
Citation: Salaeh, N.; Ditthakit, P.;

Pinthong, S.; Hasan, M.A.; Islam, S.;

Mohammadi, B.; Linh, N.T.T.

Long-Short Term Memory Technique

for Monthly Rainfall Prediction in

Thale Sap Songkhla River Basin,

Thailand. Symmetry 2022, 14, 1599.

https://doi.org/10.3390/

sym14081599

Academic Editor: László T. Kóczy

Received: 21 June 2022

Accepted: 1 August 2022

Published: 3 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Long-Short Term Memory Technique for Monthly Rainfall
Prediction in Thale Sap Songkhla River Basin, Thailand
Nureehan Salaeh 1, Pakorn Ditthakit 1,* , Sirimon Pinthong 1, Mohd Abul Hasan 2 , Saiful Islam 2,
Babak Mohammadi 3,* and Nguyen Thi Thuy Linh 4

1 Center of Excellence in Sustainable Disaster Management, School of Engineering and Technology,
Walailak University, Nakhon Si Thammarat 80161, Thailand; nureehan.sa@mail.wu.ac.th (N.S.);
sirimon.pi@mail.wu.ac.th (S.P.)

2 Civil Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
mohad@kku.edu.sa (M.A.H.); sfakrul@kku.edu.sa (S.I.)

3 Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12,
SE-223 62 Lund, Sweden

4 Institute of Applied Technology, Thu Dau Mot University, Thu Dau Mot 75000, Vietnam;
nguyenthuylinh@tdmu.edu.vn

* Correspondence: dpakorn@mail.wu.ac.th (P.D.); babak.mohammadi@nateko.lu.se (B.M.);
Tel.: +66-7567-2321 (P.D.)

Abstract: Rainfall is a primary factor for agricultural production, especially in a rainfed agricultural
region. Its accurate prediction is therefore vital for planning and managing farmers’ plantations.
Rainfall plays an important role in the symmetry of the water cycle, and many hydrological mod-
els use rainfall as one of their components. This paper aimed to investigate the applicability of
six machine learning (ML) techniques (i.e., M5 model tree: (M5), random forest: (RF), support vector
regression with polynomial (SVR-poly) and RBF kernels (SVR- RBF), multilayer perceptron (MLP),
and long-short-term memory (LSTM) in predicting for multiple-month ahead of monthly rainfall.
The experiment was set up for two weather gauged stations located in the Thale Sap Songkhla basin.
The model development was carried out by (1) selecting input variables, (2) tuning hyperparameters,
(3) investigating the influence of climate variables on monthly rainfall prediction, and (4) predicting
monthly rainfall with multi-step-ahead prediction. Four statistical indicators including correlation
coefficient (r), mean absolute error (MAE), root mean square error (RMSE), and overall index (OI)
were used to assess the model’s effectiveness. The results revealed that large-scale climate variables,
particularly sea surface temperature, were significant influence variables for rainfall prediction in the
tropical climate region. For projections of the Thale Sap Songkhla basin as a whole, the LSTM model
provided the highest performance for both gauged stations. The developed predictive rainfall model
for two rain gauged stations provided an acceptable performance: r (0.74), MAE (86.31 mm), RMSE
(129.11 mm), and OI (0.70) for 1 month ahead, r (0.72), MAE (91.39 mm), RMSE (133.66 mm), and
OI (0.68) for 2 months ahead, and r (0.70), MAE (94.17 mm), RMSE (137.22 mm), and OI (0.66) for
3 months ahead.

Keywords: machine learning; multi-step-ahead prediction; rainfall prediction

1. Introduction

Rainfall is one of the essential components in the hydrological cycle [1,2], playing
a vital role in planning and managing water supply for symmetry with water demand
from various activities, i.e., domestic household water consumption, industry, agriculture,
etc. Rainfall variability is a natural factor affecting agriculture positively and negatively
and creating risks and uncertainties in agricultural production. The Songkhla Sap basin is
one of four main Southern River Basins of Thailand, mainly covering agricultural land of
approximately 62.18 percent of the basin’s total area. The principal economic crops of this
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basin, i.e., rice, rubber, oil palm, fruit crops, etc., need water. Therefore, it is imperative to
predict long-term rainfall for agricultural water management, including preventing and
mitigating hazards posed by natural disasters such as floods and droughts. These issues
create significant harm and danger to human life and property and agricultural products,
leading to obstructing the area’s economic development.

