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Abstract: Let D be a primitive digraph of order n. The exponent of a vertex x in V(D) is denoted
γD(x), which is the smallest integer q such that for any vertex y, there is a walk of length q from x to y.
Let V(D) = {v1, v2, · · · , vn}. We order the vertices of V(D) so that γD(v1) ≤ γD(v2) ≤ · · · ≤ γD(vn)

is satisfied. Then, for any integer k satisfying 1 ≤ k ≤ n, γD(vk) is called the kth local exponent of D
and is denoted by expD(k). Let DSn(d) represent the set of all doubly symmetric primitive digraphs
with n vertices and d loops, where d is an integer such that 1 ≤ d ≤ n. In this paper, we determine
the upper bound for the kth local exponent of DSn(d), where 1 ≤ k ≤ n. In addition, we find that the
upper bound for the kth local exponent of DSn(d) can be reached, where 1 ≤ k ≤ n.

Keywords: exponent; symmetric digraph; generalized competition index; competition index;
scrambling index

1. Introduction

Let D = (V, E) denote a digraph (directed graph) with n vertices, where the vertex set
V = V(D) and the arc set E = E(D). Loops are permitted, but multiple arcs are not. A walk
from x to y in D, we mean a sequence of vertices x, v1, · · · , vt, y where each vertex in the
sequence of vertices belongs to V, and a sequence of arcs (x, v1), (v1, v2), · · · , (vt, y) where
each arc in the sequence of arcs belongs to E, and the vertices and arcs are not necessarily

distinct. The number of arcs in W is the length of the walk W. The notation x k→ y means
that there exists a walk of length k from x to y. The distance from vertex x to vertex y in D
is written as dD(x, y)(for short, d(x, y)), which refers to the length of the shortest walk from
x to y. If x = y, then a walk from x to y is a closed walk. A cycle is a closed walk from x to
y with distinct vertices except for x = y.

Let x, y be any pair of vertices in a digraph D. The digraph D is called primitive,
if there exists a positive integer k such that there is a walk of length k from x to y. This
smallest such k is denoted by exp(D), which is called the exponent of D. The greatest
common divisor of the lengths of all the cycles in D is recorded as l(D). It is well known
(see [1]) that D is primitive if and only if D is strongly connected and l(D) = 1.

Brualdi and Liu [2] generalized the concept of exponent for a primitive digraph
(primitive matrix). Let D be a primitive digraph with n vertices. The exponent of D can be
broken down into more local exponents [3]. For any pair of vertices x, z ∈ V(D), let γD(x, z)
denote the smallest integer p such that there is a walk of length t from x to z, for each
integer t ≥ p. Since D is a primitive digraph, then γD(x, z) is a finite number. For any
vertex x ∈ V(D), the exponent of vertex x is written as γD(x), which is the smallest integer
q so that for any vertex y ∈ V(D), there exists a walk of length q from x to y. Moreover,
for any vertex z ∈ V(D) and any integer t ≥ γD(x, z), there is a walk of length t from x to
z. So, we have q = max{γD(x, z) : z ∈ V(D)}. Then, for any vertex y ∈ V(D), there is a
walk of length t from x to y for each integer t ≥ q. Therefore, we have

γD(x) = max{γD(x, z) : z ∈ V(D)}.

Let the vertices of D be ordered as v1, v2, · · · , vn such that
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γD(v1) ≤ γD(v2) ≤ · · · ≤ γD(vn).

γD(vk) is called the kth local exponent (generalized exponent) of D, and it is denoted by
expD(k), where 1 ≤ k ≤ n. Then,

expD(1) ≤ expD(2) ≤ · · · ≤ expD(n).

Furthermore, we have γ(D) = max{γD(x) : x ∈ V(D)} = max{γD(x, y) : x, y ∈
V(D)}. Obviously, the exponent of D equals expD(n). That is, γ(D) = exp(D) = expD(n).
So, for a primitive digraph D, the local exponents of D are generalizations of the exponent
of D.

Brualdi and Liu [2] proposed a memoryless communication system. In the memoryless
communication system represented by a primitive digraph D of order n, the kth local
exponent is the smallest time for each vertex to simultaneously hold all k bits of the
information. For more details, please refer to [2,3].

For any vertices x and y of a digraph D, (x, y) ∈ E(D) is an arc if and only if
(y, x) ∈ E(D) is an arc, which is represented by x ↔ y, then such a digraph D is called
a symmetric digraph. An undirected graph (possibly with loops) can be viewed as a
symmetric digraph. For some research on undirected graphs, please see [4–6]. When D is

symmetric, the notation x k→ y indicates that there is a walk of length k from x to y.
Let D = (V, E) be a symmetric digraph, we can regard D as an undirected graph.

For convenience, undirected graph terms such as edges, edge set, etc., are used directly to
describe a symmetric digraph. Then, let E(D) denote the set of undirected edges (edges) in
D. Moreover, we assume that the notation [x, y] ∈ E(D) represents that there is an edge in
D with x, y as end vertices.

Let D = (V, E) be a symmetric digraph, where V = {v1, v2, · · · , vn}. If for any vertices
vi and vj, [vi, vj] ∈ E(D) if and only if [vn+1−i, vn+1−j] ∈ E(D), then such a symmetric
digraph D is called a doubly symmetric digraph. Moreover, [vi, vj] and [vn+1−i, vn+1−j]
are called a pair of symmetrical edges, or [vi, vj] is a symmetrical edge of [vn+1−i, vn+1−j],
where 1 ≤ i ≤ n and 1 ≤ j ≤ n. The vertices vn+1−i, vi are called a pair of symmetric
vertices, or vi is a symmetric vertex of vn+1−i, where 1 ≤ i ≤ n. According to this definition,
when n is odd, v n+1

2
is symmetric to itself. If vi is a loop vertex, then [vi, vi] ∈ E(D) and

[vn+1−i, vn+1−i] ∈ E(D). Therefore, for i 6= n+ 1− i, if [vi, vi] is a loop, then [vn+1−i, vn+1−i]
is also a loop, the loops appear in pairs. A doubly symmetric digraph D is called a doubly
symmetric primitive digraph provided D is primitive.

If a doubly symmetric primitive digraph D contains exactly d loops, then we call D
a doubly symmetric primitive digraph with d loops. Let DSn denote the set of all doubly
symmetric primitive digraphs of order n. Let DSn(d) denote the set of all doubly symmetric
primitive digraphs of order n with d loops, where d is an integer such that 1 ≤ d ≤ n.
Obviously, we have DSn(d) ⊆ DSn.

