap V(L(H^{**})) \ne \emptyset$, then $\gamma_{H^{**}}(v_a, x) \le (\frac{n}{2} - a) + \frac{n}{2} = n - a$. If $V(W(v_a, x)) \cap V(L(H^{**})) = \emptyset$,

we have $V(P(v_a, v_{\frac{n}{2}})) \cap V(L(D)) = \emptyset$ and $V(P(x, v_{\frac{n}{2}})) \cap V(L(D)) = \emptyset$. According to Corollary 2, we have $\gamma_{H^{**}}(v_a, x) \leq n - d + 1$. So $\gamma_{H^{**}}(v_a) \leq \max\{n - a, n - d + 1\} = n - d + 1$, where $d - 1 \leq a \leq \frac{n}{2}$. Since $d \geq 2$ and $d - 1 \leq a \leq \frac{n}{2}$, then $\frac{n}{2} + 1 \leq n - a + 1 \leq n - d + 2 \leq n - \frac{d}{2} + 1$. Further, we have $\gamma_{H^{**}}(v_a) = \gamma_{H^{**}}(v_a, v_{n-a+1}) = d(v_a, v_{\frac{d}{2}}) + d(v_{\frac{d}{2}}, v_{n-a+1}) = d(v_a, v_{\frac{d}{2}+1}) + d(v_{n-\frac{d}{2}+1}, v_{n-a+1}) = n - d + 1$, where $d - 1 \leq a \leq \frac{n}{2}$. According to Proposition 1, if $\frac{n}{2} + 1 \leq a \leq n - d + 2$, we have $\gamma_{H^{**}}(v_a) = \gamma_{H^{**}}(v_{n-a+1}) = n - d + 1$. Therefore, we have $exp_{H^{**}}(k) = n - d + 1$, where $1 \leq k \leq n - 2d + 4$.

Suppose *a* satisfies $1 \le a \le d - 1$. We have $\gamma_{H^{**}}(v_a) \le d(v_a, v_{d-1}) + \gamma_{H^{**}}(v_{d-1}) = n - d + 1 + (d - 1 - a) = n - a$. Moreover, $\gamma_{H^{**}}(v_a) = \gamma_{H^{**}}(v_{n-a+1}) = d(v_a, v_n) = n - a$. So, we can get $exp_{H^{**}}(k) = n - d + 1 + \left\lceil \frac{k - (n - 2d + 4)}{2} \right\rceil$, where $n - 2d + 4 \le k \le n$. Therefore, the theorem now holds. \Box

It can be seen from Theorems 4–6, the upper bound for the *k*th local exponent of doubly symmetric primitive digraphs of order *n* with *d* loops can be reached, where $1 \le k \le n$.

4. Conclusions

In this paper, we study the upper bound for the *k*th local exponent of doubly symmetric primitive digraphs of order *n* with *d* loops, where *d* is an integer such that $1 \le d \le n$. For the class of doubly symmetric primitive digraphs, we get the upper bound for the *k*th local exponent, where $1 \le k \le n$. Furthermore, for the class of doubly symmetric primitive digraphs, we find that the upper bound for the *k*th local exponent can be reached, where $1 \le k \le n$. The upper bounds of the generalized μ -scrambling indices for a doubly symmetric primitive digraph are not given. It would be meaningful and interesting to solve the problems in future research.

Funding: This paper is supported by Shanghai Institute of Technology (YJ2021-55).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank the editor and reviewers for their valuable suggestions and comments which greatly improved the article.

Conflicts of Interest: The author declares no conflict of interest.