However, rainfall prediction is complicated due to the nonlinear relationships between
rainfall and climate variables. Wind, humidity, heat, earth rotation, and other significant
factors impact rainfall [3]. In addition to the factors mentioned, climate change implications
affect rainfall, especially in the coastal regions [4] and climate-sensitive areas such as the
Southeast Asia region. This is because the region is located near the epicenter of variability
caused by the interactions between the oceans, atmosphere, and land in the equatorial
region between the Indian and Pacific Oceans [5]. It has been influenced by the southwest
monsoon and northeast monsoon winds that blow through most of the year. In addition,
the Indian Ocean Dipole (IOD) and El Niño-Southern Oscillation (ENSO) phenomena [6,7]
results in rainfall variability in this region.

Previous studies have shown correlations between rainfall and climate variability in
areas around the world. For example, Haq et al. [8] found that El-Nino 3.4 and IOD were
strong enough to predict rainfall in Indonesia. Maass et al. [9] stated that the influence
of ENSO is clearly dominant in the southern Pacific Coast of Jalisco, Mexico, with lower
annual rainfall during hot periods called “La Nino” and higher annual rainfall during
cold weather called the “Niña condition”. Islam and Imteaz [10] found that more than
one climate index influenced rainfall in the southwest of Western Australia. A study by
Chu et al. [11] suggested that the performance of predictive models with multiple climate
factors was generally better than predictive models without climate factors, and several
studies indicated that using climate indices could improve predicting efficiency, such
as [4,12], etc. A number of studies have shown a correlation between rainfall estimates
and ENSO/IOD in Thailand, such as [7,13–16]. The study’s findings all trend in the
same direction. According to their research, ENSO is a factor impacting the variability in
Thailand’s rainfall.

The rainfall prediction model can generally be classified into three main groups: con-
ceptual models, physical models, and empirical models [17–19]. The conceptual model
describes hydrological components. It requires large amounts of hydrological and meteo-
rological data [20], and the conceptual models are usually lumped in nature and ignore
the basin characteristics spatial variability and use the same parameters for the whole
basin [21,22], with most model parameters having no direct physical meaning [23]. The
physical model attempts to describe the physical processes which require variables or
parameters about the initial state of the model and morphology of the basin [20]. The
hydrological processes of water movement are represented by finite difference approaches
such as partial differential equations [20,24]. Although such models produce satisfactory
results, adjusting the parameters is time consuming [25]. The availability of data, the unpre-
dictability of basins, and the complexity of such models may be unready and challenging
to implement [26–28]. On the other hand, the empirical model is a data-driven model
regardless of the basin’s hydrological component. As a result, they do not necessitate many
parameters or data, resulting in a less complex and computationally efficient model [29].

In recent years, machine learning (ML) techniques capable of long-term analysis and
big data have become increasingly popular in hydrology and water resources among
researchers and engineers [30] because of their efficient tools in the estimation of rainfall
and runoff [31]. It is a self-learning data-driven model. It is a branch of artificial intelligence
that can find nonlinear relationships between input and output without the need for the
knowledge of the fundamental physical processes of the basin [32,33]. For example, ML
technologies were successfully applied in rainfall prediction [34], runoff simulation [35],
pan evaporation prediction [36], solar radiation modeling [37], drought forecasting [38],
and ground water level prediction [39]. Various ML models have been successfully applied
for rainfall-runoff modeling [40], such as artificial neural network (ANN), multilayer
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perceptron (MLP), support vector regression (SVR), random forest (RF), M5 model tree
(M5), and genetic programming (GP). Furthermore, recent technological advancements
have led to a growing interest in deep learning (DL) methods—computer software that
mimics the functions of the neural network in the human brain as a subset of ML. Through
DL, one can automatically extract attributes from data that are strongly related to the
dependent variable through hidden layers, whereas traditional ML methods must extract
attributes from data that are strongly related to the dependent variable [18]. Modeling
sequential data using recurring neural networks (RNNs) is one of the most active areas of
DL research [41]. The long-short-term memory (LSTM) technique was created specifically
for learning long-term dependencies by designing the functional part of the memory
cell state in order to solve and overcome the vanishing gradient problem of traditional
RNNs [18]. However, to our knowledge, not many studies have used DL in hydrology,
especially for predicting rainfall. ML is a simple, low cost, and quick way of carrying out
analysis and assessment, but it offers high efficiency and less complexity than commonly
used models [33]. Consequently, many studies have attempted to use ML methods for
predicting rainfall to reduce time and increase prediction efficiency.