Let D ∈ DSn(d). After deleting any pair of symmetrical edges [vi, vj] and [vn+1−i, vn+1−j]
of D, the obtained digraph D′ is not a doubly symmetric primitive digraph (that is, D′

is not connected), then we call D ∈ DS′n(d), where 1 ≤ i < j ≤ n. Obviously, we have
DS′n(d) ⊆ DSn(d).

For example, we consider the kth local exponent of the graph G. Let V(G) = {v1, v2, · · · ,
v7}. Let E(G) = {[vi, vi+1]|1 ≤ i ≤ 6} ∪ {[v4, v4]}. G is shown in Figure 1.

v1 v7v2 v6v3 v4 v5

Figure 1. G.

We easily get γG(v4) = 3, γG(v3) = γG(v5) = 4, γG(v2) = γG(v6) = 5, γG(v1) =
γG(v7) = 6. Then, we have expG(1) = 3, expG(2) = expG(3) = 4, expG(4) = expG(5) =
5, expG(6) = expG(7) = 6. Moreover, we have γ(G) = exp(G) = expG(7) = 6.
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Some studies [7–12] have investigated exponents and their generalization. Chen and
Liu [11] studied the kth local exponent of doubly symmetric primitive matrices (primitive
digraphs). Chen and Liu [12] characterized the doubly symmetric primitive digraphs
with the kth local exponent reaching the maximum value. A doubly symmetric primitive
digraph with d loops is a special doubly symmetric primitive digraph. It is important
to mention that the kth local exponent of such a class of digraphs has not been studied
before. Using graph theory methods, we obtain the upper bound of the kth local exponent
of digraphs in DSn(d), where 1 ≤ k ≤ n. Some studies have investigated the scrambling
index [13–16] and generalized competition index [17–23]. Several studies explored the
generalized µ-scrambling indices, please refer to [24–26].

Let D ∈ DSn(d). Let V(L(D)) represent the set of d loop vertices in D. Let E(L(D))
denote the set of d loops in D. Let vi, vj be any pair of vertices of the digraph D. If the
walk from vi to vj in D is denoted as WD(vi, vj) (for short, W(vi, vj)), then |W(vi, vj)| is
used to denote the length of the walk W(vi, vj), and V(W(vi, vj)) is used to denote the
set of all vertices in this walk W(vi, vj). If there is a unique path from vi to vj in D, then
let PD(vi, vj) (for short, P(vi, vj)) denote the unique path, and let V(PD(vi, vj)) (for short,
V(P(vi, vj))) denote the set of all vertices on the path. If vi = vj, then V(P(vi, vj)) = {vi} =
{vj}. If a walk W(vi, vj) from vi to vj in D does not pass through a loop vertex, then let
V(W(vi, vj)) ∩ V(L(D)) = ∅, otherwise V(W(vi, vj)) ∩ V(L(D)) 6= ∅. Similarly, if the
unique path from vi to vj passes through a loop vertex, that is V(P(vi, vj)) ∩V(L(D)) 6= ∅,
otherwise V(P(vi, vj)) ∩V(L(D)) = ∅.

For a vertex v ∈ V(D) and a set X ⊆ V(D), let d(v, X) = min{d(v, vi) : vi ∈ X}. If
v ∈ X, let d(v, X) = 0. For any vertex u ∈ V(D) and v ∈ V(D), if u = v, let d(u, v) = 0. If
T is a set, the notation |T| is used to denote the number of all elements in T. The notation
bac is used to denote the largest integer not greater than a, and the notation dbe is used to
denote the smallest integer not less than b.

In this paper, let n, d and k be integers with n ≥ 5, 1 ≤ k ≤ n, 1 ≤ d ≤ n. We give the
upper bound of the kth local exponent of digraphs in DSn(d), where 1 ≤ k ≤ n.

2. The Upper Bound for the kth Local Exponent of DSn(d)

In this section, let D = (V, E), where V = {v1, v2, · · · , vn}.
In the case of D ∈ DSn(d), we observe the exponent of any vertex in D, it is easy to

get the following Proposition 1, let us omit the proof.

Proposition 1. Let D ∈ DSn(d) and let vi be any vertex of D, then γD(vi) = γD(vn+1−i),
where 1 ≤ i ≤ n.

Lemma 1 (Lemma 3.3 [2]). Let D be a primitive digraph with n vertices. Then, expD(k + 1) ≤
expD(k) + 1, where 1 ≤ k ≤ n− 1.

Remark 1. Lemma 1 is actually very useful. Next, we repeat the proof of Brualdi and Liu (see [2]).
Since D is strongly connected, for any integer k such that 1 ≤ k ≤ n− 1, there is a vertex x that
is joined by an arc to one of the vertices with the k smallest exponents. Therefore, expD(k + 1) ≤
expD(k) + 1, where 1 ≤ k ≤ n− 1.

Lemma 2. Let D ∈ DSn(d) and let vi, vj be any pair of vertices of D. Then, γD(vj) ≤ γD(vi) +
d(vi, vj).

Proof. For any vertex x ∈ V(D), there is a walk of length t from vi to x, which is vi
t−→ x,

for each integer t ≥ γD(vi). So, there is a walk of length s from vj to x, which is vj
d(vj ,vi)−−−−→

vi
t−→ x, for each integer s ≥ γD(vi) + d(vi, vj). Therefore, γD(vj) ≤ γD(vi) + d(vi, vj).
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Lemma 3. Let D ∈ DSn(d) and let x, y be any pair of vertices of D. If there exists a walk W(x, y)
from x to y such that V(W(x, y)) ∩V(L(D)) 6= ∅, then γD(x, y) ≤ |W(x, y)|.

Proof. Let h = |W(x, y)|. We consider the following.
Case 1 x ∈ V(D) \V(L(D)) and y ∈ V(D) \V(L(D)).

Suppose a walk from x to y through a loop vertex is denoted by x a−→ vi
h−a−−→ y, where

vi is a loop vertex and a is an integer such that 1 ≤ a ≤ h− 1. Then, the length of the walk

x a−→ vi
1−→ vi

h−a−−→ y is h + 1. The length of the walk x a−→ vi
1−→ vi

1−→ vi
h−a−−→ y is h + 2.

Similarly, we can easily conclude that there is a walk of length s from x to y, for each integer
s ≥ h. So, γD(x, y) ≤ |W(x, y)|.

Case 2 x ∈ V(L(D)) or y ∈ V(L(D)).
Similar to Case 1, it is easy to get that there is a walk of length s from x to y, for each

integer s ≥ h. So, γD(x, y) ≤ |W(x, y)|.
Therefore, the lemma holds.