References

- 1. Brualdi, R.A.; Ryser, H.J. Combinatorial Matrix Theory; Cambridge University Press: Cambridge, UK, 1991.
- 2. Brualdi, R.A.; Liu, B. Generalized exponents of primitive directed graphs. J. Graph Theory 1990, 14, 483–499. [CrossRef]
- Brualdi, R.A.; Shao, J.Y. Generalized exponents of primitive symmetric digraphs. *Discret. Appl. Math.* 1997, 74, 275–293. [CrossRef]
- 4. Cruz, R.; Gutman, I.; Rada, J. Sombor index of chemical graphs. Appl. Math. Comput. 2021, 399, 126018. [CrossRef]
- Rather, B.A.; Pirzada, S.; Naikoo, T.A.; Shang, Y. On Laplacian Eigenvalues of the Zero-Divisor Graph Associated to the Ring of Integers Modulo n. *Mathematics* 2021, 9, 482. [CrossRef]
- 6. Nath, R.K.; Fasfous, W.N.T.; Das, K.C.; Shang, Y. Common Neighborhood Energy of Commuting Graphs of Finite Groups. *Symmetry* **2021**, *13*, 1651. [CrossRef]
- 7. Shao, J. The exponent set of symmetric primitive matrices. Sci. Sin. Ser. A 1987, 30, 348–358.
- 8. Zhou, B.; Shen, J. On generalized exponents of tournaments. Taiwan. J. Math. 2002, 6, 565–572. [CrossRef]
- Gao, Y.; Shao, Y. Generalized exponents of primitive two-colored digraphs. *Linear Algebra Appl.* 2009, 430, 1550–1565. [CrossRef]
 Miao, Z.; Zhang, K. The local exponent sets of primitive digraphs. *Linear Algebra Appl.* 2000, 307, 15–33. [CrossRef]
- Miao, Z.; Zhang, K. The local exponent sets of primitive digraphs. *Linear Algebra Appl.* 2000, 307, 15–33. [CrossRef]
 Chen, S.; Liu, B. The *k*th local exponent of doubly symmetric primitive matrices. *Appl. Math. Lett.* 2006, 19, 392–397. [CrossRef]
- Chen, S.; Liu, B. Matrices with maximum *k*th local exponent in the class of doubly symmetric primitive matrices. *Discret. Math.* 2008, 308, 3386–3392. [CrossRef]
- 13. Akelbek, M.; Kirkland, S. Coefficients of ergodicity and the scrambling index. Linear Algebra Appl. 2009, 430, 1111–1130. [CrossRef]

- 14. Akelbek, M.; Kirkland, S. Primitive digraphs with the largest scrambling index. *Linear Algebra Appl.* **2009**, 430, 1099–1110. [CrossRef]
- 15. Chen, S.; Liu, B. The scrambling index of symmetric primitive matrices. Linear Algebra Appl. 2010, 433, 1110–1126. [CrossRef]
- 16. Kim, H.K. Scrambling index set of primitive digraphs. *Linear Algebra Appl.* **2013**, 439, 1886–1893. [CrossRef]
- 17. Kim, H.K. Generalized competition index of a primitive digraph. Linear Algebra Appl. 2010, 433, 72–79. [CrossRef]
- 18. Sim, M.S.; Kim, H.K. On generalized competition index of a primitive tournament. Discret. Math. 2011, 311, 2657–2662. [CrossRef]
- 19. Kim, H.K.; Park, S.G. A bound of generalized competition index of a primitive digraph. *Linear Algebra Appl.* **2012**, 436, 86–98. [CrossRef]
- Kim, H.K.; Lee, S.H. Generalized competition indices of symmetric primitive digraphs. *Discret. Appl. Math.* 2012, 160, 1583–1590. [CrossRef]
- 21. Shao, Y.; Gao, Y. The *m*-competition indices of symmetric primitive digraphs with loop. Ars Combin. 2013, 108, 217–223.
- 22. Fang, W.; Gao, Y.; Shao, Y.; Gao, W.; Jing, G.; Li, Z. The generalized competition indices of primitive minimally strong digraphs. *Linear Algebra Appl.* **2016**, 493, 206–226. [CrossRef]
- Chen, D.; Li, X. The Generalized Competition Indices of Doubly Symmetric Primitive Digraphs with *d* Loops. Symmetry 2022, 14, 1192. [CrossRef]
- 24. Huang, Y.; Liu, B. Generalized scrambling indices of a primitive digraph. Linear Algebra Appl. 2010, 433, 1798–1808. [CrossRef]
- Zhang, L.; Huang, T.Z. Bounds on the generalized μ-scrambling indices of primitive digraphs. *Int. J. Comput. Math.* 2012, 89, 17–29. [CrossRef]
- Zhang, L.; Mou, G.F.; Liu, F.; Li, Z.S. Some bounds of the generalized μ-scrambling indices of primitive digraphs with *d* loops. *J. Inequal. Appl.* 2021, 2021, 128. [CrossRef]