For example, Hung, Babel, Weesakul, and Tripathi [40] used the ANN model to
predict rainfall 1 to 6 h in advance for Bangkok. They found that the next 1 to 3 h were
very satisfactory. While in the next 4 to 6 h, the prediction was not as accurate as it could
be. Yu et al. [42] predicted rainfall in Taiwan and found that for 1 h ahead, both the RF
and SVM models were satisfactory, but for 2 and 3 h ahead, the RF models underestimated
the rainfall. Mekanik et al. [43] compared the ANN and MR (multiple regression) analysis,
finding that ANN outperforms the MR analysis for predicting rainfall in Victoria, Australia.
Ridwan et al. [44] developed and compared different ML methods for predicting rainfall
in Tasik Kenyir, Terengganu. It was found that the different ML models could predict
rainfall with an acceptable level of accuracy. The study results by Mislan et al. [45] showed
that the ANN model could provide accurate rainfall predictions. While Zhang et al. [46]
discovered that the SVR technique outperforms the MLP method for predicting yearly
rainfall, both the SVR and MLP methods give accuracy at different intervals for non-
monsoon rainfall. Choubin et al. [47] used large-scale climate as the model input to compare
MLR (multiple linear regression), MLP, and ANFIS (adaptive neuro-fuzzy inference system)
models for rainfall forecasting in the southwest of Iran. The results showed that large-
scale climate had a significant effect on rainfall over the different lag times, with MLP
outperforming other models. According to Aswin et al. [48], they used DL architecture
models consisting of LSTM and ConvNet (convolutional neural network) to forecast global
average monthly rainfall. The results showed that the model developed by DL provides
accuracy and precision. Chen et al. [49] compared the ability of the LSTM and RF to
forecast monthly rainfall at two Turkish meteorological stations using rainfall as the model’s
input. The results showed that the LSTM model was more effective than the RF model.
Kumar et al. [50] has used new deep learning models, namely, RNN and LSTM, for monthly
rainfall forecasts in homogeneous rainfall regions of India. The outcomes demonstrate
that deep learning networks can be successfully applied to hydrology time series analysis.
The ML algorithm has been applied to other hydrology and water resource problems,
for example, supporting runoff estimation models [51], water demand [52], simulation
streamflow [53], predicting reservoir inflow [12], groundwater level prediction [54], and
water quality evaluation [55], etc.

In a literature review, we found that all previous research applied LSTM for predicting
rainfall with large data sets. This is because small data sets disrupt the ML training
process. When training data sets become smaller, the model has fewer samples to learn
from, increasing the risk of overfitting [56]. However, it is an inevitable problem, especially
in developing countries with unavailable long recorded data. Most research used large
data sets for predicting monthly rainfall of more than 40 years, such as [49,50,57,58]. One
of the key issues with using ML to predict rainfall is its multi-step forecasting capability,
which is vital for reliable hydrological forecasts to mitigate potential future risks [59,60].
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Additionally, no previous publications have been found that LSTM was applied to predict
multi-month-ahead of monthly rainfall with small data sets and studies that rely on large-
scale climate data as variables for predicting rainfall using LSTM are still limited. To fill this
research gap, especially in the tropical climate region, this research is the first attempt to
investigate LSTM’s performance for multi-step-ahead prediction of monthly rainfall with
small data sets and large-scale climate data.

The main aim of this paper is to (1) investigate the influence of climate variables on
monthly rainfall, (2) investigate the applicability of LSTM with small data for monthly
rainfall data set in tropical weather, and then compare traditional ML (i.e., M5, RF, SVR
with polynomial and RBF kernels, and MLP), and (3) apply LSTM for multi-month-ahead
rainfall prediction. This study chose two rain gauged stations in the Thale Sap Songkhla
basin and nearby river basins. The rest of this article is organized as follows: Section 2
“Materials and Methods” includes the details of the study area and data analysis, and
briefly describes the theories of machine learning algorithms, model development, and
model performance evaluation. Section 3 presents the results and discussion of the findings.
Section 4 provides the conclusions of this research.