Lemma 4 (Lemma 1 [23]). Let D ∈ DSn. If n is odd and x is any vertex of D, then d(x, v n+1
2
) ≤

n−1
2 .

Theorem 1. Let D ∈ DSn(d). If n is odd and d is odd, then expD(k) ≤ n−1
2 +

⌊
k
2

⌋
, where

1 ≤ k ≤ n.

Proof. If d is odd, then v n+1
2

is a loop vertex. Let x be any vertex. Then, a shortest
path from x to v n+1

2
goes through the loop vertex v n+1

2
. According to Lemma 4, we have

d(x, v n+1
2
) ≤ n−1

2 . Furthermore, according to Lemma 3, we have γD(v n+1
2

, x) ≤ d(x, v n+1
2
).

Further, we have γD(v n+1
2

, x) = d(x, v n+1
2
). So, γD(v n+1

2
) = max{d(v n+1

2
, x) : x ∈ V(D)} ≤

n−1
2 . Then, we have expD(1) ≤ γD(v n+1

2
) ≤ n−1

2 . Further, according to Proposition 1, we
have γD(v1) = γD(vn), γD(v2) = γD(vn−1), · · · , γD(v n−1

2
) = γD(v n+3

2
). So, according

to Lemma 1, we conclude expD(2) = expD(3) ≤ expD(1) + 1 ≤ n−1
2 + 1, expD(4) =

expD(5) ≤ expD(1) + 2 ≤ n−1
2 + 2, · · · , expD(n− 1) = expD(n) ≤ expD(1) + n−1

2 ≤
n−1

2 +
n−1

2 . Therefore, we have expD(k) ≤ expD(1) +
⌊

k
2

⌋
≤ n−1

2 +
⌊

k
2

⌋
, where 1 ≤ k ≤ n.

Let D′ ∈ DSn(d) and D ∈ DSn(d). If D is a subgraph of D′ such that V(D) = V(D′)
and E(D) ⊆ E(D′), then expD′(k) ≤ expD(k), where 1 ≤ k ≤ n. So, if we investigate the
upper bound of the kth local exponent of digraphs in DSn(d), we only need to investigate
the digraphs in DS′n(d).

Referring to Definition 3 in [23], we give the following Definition 1.

Definition 1. Let D ∈ DS′n(d), where n is odd, d is even such that d ≥ 2. There exist
two connected subgraphs D∗ = (V∗, E∗) and D∗∗ = (V∗∗, E∗∗) of D, and D∗, D∗∗ satisfy
V(D) = V∗ ∪ V∗∗ and E(D) = E∗ ∪ E∗∗ ∪ E(L(D)). Where V∗ = {vn+1−i : vi ∈ V∗∗} and
E∗ = {[vn+1−i, vn+1−j] : [vi, vj] ∈ E∗∗}. Moreover,|V∗| = |V∗∗| = n+1

2 , |E∗| = |E∗∗| = n−1
2 .

Remark 2. Suppose n is odd and d is even that satisfies d ≥ 2. If D ∈ DS′n(d), then there
are two connected subgraphs D∗ and D∗∗ of D. In addition, there is a unique path for any two
different vertices in D∗ and D∗∗, respectively. Moreover, there is a unique path for any two
different vertices in D. Let x, y be any pair of vertices of D such that x ∈ V∗ and y ∈ V∗∗, then
V(P(x, v n+1

2
))∩V(P(v n+1

2
, y)) = {v n+1

2
} (see [23]). After removing d loops from D, the obtained

graph is a tree. Therefore, D is a special tree with loops that satisfies [vi, vj] ∈ E(D) if and only if
[vn+1−i, vn+1−j] ∈ E(D), where 1 ≤ i < j ≤ n.



Symmetry 2022, 14, 1623 5 of 12

Lemma 5 (Lemma 3 [23]). Let D ∈ DS′n(d), where n is odd, d is even such that d ≥ 2. Let
x, y be any pair of vertices of D such that V(P(x, v n+1

2
)) ∩V(L(D)) = ∅ and V(P(y, v n+1

2
)) ∩

V(L(D)) = ∅. Then, there is a walk W(x, y) from x to y such that V(W(x, y)) ∩V(L(D)) 6= ∅,
and |W(x, y)| ≤ n− d + 1.

Corollary 1. Let D ∈ DS′n(d), where n is odd, d is even and d ≥ 2. Let x, y be any pair of
vertices of D satisfying V(P(x, v n+1

2
)) ∩ V(L(D)) = ∅ and V(P(y, v n+1

2
)) ∩ V(L(D)) = ∅.

Then, γD(x, y) ≤ n− d + 1.

Proof. According to Lemma 5, there is a walk W(x, y) from x to y passing through a
loop vertex, and |W(x, y)| ≤ n − d + 1. Moreover, according to Lemma 3, we have
γD(x, y) ≤ |W(x, y)| ≤ n− d + 1.

In Corollary 1, if x = v n+1
2

and x isn’t a loop vertex, then V(P(x, v n+1
2
)) = {v n+1

2
}, we

have V(P(x, v n+1
2
)) ∩V(L(D)) = ∅.

Theorem 2. Let D ∈ DSn(d). If n is odd, d is even and d ≥ 2, then

(1) If n ≤ 2d− 3, then expD(k) ≤ n−1
2 +

⌊
k
2

⌋
, where 1 ≤ k ≤ n.

(2) If n ≥ 2d− 1, then

expD(k) ≤
{

n− d + 1, where 1 ≤ k ≤ n− 2d + 4,

n− d + 1 +
⌈

k−(n−2d+4)
2

⌉
, where n− 2d + 4 ≤ k ≤ n.

Proof. We only need to consider D ∈ DS′n(d). Since d is even, then v n+1
2

isn’t a loop ver-

tex. Let x be any vertex. By Lemma 4, we have d(x, v n+1
2
) ≤ n−1

2 . If the path from v n+1
2

to
x passes through a loop vertex, that is V(P(v n+1

2
, x)) ∩ V(L(D)) 6= ∅, then γD(v n+1

2
, x) =

d(x, v n+1
2
) ≤ n−1

2 . If vertex x satisfies V(P(v n+1
2

, x))∩V(L(D)) = ∅, according to Corollary 1,

we have γD(v n+1
2

, x) ≤ n− d + 1. Therefore, we have γD(v n+1
2
) ≤ max{ n−1

2 , n− d + 1}.