2. Materials and Methods
2.1. Study Area and Data Analysis

This study focused on the Thale Sap Songkhla River basin (TSSRB) in the southern
region of Thailand (see Figure 1), situated at latitude 6◦45′ and 8◦00′ north and longitude
99◦30′ and 100◦45′ east. This river basin covers three provinces of Songkhla, Pattalung, and
some parts of Nakhon Si Thammarat, with a total area of approximately 11,991.36 km2. The
TSSRB is Thailand’s only watershed with a large lagoon-style lake system. The topography
of the TSSRB consists of high mountainous areas in the west and south of the basin. The
Bantad Mountain Range extends in the north and south directions in the west. On the
south side is the San Kala Khiri Mountain Range, partially covered by fertile forest, thus
being the source of watersheds that flow into Songkhla Lake. The northern and eastern
parts of the TSSRB are coastal plains. The TSSRB is under the influence of the northeast
monsoon and southeast monsoons. Therefore, there are two seasons of climate: summer
and rainy seasons. The summer lasts from February to mid-July. The rainy season lasts
from July to January, with the heaviest rainfall in November. The average annual rainfall in
this area is approximately 2069.10 mm.

Figure 1. Location of the Thale Sap Songkhla basin in the south of Thailand.
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We collected meteorological data from the Thai Meteorological Department (TMD)’s
weather stations located in the Thale Sap Songkhla basin: including monthly rainfall
(two gauged stations), monthly air temperature, relative humidity, and wind speed
(six gauged stations). In addition, we utilized three large-scale monthly data sets of oceano-
graphic indices from the years 2004 to 2018, i.e., Southern Oscillation Index (SOI), Sea
Surface Temperature (SST), and Indian Ocean Dipole Mode Index (DMI). SOI measures the
differences in the atmospheric pressure above sea surface between Darwin and Tahiti in
the Pacific Ocean. SST in the central Pacific Ocean notes as NINO1 + 2 (0–10S, 90W–80W),
NINO3 (5S–5N, 150–90W), NINO3.4 (5S–5N, 170–120W), and NINO4 (5S–5N, 160–150W)
from the National Oceanic and Atmospheric Administration (NOAA) website. DMI pro-
vides the difference in SST between the west and east coasts of the Indian Ocean from
the Japan Agency for Marine-Earth Science and Technology (JMASTEC). In this study, the
Thiessen method was deployed to determine basin areal rainfall using the QGIS program.
It was introduced by Thiessen [61] for constructing polygons and calculating the weighted
average. The summary statistical values of meteorological data and large-scale climate
variables are presented in Table 1.

Table 1. Summary statistical values of meteorological data and large-scale climate variables.

Data
Statistical Value

Max Min Avg SD Kurt Skew

Meteorological

Rainfall (mm) 977.60 0.00 179.03 179.89 5.51 2.16
Air temperature (C) 30.00 25.40 0.66 0.81 0.21 0.16

Relative humidity (%) 89.75 70.00 79.62 3.97 −0.30 0.24
Wind speed (Knot) 4.50 0.40 1.88 0.78 0.06 0.59

Large-scale climate
variables

SOI 2.90 −3.10 0.24 0.97 0.62 0.09
DMI 0.84 −0.66 0.12 0.28 −0.14 0.07
SST

−NINO1 + 2 28.10 19.50 23.22 2.16 −1.09 0.11
−NINO3 28.74 23.48 25.96 1.24 −0.78 −0.07
−NINO3.4 29.42 24.86 27.03 0.99 −0.37 −0.06
−NINO4 30.13 26.62 28.65 0.74 −0.40 −0.48

Remark: Max is maximum, Min is minimum, Avg is average, SD is standard deviation, Kurt is kurtosis, and Skew
is skewness.

2.2. Machine Learning Models
2.2.1. M5 Model Tree

The M5 model tree is a method developed by Quinlan [62] based on the concept of the
binary decision tree model and leaf regression function generation. The representation of
knowledge in a tree structure makes it easy to understand, clear, and regression functions
with few variables involved [63]. The M5 model tree is a model with non-linear functions.
The model breaks a function into subsets and builds a linear regression model to determine
the relationship of the data set in each subset.

The total data set (T) is divided into several subsets (Ti) by splitting the criterion as
shown in Figure 2, which depends on the standard deviation of the class obtained in T to
measure the error at that instance and calculate the standard deviation reduction (SDR) as
Equation (1) in each attribute at a sub-instance to select the best attribute, which gives the
most SDR value. This process is repeated until the data set is divided into several subsets,
until the attribute’s class value is very small or when the standard deviation (Ti) is less than
the standard deviation (T) of the original instance set.

SDR = sd(T)−∑
|Ti|
|T| sd(Ti) (1)
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Figure 2. An example of selecting an attribute from the M5 model tree (Source: Adapted from
Solomatine and Xue [63]).

2.2.2. Random Forest

Random forest (RF) is an ensemble learning machine introduced by Breiman [64]
that produces excellent results even without hyperparameter tuning. This model is not
affected by overfitting. It can capture nonlinearity and has few model parameters. The
RF is one of the most used models because its simplicity and diversity can be applied to
both classification and regression problems. RF is used to create a decision tree with a large
number of trees, where each tree is generated from training data at bootstrap and randomly
selects a subset of data attributes, with each node receiving a unique data set. The model
determines the output by using the average of the output from the tree clusters through the
decision tree to predict the outcome. Increasing the number of trees increases the accuracy
of the results. Figure 3 shows architecture of a random forest model.

Figure 3. Architecture of a random forest model (Source: Adapted from Park et al. [65]).
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2.2.3. Support Vector Regression

Support vector regression (SVR) is a supervised learning model that uses the support
vector machine (SVM) methodology. It is one of the powerful models that can be used
in the problem of classification when data cannot be linearly separated. Support vector
regression relies on the same basic principles as the support vector machine but applies
it to regression-type problems. The normal principle of regression is based on a single
line, but this method draws the best boundary line to the regression, meaning it covers the
most observations using the loss function “Epsilon Intensive Loss Function” (see Figure 4),
which is the acceptable error value in absolute terms. The observation point outside the
ε-tube region is the model’s error value, while the observation points inside the ε-tube
region are zero error. The purpose of SVR is to try to provide all the observation data inside
the boundaries (minimal error). The SVR model is adapted from the SVM model, so the
SVR regression equation is similar to SVM’s hyperplane equation, with the goal of finding
a linear relationship between the input vector and the output variable. The SVR regression
function by Vapnik [66] can be described using Equations (2) and (3).

f(x) = wx + b =
l

∑
i=1

(
αi − α′i

)
K(xix) + b (2)

subject to


l

∑
i=1

(αi − α′i) = 0

0 ≤ αi ≤ C,
0 ≤ α′i ≤ C

(3)

where w is a weight vector, x is the nonlinear transfer function, b is the bias, αi,α′i is a
Lagrange multiplier, and K(xix) is a linear kernel function used to handle high-dimensional
feature space. Since the data set is actually non-linear, having a kernel function can change
data with lower dimensions to higher dimensions to allow for linear model division [67],
the proper selection of kernel functions can produce more results or accuracy. Popular
kernel functions such as:

• Linear kernel
K(xi, x) = (xi, x) (4)

• Polynomial kernel
K(xi, x) = (1 + xi·x)d (5)

• RBF kernel

K(xi, x) = exp
(
−γ||xi − x||2

)
(6)

Figure 4. Nonlinear and linear SVR with Vapnik ε-insensitive loss function (Source: Adapted from
Yu et al. [68]).
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2.2.4. Multilayer Perceptron

The original idea of the artificial neuron network (ANN) was developed by McCulloch
and Pitts [69], which proposed a concept based on the behavior of the human brain and
neuronal relationships, requiring computers to be capable of learning to know, analyze,
and make decisions similar to human beings. A multilayer perceptron (MLP) neural
network is a form of a multilayer-structured feed-forward neural network trained using
a backpropagation learning algorithm. Figure 5 presents a multi-layer perceptron with
two hidden layers. The main strength of MLP is its non-linearity. Usually, MLP is organized
into a set of interconnected layers of neuron cells consisting of an input layer, hidden layer,
and output layer. The input layer receives the data and the hidden layer processes them,
and finally, the output layer displays the resulting model output. The structure of the MLP
neural network is a simple neural network structure, thus being a simple and complex
structure. The mathematical equation can be expressed as follows.

y = ϕ

(
n

∑
i=1

wixi + b

)
(7)

where w is the vector of weights, x is the vector of inputs, b is the bias, ϕ is the non-linear
activation function, and y is the output. There are many activation functions to choose
from. The one of popular activation function in the past was the logistic activation function
(Sigmoid: σ), which is a function that takes whatever data are entered and changes them to
a value between 0 and 1. The equation is as follows:

f(x) =
1

(1 + e−x)
(8)

Figure 5. A multi-layer perceptron with two hidden layers (Source: Adapted from Chandra et al. [70]).