(1) If n ≤ 2d− 3, then n− d + 1 ≤ n−1
2 . Then, we have expD(1) ≤ γD(v n+1

2
) ≤ n−1

2 . Ac-
cording to Proposition 1, we have γD(v1) = γD(vn), γD(v2) = γD(vn−1), · · · , γD(v n−1

2
)

= γD(v n+3
2
). Then, according to Lemma 1, we can conclude that expD(2) = expD(3) ≤

expD(1) + 1 ≤ n−1
2 + 1, expD(4) = expD(5) ≤ expD(1) + 2 ≤ n−1

2 + 2, · · · . Therefore,

we have expD(k) ≤ expD(1) +
⌊

k
2

⌋
≤ n−1

2 +
⌊

k
2

⌋
, where 1 ≤ k ≤ n.

(2) If n ≥ 2d− 1, then n− d + 1 ≥ n+1
2 . We have expD(1) ≤ γD(v n+1

2
) ≤ n− d + 1.

Next, we construct a set V(M) such that |V(M)| ≥ n− 2d + 4, and for any vertex
vi ∈ V(M), γD(vi) ≤ n− d + 1 holds. Suppose V(M) = {v : d(v, v n+1

2
) ≤ n−2d+3

2 }. Then,
v n+1

2
∈ V(M).
Suppose vh ∈ V(M) ∩V∗ and vh 6= v n+1

2
. If the vertex sequence of the unique path

in D∗ from vh to v n+1
2

is vh, · · · , vt, · · · , v n+1
2

, then the vertex sequence of the unique path
in D∗∗ from vn+1−h to v n+1

2
is vn+1−h, · · · , vn+1−t, · · · , v n+1

2
. Moreover, V(P(vh, v n+1

2
)) ∩

V(P(vn+1−h, v n+1
2
)) = {v n+1

2
}. So, d(vh, v n+1

2
) = d(vn+1−h, v n+1

2
) ≤ n−2d+3

2 . Therefore,
we have vn+1−h ∈ V(M). Next, we prove that |V(M)| ≥ n − 2d + 4. For any vertex
vs ∈ V(D), if vs ∈ V(M), then |V(M)| = n. If there is a vertex vl satisfying vl ∈ V(D) \
V(M), then d(vl , v n+1

2
) ≥ n−2d+3

2 + 1. So, V(P(vl , v n+1
2
)) ∩V(M) = n−2d+3

2 + 1. Moreover,

V(P(vn+1−l , v n+1
2
)) ∩ V(M) = n−2d+3

2 + 1 and V(P(vl , v n+1
2
)) ∩ V(P(vn+1−l , v n+1

2
)) =

{v n+1
2
}. Then, we have

∣∣(V(P(vl , v n+1
2
)) ∪ V(P(vn+1−l , v n+1

2
))
)
∩ V(M)

∣∣ = n − 2d + 4.
Therefore, we have |V(M)| ≥ n− 2d + 4. For any vertex vi ∈ V(M), next we consider γD(vi).
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For any vertex vi ∈ V(M), let the walk V(W(vi, x)) from vi to x be vi

d(vi ,v n+1
2

)

−−−−−−→

v n+1
2

d(v n+1
2

,x)

−−−−−→ x. If the walk V(W(vi, x)) passes through a loop vertex, we have

γD(vi, x) ≤ d(vi, v n+1
2
) + d(v n+1

2
, x) ≤ n−2d+3

2 + n−1
2 = n− d + 1. If the walk V(W(vi, x))

doesn’t pass through a loop vertex, that is, V(W(vi, x)) ∩ V(L(D)) = ∅. Then, we have
V(P(vi, v n+1

2
)) ∩ V(L(D)) = ∅ and V(P(x, v n+1

2
)) ∩ V(L(D)) = ∅. So, if V(W(vi, x)) ∩

V(L(D)) = ∅, according to Corollary 1, we have γD(vi, x) ≤ n− d + 1. Therefore, we have
γD(vi) ≤ n− d + 1. According to Proposition 1, we have γD(vn+1−i) = γD(vi) ≤ n− d + 1.
Therefore, we have expD(k) ≤ n− d + 1, where 1 ≤ k ≤ |V(M)|.

For any vertex vj such that vj ∈ V(D) \ V(M), then vn+1−j ∈ V(D) \ V(M). There
is a unique path for any pair of vertices in D. So for any vertex vi ∈ V(M), we have
d(vj, vi) = d(vn+1−j, vn+1−i). Suppose d(vj, V(M)) = d(vj, vl), where vl ∈ V(M). We have
d(vn+1−j, vn+1−l) = d(vj, vl) ≤ d(vj, vi) = d(vn+1−j, vn+1−i). So, we have
d(vj, V(M)) = d(vn+1−j, V(M)). Furthermore, according to Lemma 2, we can easily con-
clude that γD(vj) = γD(vn+1−j) ≤ n− d + 1 + d(vj, V(M)). Since |V(M)| ≥ n− 2d + 4,
the conclusion is clearly established.

Therefore, the theorem holds.

Referring to Definition 4 in [23], we give the following Definition 2.

Definition 2. Let D ∈ DS′n(d), where n is even, d is even such that d ≥ 2.

(1) There exist two connected subgraphs D1 = (V1, E1) and D2 = (V2, E2) of D, and D1, D2 sat-
isfy V(D) = V1 ∪V2 and E(D) = E1 ∪ E2 ∪ {[v f , vn+1−g]} ∪ {[vn+1− f , vg]} ∪ E(L(D)).
Where V1 = {vn+1−i : vi ∈ V2} and E1 = {[vn+1−i, vn+1−j] : [vi, vj] ∈ E2}, v f ∈ V1 and
vg ∈ V1. Moreover,|V1| = |V2| = n

2 , |E1| = |E2| = n
2 − 1.

(2) If {v f , vn+1− f } ∩ V(L(D)) = ∅. Let V(H1) = {v : V(PD1(v f , v)) ∩ V(L(D)) =
∅, where v ∈ V1} and V(H2) = {v : V(PD2(vn+1− f , v)) ∩V(L(D)) = ∅, where v ∈ V2}.
Suppose V(H) = V(H1) ∪V(H2).

Definition 3. Let D ∈ DS′n(d), where n is even, d is even such that d ≥ 2. In Definition 2(1), we
give the following definition:

(1) Let W(v f , v f ) be v f
dD1 (v f ,vg)
−−−−−−→ vg

dD(vg ,vn+1− f )−−−−−−−−→ vn+1− f
dD2 (vn+1− f ,vn+1−g)−−−−−−−−−−−→ vn+1−g

dD(vn+1−g ,v f )−−−−−−−−→ v f , then W(v f , v f ) is a closed walk from v f to v f . Let us write V(W(v f , v f )) =
V(R).

(2) If f 6= g, let D ∈ DS′n,1(d). If f = g, let D ∈ DS′n,2(d).

Remark 3. Suppose n is even and d is even that satisfies d ≥ 2. If D ∈ DS′n(d), then there are two
connected subgraphs D1 and D2 of D. Moreover, there is a unique path for any two different vertices
in D1 and D2, respectively. Since D is connected, then there are edges [v f , vn+1−g] ∈ E(D) and
[vn+1− f , vg] ∈ E(D). Then, dD(vg, vn+1− f ) = dD(vn+1−g, v f ) = 1. If v f and vn+1− f are not
loop vertices, then v f ∈ V(H) and vn+1− f ∈ V(H). If D ∈ DS′n,1(d), then f 6= g, and |V(R)|
is even such that |V(R)| ≥ 4. Furthermore, if D ∈ DS′n,1(d), after removing d loops from D, the
obtained graph D∗ is not a tree. According to Definitions 2 and 3, it is not difficult to see that
|V(D∗)| = n and |E(D∗)| = n. If D ∈ DS′n,2(d), then f = g , V(R) = {v f , vn+1− f } and
|V(R)| = 2. If D ∈ DS′n,2(d), then D is a special tree with loops that satisfies [vi, vj] ∈ E(D)
if and only if [vn+1−i, vn+1−j] ∈ E(D), where 1 ≤ i < j ≤ n. In fact, D ∈ DS′n,2(d) can be
regarded as a special case of f = g in D ∈ DS′n,1(d).

In Lemma 2 in [23], let D ∈ DS′n(d), where n is even and d be even such that d ≥ 2.
We can directly get the following Lemma 6.
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Lemma 6. Let D ∈ DS′n(d). Let n be even and d be even such that d ≥ 2. Let x be any vertex of
D. Then, for any vertex vs ∈ V(R), we have d(x, vs) ≤ n

2 .

Lemma 7 (Lemma 5 [23]). Let D ∈ DS′n(d), where n is even, d is even and d ≥ 2. Let x, y be
any pair of vertices of D such that x, y ∈ V(H). If V(R) ∩V(L(D)) = ∅, then there exists a walk
W(x, y) from x to y such that V(W(x, y)) ∩V(L(D)) 6= ∅, and |W(x, y)| ≤ n− d + 1.

Corollary 2. Let D ∈ DS′n(d), where n is even, d is even such that d ≥ 2. Let x, y be any pair of
vertices of D satisfying x, y ∈ V(H). If V(R) ∩V(L(D)) = ∅, then γD(x, y) ≤ n− d + 1.

Proof. According to Lemma 7, there is a walk W(x, y) from x to y passing through a
loop vertex, and |W(x, y)| ≤ n − d + 1. Furthermore, according to Lemma 3, we have
γD(x, y) ≤ |W(x, y)| ≤ n− d + 1.

Theorem 3. Let D ∈ DSn(d). If n is even, d is even and d ≥ 2, then

(1) If n ≤ 2d− 2, then expD(k) ≤ n
2 − 1 +

⌈
k
2

⌉
, where 1 ≤ k ≤ n.

(2) If n ≥ 2d, then

expD(k) ≤
{

n− d + 1, where 1 ≤ k ≤ n− 2d + 4,

n− d + 1 +
⌈

k−(n−2d+4)
2

⌉
, where n− 2d + 4 ≤ k ≤ n.

Proof. We only need to consider D ∈ DS′n(d). Let x be any vertex. Let us consider the
following two cases.

Case 1 D ∈ DS′n,1(d).
Since v f ∈ V1 and vg ∈ V1, then vn+1− f ∈ V2 and vn+1−g ∈ V2.
Case 1.1 V(R) ∩V(L(D)) 6= ∅.
Suppose {vm, vn+1−m} ⊆ V(R) ∩ V(L(D)). Then, vm and vn+1−m are loop vertices.

According to Lemma 6, we have d(x, vm) ≤ n
2 . Further, γD(vm) = γD(vn+1−m) ≤ n

2 . Then,
expD(1) = expD(2) ≤ γD(vm) ≤ n

2 . Therefore, according to Proposition 1 and Lemma 1,

we have expD(k) ≤ n
2 − 1 +

⌈
k
2

⌉
, where 1 ≤ k ≤ n.

(1) If n ≤ 2d− 2, then the conclusion is clearly established.

(2) If n ≥ 2d, for 1 ≤ k ≤ n− 2d + 4, then expD(k) ≤ n
2 − 1 +

⌈
k
2

⌉
≤ n

2 − 1 + n
2 − d + 2 =

n − d + 1. For n − 2d + 4 ≤ k ≤ n, we have expD(k) ≤ n
2 − 1 +

⌈
k
2

⌉
= n

2 − 1 +⌈
k−(n−2d+4)

2

⌉
+ n

2 − d + 2 = n− d + 1 +
⌈

k−(n−2d+4)
2

⌉
.

Case 1.2 V(R) ∩V(L(D)) = ∅.
Then, v f ∈ V(H) ∩V(R), vn+1− f ∈ V(H) ∩V(R).
For x ∈ V(H), according to Corollary 2, we have γD(v f , x) ≤ n− d + 1.
For any vertex x ∈ V1 \ V(H), then V(PD1(v f , x)) ∩ V(L(D)) 6= ∅. We have

γD(v f , x) ≤ dD1(v f , x) ≤ n
2 .

For any vertex x ∈ V2 \V(H), then V(PD2(vn+1− f , x)) ∩V(L(D)) 6= ∅. Let the walk

WD(v f , x) be v f
dD(v f ,vn+1−g)−−−−−−−−→ vn+1−g

dD2 (vn+1−g ,x)
−−−−−−−−→ x. Since V(R) ∩ V(L(D)) = ∅, then

V(PD2(vn+1− f , vn+1−g)) ∩V(L(D)) = ∅. In addition, V(PD2(vn+1− f , x)) ∩V(L(D)) 6= ∅.
We have V(PD2(vn+1−g, x)) ∩V(L(D)) 6= ∅. So V(WD(v f , x)) ∩V(L(D)) 6= ∅. Moreover,
|WD(v f , x)| = 1 + dD2(vn+1−g, x) ≤ n

2 . We have γD(v f , x) ≤ |WD(v f , x)| ≤ n
2 .

Therefore, we have γD(v f ) = γD(vn+1− f ) ≤ max{ n
2 , n− d + 1}.

(1) If n ≤ 2d− 2, then n− d + 1 ≤ n
2 . Then, we have expD(1) = expD(2) ≤ γD(v f ) ≤ n

2 .