2.2.5. Long-Short Term Memory

Long-short-term memory (LSTM) was proposed by Hochreiter and Schmidhuber [71]
as a type of network developed from RNNs. However, RNN can only view historical data
for a short time. Therefore, it is not powerful enough to learn patterns from long-term
dependencies. This will cause issues with backpropagation because it will need to go back
many steps and nodes. As a result, the vanishing gradient problem occurs. Therefore, the
LSTM technique was explicitly created for learning long-term dependencies by designing
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the functional part of the memory cell state to solve and overcome the weaknesses of
traditional RNNs. In the LSTM memory cells, a “gate” unit controls the information that
will be entered into each node, consisting of the forget gate, input gate, and output gate.
The forget gate is a gate that has to determine whether the information that comes in the
cell state should be stored or should be left. The input gate is a gate that has to receive
new information and then record or write data in each node, which will decide whether
to update the value or not update it with any value. Then, send that value to the output
gate to decide whether to show that information or return it. Therefore, LSTM can learn
from the data that are sequential and can collect or delete data if the data are not necessary.
Figure 6 depicts the structure of the LSTM, and the formulas are as follows:

• Forget gate
ft = σ(Wf·[xt, ht−1] + bf) (9)

• Input gate
it = σ(Wi·[Xt, ht−1] + bi) (10)

• Cell state candidate
Ct = tan h(Wc·[xt, ht−1] + bc) (11)

• Cell state
Ct = ft ∗ Ct−1 + it ∗ Ct (12)

• Output gate
ot = (Wo·[Xt, ht−1] + bo) (13)

• Hidden state
ht = ot∗ tan h(Ct) (14)

where W and b are the weight matrices and bias, xt is the input to the memory cell, ht−1
is the hidden state at time t − 1, Ct−1 and Ct are the cell states at time t − 1 and t, σ and
tanh are the activation functions of the logistic sigmoid function and σ and tanh are the
hyperbolic functions (tanh) with values between [0, 1] and [−1, 1], respectively. The format
of the internal operating system of the LSTM may be modified as appropriate for each task.

As previously mentioned, there are many activation functions to choose from; however,
the most used activation functions in ANN and deep learning are sigmoid, tanh, and Relu.
Sigmoid is an S-curve function. The output of the sigmoid function is between 0 and 1. It is
suitable for use in applications that require a probability output. However, it suffers from
vanishing gradient problems [73] where neurons tend to stop learning to some extent. Then,
Tanh activation function was proposed. The Tanh function, or hyperbolic tangent activation
function, is a function that solves many of the disadvantages of sigmoid but has the same
S shape. The output value of tanh is between −1 and 1. For this reason, the hyperbolic
tangent curve is steeper than the sigmoid curve. Hence, the derivatives are durable, which,
when compared to sigmoids, lessens the gradient lost [74]. However, the missing gradient
issue still occurs in the tanh function when moving to a deeper network. Relu, short for
rectified linear unit, is a linear function that is not S-shaped, such as the two previous
functions. The Relu function expands the range from 0 to ∞, meaning that if the input
is greater than zero, the output is positive. Additionally, if the input is zero or negative,
then the output is zero, which is somewhat higher than the sigmoid and tanh functions.
ReLU is a simpler function than all previous activation functions. This is because if the
input is positive, the slope is always one. This reduces the vanishing gradient problem [73],
allowing us to train the model faster. However, it cannot update the negative weight, but
the advantage is that that gradient does not disappear, which overcomes everything and
allows the drawbacks to be overlooked.
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Figure 6. The structure of the long-short-term memory (LSTM) neural network (Source: Adapted
from Van Houdt et al. [72]).