Therefore, according to Proposition 1 and Lemma 1, expD(k) ≤ n
2 − 1 +

⌈
k
2

⌉
, where

1 ≤ k ≤ n.
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(2) If n ≥ 2d, then n − d + 1 ≥ n
2 + 1. We have expD(1) = expD(2) ≤ γD(v f ) ≤

n − d + 1. Next, we construct a set V(L1) such that |V(L1)| ≥ n − 2d + 4, and for
any vertex vi ∈ V(L1), γD(vi) ≤ n− d + 1 holds. Let V(L11) = {v : dD1(v, v f ) ≤
n−2d+2

2 , where v ∈ V1}. Let V(L12) = {v : dD2(v, vn+1− f ) ≤ n−2d+2
2 , where v ∈

V2}. Suppose V(L1) = V(L11) ∪ V(L12). Then, v f ∈ V(L1) and vn+1− f ∈ V(L1).
Suppose vh ∈ V(L11) and vh 6= v f . If the vertex sequence of the unique path in
D1 from vh to v f is vh, · · · , vt, · · · , v f , then the vertex sequence of the unique path
in D2 from vn+1−h to vn+1− f is vn+1−h, · · · , vn+1−t, · · · , vn+1− f . So, dD1(vh, v f ) =

dD2(vn+1−h, vn+1− f ) ≤ n−2d+2
2 . Therefore, we have vn+1−h ∈ V(L1). Next, we prove

that |V(L1)| ≥ n− 2d + 4. For any vertex vs ∈ V(D), if vs ∈ V(L1), then |V(L1)| =
n. If there is a vertex vl satisfying vl ∈ V(D) \ V(L1), we might as well assume
vl ∈ V1. Then dD1(vl , v f ) ≥ n−2d+2

2 + 1. So, V(PD1(vl , v f )) ∩ V(L11) = n−2d+2
2 + 1.

Moreover, V(PD2(vn+1−l , vn+1− f )) ∩V(L12) =
n−2d+2

2 + 1. Then,
∣∣(V(PD1(vl , v f )) ∪

V(PD2(vn+1−l , vn+1− f ))
)
∩ V(L1)

∣∣ = n− 2d + 4. Therefore, we have |V(L1)| ≥ n−
2d + 4. Let us assume vi ∈ V(L11). Next, we consider γD(vi).

Case 1.2.1 x ∈ V1.

Let WD1(vi, x) be the walk from vi to x, which is vi
dD1 (vi ,v f )−−−−−→ v f

dD1 (v f ,x)
−−−−−→ x. If the walk

WD1(vi, x) passes through a loop vertex, we have |WD1(vi, x)| = dD1(vi, v f ) + dD1(v f , x) ≤
n−2d+2

2 + n
2 = n− d + 1. If the walk WD1(vi, x) does not pass through a loop vertex, we

have x ∈ V(H) and vi ∈ V(H). According to Corollary 2, then γD(vi, x) ≤ n− d + 1.
Case 1.2.2 x ∈ V2.

Let the walk WD(vi, x) be vi
dD1 (vi ,v f )−−−−−→ v f

dD(v f ,vn+1−g)−−−−−−−−→ vn+1−g
dD2 (vn+1−g ,x)
−−−−−−−−→ x. If the

walk WD(vi, x) passes through a loop vertex, we have |WD(vi, x)| = dD1(vi, v f ) + 1 +

dD2(vn+1−g, x) ≤ n−2d+2
2 + n

2 = n− d + 1. If the walk WD(vi, x) does not pass through a
loop vertex. Then, vi ∈ V(H). Since V(R)∩V(L(D)) = ∅, then V(PD2(vn+1− f , vn+1−g))∩
V(L(D)) = ∅. Moreover, V(PD2(vn+1−g, x))∩V(L(D)) = ∅, we have V(PD2(vn+1− f , x))∩
V(L(D)) = ∅. So, we have x ∈ V(H). Since x ∈ V(H) and vi ∈ V(H), according to
Corollary 2, then γD(vi, x) ≤ n− d + 1.

Therefore, whether x ∈ V1 or x ∈ V2, we have γD(vi, x) ≤ n − d + 1. So
γD(vi) ≤ n − d + 1. According to Proposition 1, we have γD(vn+1−i) = γD(vi) ≤
n − d + 1. Therefore, we have expD(k) ≤ n − d + 1, where 1 ≤ k ≤ |V(L1)|. For any
vertex vj such that vj ∈ V1 \V(L11), then vn+1−j ∈ V2 \V(L12). We have dD1(vj, V(L11)) =
dD2(vn+1−j, V(L12)). Furthermore, according to Lemma 2, we can conclude that γD(vj) =
γD(vn+1−j) ≤ n− d + 1 + dD1(vj, V(L11)). Since |V(L1)| ≥ n− 2d + 4, the conclusion is
clearly established.

Case 2 D ∈ DS′n,2(d).
For D ∈ DS′n,2(d), it is equivalent to f = g in D ∈ DS′n,1(d), let us omit it.

3. The kth Local Exponents of H∗ and H∗∗

In this section, we study the kth local exponents of the special graphs H∗ and H∗∗.

Definition 4. Suppose 1 ≤ d ≤ n. Let V(H∗) = {v1, v2, · · · , vn} and E(H∗) = {[vi, vi+1]|1 ≤
i ≤ n− 1} ∪E(L(H∗)), where E(L(H∗)) are d loops arranged arbitrarily such that H∗ ∈ DS′n(d).

Definition 5. Suppose d is even and d ≥ 2. Let V(H∗∗) = {v1, v2, · · · , vn} and let
E(H∗∗) = {[vi, vi+1]|1 ≤ i ≤ n− 1} ∪ {[vi, vi] : where 1 ≤ i ≤ d

2 and n− d
2 + 1 ≤ i ≤ n}.

From the definition of H∗ and H∗∗, we know that H∗ ∈ DS′n(d) and H∗∗ ∈ DS′n(d).
Furthermore, there is a unique path for any two different vertices in H∗ and H∗∗, respectively.
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Remark 4. In Figure 2, n can be either odd or even. In Figure 3, since n is odd and n ≥ 2d− 1,
then v n+1

2
is not a loop vertex. In Figure 4, since n is even and n ≥ 2d, then v n

2
and v n

2 +1 are not
loop vertices.

v1 · · · vnvi1 · · ·
vn−i1+1

vi d
2 · · · · · · · · ·

vn−i d
2
+1

Figure 2. The H∗ for d is even and d ≥ 2.

v1
v n+1

2 vn· · · · · ·· · · · · ·
v d

2
vn− d

2 +1

Figure 3. The H∗∗ for n is odd, d is even such that d ≥ 2, and n ≥ 2d− 1.

v1
v d

2
v n

2
v n

2 +1 vn− d
2 +1 vn· · · · · ·· · · · · ·· · ·

Figure 4. The H∗∗ for n is even, d is even such that d ≥ 2, and n ≥ 2d.

Theorem 4. If n is odd and d is odd, then expH∗(k) = n−1
2 +

⌊
k
2

⌋
, where 1 ≤ k ≤ n.

Proof. Since d is odd, then v n+1
2

is a loop vertex. We have γH∗(v n+1
2
) = max{d(v n+1

2
, x) : x ∈

V(H∗)} = d(v n+1
2

, vn) = n−1
2 . Moreover, according to Lemma 2, we have γH∗(v n+1

2 −a) ≤
γH∗(v n+1

2
) + d(v n+1

2 −a, v n+1
2
) = n−1

2 + a, where 1 ≤ a ≤ n−1
2 . Further, γH∗(v n+1

2 −a) =

γH∗(v n+1
2 +a) = γH∗(v n+1

2 −a, vn) = d(v n+1
2 −a, vn) =

n−1
2 + a, where 1 ≤ a ≤ n−1

2 . Therefore,
the theorem now holds.

Theorem 5. If n is odd, d is even and d ≥ 2, then

(1) If n ≤ 2d− 3, then expH∗(k) = n−1
2 +

⌊
k
2

⌋
, where 1 ≤ k ≤ n.

(2) n ≥ 2d− 1, then

expH∗∗(k) =

{
n− d + 1, where 1 ≤ k ≤ n− 2d + 4,

n− d + 1 +
⌈

k−(n−2d+4)
2

⌉
, where n− 2d + 4 ≤ k ≤ n.

Proof. Since d is even, then v n+1
2

is not a loop vertex.

(1) H∗ is shown in Figure 2. Let x be any vertex of H∗. If V(P(v n+1
2

, x)) ∩V(L(H∗)) 6= ∅,

then γH∗(v n+1
2

, x) = d(v n+1
2

, x) ≤ n−1
2 . If V(P(v n+1

2
, x)) ∩ V(L(H∗)) = ∅, according

to Corollary 1, we have γH∗(v n+1
2

, x) ≤ n− d + 1. Then, γH∗(v n+1
2
) ≤ max{ n−1

2 , n−
d + 1}. If n ≤ 2d − 3, then n − d + 1 ≤ n−1

2 . Then, we have γH∗(v n+1
2
) ≤ n−1

2 .

Further, γH∗(v n+1
2

, vn) = d(v n+1
2

, vn) = n−1
2 . Therefore, γH∗(v n+1

2
) = n−1

2 . Let a be

an integer satisfying 1 ≤ a ≤ n−1
2 . According to Lemma 2, we have γH∗(v n+1

2 −a) ≤
d(v n+1

2 −a, v n+1
2
)+γH∗(v n+1

2
) = a+ n−1

2 . Further, we have γH∗(v n+1
2 −a, vn) = d(v n+1

2 −a,

vn) =
n−1

2 + a. Then, γH∗(v n+1
2 −a) = γH∗(v n+1

2 +a) =
n−1

2 + a by Proposition 1, where

1 ≤ a ≤ n−1
2 . Therefore, we have expH∗(k) = n−1

2 +
⌊

k
2

⌋
, where 1 ≤ k ≤ n.

(2) H∗∗ is shown in Figure 3. If n ≥ 2d − 1, then n − d + 1 ≥ n+1
2 . Since n ≥ 5 and

n ≥ 2d− 1, then d
2 ≤

n+1
4 ≤ n−1

2 and n− d
2 + 1 ≥ n− n+1

4 + 1 ≥ n+3
2 . Then, v n+1

2
is

not a loop vertex.
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Suppose any integer a satisfies d− 1 ≤ a ≤ n+1
2 . Since d ≥ 2, then a ≥ d− 1 ≥ d

2 .

Let x be any vertex of H∗∗. Let the walk W(va, x) be va

d(va ,v n+1
2

)

−−−−−−→ v n+1
2

d(v n+1
2

,x)

−−−−−→
x. If V(W(va, x)) ∩ V(L(H∗∗)) 6= ∅, then γH∗∗(va, x) ≤ ( n+1

2 − a) + n−1
2 = n − a. If

V(W(va, x))∩V(L(H∗∗)) = ∅, we have V(P(x, v n+1
2
))∩V(L(D)) = ∅ and V(P(va, v n+1

2
))

∩V(L(D)) = ∅. According to Corollary 1, we have γH∗∗(va, x) ≤ n − d + 1. Therefore,
we have γH∗∗(va) ≤ max{n− a, n− d + 1} = n− d + 1, where d− 1 ≤ a ≤ n+1

2 . Since
d ≥ 2 and d − 1 ≤ a ≤ n+1

2 , then n+1
2 ≤ n − a + 1 ≤ n − d + 2 ≤ n − d

2 + 1. Fur-
ther, γH∗∗(va, vn−a+1) = d(va, v d

2
)+ d(v d

2
, vn−a+1) = d(va, vn− d

2 +1)+ d(vn− d
2 +1, vn−a+1) =

n − d + 1. Therefore, γH∗∗(va) = n − d + 1, where d − 1 ≤ a ≤ n+1
2 . According to

Proposition 1, if n+1
2 ≤ a ≤ n − d + 2, we have γH∗∗(va) = γH∗∗(vn−a+1) = n − d + 1.

So, for d − 1 ≤ a ≤ n − d + 2, we have γH∗∗(va) = n − d + 1. Therefore, we have
expH∗∗(k) = n− d + 1, where 1 ≤ k ≤ n− 2d + 4.

Suppose a satisfies 1 ≤ a ≤ d− 1. We have γH∗∗(va) ≤ d(va, vd−1) + γH∗∗(vd−1) =
n− d + 1 + (d− 1− a) = n− a. Moreover, γH∗∗(va) = γH∗∗(vn−a+1) = d(va, vn) = n− a.
So, we can get expH∗∗(k) = n− d + 1 +

⌈
k−(n−2d+4)

2

⌉
, where n− 2d + 4 ≤ k ≤ n.

Therefore, the theorem now holds.

Theorem 6. If n is even, d is even and d ≥ 2, then

(1) If n ≤ 2d− 2, then expH∗(k) = n
2 − 1 +

⌈
k
2

⌉
, where 1 ≤ k ≤ n.

(2) n ≥ 2d, then

expH∗∗(k) =

{
n− d + 1, where 1 ≤ k ≤ n− 2d + 4,

n− d + 1 +
⌈

k−(n−2d+4)
2

⌉
, where n− 2d + 4 ≤ k ≤ n.

Proof. (1) H∗ is shown in Figure 2. We have H∗ ∈ DS′n,2(d), f = g = n
2 or f = g = n

2 + 1.
Let us assume f = g = n

2 , then n + 1− f = n + 1− g = n
2 + 1. If n ≤ 2d− 2, let us consider

the following two cases.
Case 1 {v n

2
, v n

2 +1} ∩V(L(H∗)) 6= ∅.
It is easy to see that γH∗(v n

2
) = γH∗(v n

2 +1) = max{d(v n
2
, x) : x ∈ V(H∗)} =

d(v n
2
, vn) = n

2 . Suppose a satisfies 1 ≤ a ≤ n
2 − 1. According to Lemma 2, we can get

γH∗(v n
2−a) ≤ d(v n

2−a, v n
2
) + γH∗(v n

2
) = n

2 + a. Further, γH∗(v n
2−a) = γH∗(v n

2−a, vn) =

d(v n
2−a, vn) =

n
2 + a. According to Proposition 1, we have γH∗(v n

2−a) = γH∗(v n
2 +a+1) =

n
2 + a, where 1 ≤ a ≤ n

2 − 1. Therefore, we have expH∗(k) = n
2 − 1 +

⌈
k
2

⌉
, where 1 ≤ k ≤ n.

Case 2 {v n
2
, v n

2 +1} ∩V(L(H∗)) = ∅.
Let x be any vertex of H∗. If V(P(v n

2
, x)) ∩ V(L(H∗)) 6= ∅, then γH∗(v n

2
, x) =

d(v n
2

, x) ≤ n
2 . If V(P(v n

2
, x))∩V(L(H∗)) = ∅, according to Corollary 2, we have γH∗(v n

2
, x)

≤ n − d + 1. Then, γH∗(v n
2
) ≤ max{ n

2 , n − d + 1} = n
2 . Further, we have γH∗(v n

2
) =

γH∗(v n
2
, vn) = d(v n

2
, vn) = n

2 . Let a satisfy that 1 ≤ a ≤ n
2 − 1. Then, γH∗(v n

2−a) ≤
d(v n

2−a, v n
2
)+γH∗(v n

2
) = n

2 + a. Further, we have γH∗(v n
2−a) = γH∗(v n

2−a, vn) = d(v n
2−a, vn)

= n
2 + a. According to Proposition 1, γH∗(v n

2 +1+a) = γH∗(v n
2−a) =

n
2 + a, where 0 ≤ a ≤

n
2 − 1. Therefore, we have expH∗(k) = n

2 − 1 +
⌈

k
2

⌉
, where 1 ≤ k ≤ n.

(2) H∗∗ is shown in Figure 4. We have H∗∗ ∈ DS′n,2(d), f = g = n
2 or f = g = n

2 + 1.
Let us assume f = g = n

2 , then n + 1− f = n + 1− g = n
2 + 1. If n ≥ 2d, then n− d + 1 ≥

n
2 + 1. Since n ≥ 6 and n ≥ 2d, then d

2 ≤
n
4 ≤

n
2 − 1 and n− d

2 + 1 ≥ n− n
4 + 1 ≥ n

2 + 2.
Then v n

2
and v n

2 +1 are not loop vertices.

Suppose any integer a satisfies d− 1 ≤ a ≤ n
2 . Since d ≥ 2, then a ≥ d− 1 ≥ d

2 . Let x

be any vertex of H∗∗. Let the walk W(va, x) be va

d(va ,v n
2
)

−−−−−→ v n
2

d(v n
2

,x)
−−−−→ x. If V(W(va, x)) ∩

V(L(H∗∗)) 6= ∅, then γH∗∗(va, x) ≤ ( n
2 − a) + n

2 = n− a. If V(W(va, x))∩V(L(H∗∗)) = ∅,
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we have V(P(va, v n
2
)) ∩ V(L(D)) = ∅ and V(P(x, v n

2
)) ∩ V(L(D)) = ∅. According to

Corollary 2, we have γH∗∗(va, x) ≤ n − d + 1. So γH∗∗(va) ≤ max{n − a, n − d + 1} =
n− d + 1, where d− 1 ≤ a ≤ n

2 . Since d ≥ 2 and d− 1 ≤ a ≤ n
2 , then n

2 + 1 ≤ n− a +
1 ≤ n− d + 2 ≤ n− d

2 + 1. Further, we have γH∗∗(va) = γH∗∗(va, vn−a+1) = d(va, v d
2
) +

d(v d
2
, vn−a+1) = d(va, vn− d

2 +1) + d(vn− d
2 +1, vn−a+1) = n − d + 1, where d − 1 ≤ a ≤ n

2 .

According to Proposition 1, if n
2 + 1 ≤ a ≤ n− d + 2, we have γH∗∗(va) = γH∗∗(vn−a+1) =

n− d + 1. So, for d− 1 ≤ a ≤ n− d + 2, we have γH∗∗(va) = n− d + 1. Therefore, we have
expH∗∗(k) = n− d + 1, where 1 ≤ k ≤ n− 2d + 4.

Suppose a satisfies 1 ≤ a ≤ d− 1. We have γH∗∗(va) ≤ d(va, vd−1) + γH∗∗(vd−1) =
n− d + 1 + (d− 1− a) = n− a. Moreover, γH∗∗(va) = γH∗∗(vn−a+1) = d(va, vn) = n− a.
So, we can get expH∗∗(k) = n− d + 1 +

⌈
k−(n−2d+4)

2

⌉
, where n− 2d + 4 ≤ k ≤ n.

Therefore, the theorem now holds.

It can be seen from Theorems 4–6, the upper bound for the kth local exponent of doubly
symmetric primitive digraphs of order n with d loops can be reached, where 1 ≤ k ≤ n.

4. Conclusions

In this paper, we study the upper bound for the kth local exponent of doubly symmetric
primitive digraphs of order n with d loops, where d is an integer such that 1 ≤ d ≤ n.
For the class of doubly symmetric primitive digraphs, we get the upper bound for the
kth local exponent, where 1 ≤ k ≤ n. Furthermore, for the class of doubly symmetric
primitive digraphs, we find that the upper bound for the kth local exponent can be reached,
where 1 ≤ k ≤ n. The upper bounds of the generalized µ-scrambling indices for a doubly
symmetric primitive digraph are not given. It would be meaningful and interesting to solve
the problems in future research.
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