2.3. Model Development

In this study, six ML methods were selected and compared, M5, RF, SVR-poly, SVR-rbf,
MLP, and LSTM, as alternative techniques for predicting monthly rainfall at two weather
stations located in the Thale Sap Songkhla. Weka (Waikato Environment for Knowledge
Analysis), free and open-source software, and ANNdotNET, a NET-based solution con-
sisting of a set of tools for running deep learning models, were utilized. The total data
set of 165 data sets, or 165 months, is the data obtained after pre-processing, which was
partitioned into a training set and testing set. A training set is a data set used to teach a
machine learning model to learn the appropriate parameters, while a testing set is used
to evaluate the model’s performance. The study used a ratio of 70:30, i.e., 70% (115 data
sets) for the training set and 30% (50 data sets) for the testing set. Additionally, the rainfall
predicting procedures are summarized as follows:

Step 1: Input selection. Selecting input data is one of the most important issues in
predictive model development and significantly affects model performance [75]. The data
obtained may contain many attributes or variables, which may or may not be related to
the dependent variable. Therefore, for the most accurate analysis of dependent variables,
only attributes related to dependent variables should be selected as input models. In many
studies, mostly for simplicity, rainfall was the only input [3,45,76]. This study used climate
variable data for the rainfall prediction based on Pearson’s correlation
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Step 2: Tuning hyperparameters. Another improvement in model performance is
to adjust parameters, also known as hyperparameters. This is a parameter adjustment
to select the most suitable set of parameters [77] using a trial-and-error process until the
best prediction score is obtained. Consistent with the study by Ridwan, Sapitang, Aziz,
Kushiar, Ahmed, and El-Shafie [44], they found that without tuning, the model (boosted
decision tree regression) performed poorly, but when tuned, the accuracy of the model was
noticeably increased

Step 3: Influence of climate and meteorological variables on monthly rainfall. Three
scenarios of input patterns were examined to study the influence of climate and meteorolog-
ical variables on one-month-ahead monthly rainfall predictions. The most straightforward
and most efficient model would propose for the model’s applicability.

• Scenario1: ML models with large-scale climate and meteorological variables as inputs.
• Scenario2: ML models with only meteorological variables as inputs.
• Scenario3: ML models with only rainfall variables as an input.

Step 4: Multi-month-ahead rainfall prediction. We selected the best scenario of input
pattern from these three scenarios for each gauged station to predict multi-month-ahead
rainfall. Additionally, the projected rainfall of the current time step was used as input data
for the next step, as shown in Figure 7.

Figure 7. Multi-step-ahead time series prediction (Source: Adapted from Pei et al. [78]).

2.4. Model Performance Evaluation

In this study, statistical indicators were used as criteria for assessing the effectiveness
of the model, namely, correlation coefficient (r), mean absolute error (MAE), root mean
square error (RMSE), and overall index (OI).

The r measures the strength and direction of the linear relationship between two variables.
Its values range between −1 and 1. If r is close to 1, the two variables are highly correlated
and have the same direction [79].

r =
∑n

i=1
(
Robs − Robs

)(
Rsim − Rsim

)√
∑n

i=1 (Robs − Robs)
2·
√

∑n
i=1 (Rsim − Rsim)

2
(15)

MAE and RMSE are measurements of the average magnitude of the error. It shows
up in the form of an error between the simulated values produced by the model and the
observed values. MAE and RMSE range from 0 to ∞. Lower values are better because MAE
and RMSE are negatively oriented scores.

MAE =
∑n

i=1|Robs − Rsim|
n

(16)
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RMSE =

√
∑n

i=1(Robs − Rsim)2

n
(17)

The OI indicator is a criterion that indicates the overall performance of a model,
with values ranging between −∞ and 1 [80] r, MAE, RMSE, and OI are defined by the
following equations.

OI =
1
2

[
2− RMSE

Robs,max − Robs,min
− ∑n

i=1(Robs − Rsim)2

∑n
i=1
(
Robs − Robs

)2

]
(18)

where Robs denotes the observed rainfall, Rcal denotes the calculated rainfall, Robs denotes
the average observed rainfall, Rcal denotes the average calculated rainfall, Robs,max denotes
the maximum observed rainfall, Robs,min denotes the minimum observed rainfall, and n
denotes the number of rainfall data.

3. Results and Discussion
3.1. Input Selection

A set of inputs at lags of 1, 2, 3, . . . , 12 months were used to predict the rainfall. Using
analysis, attributes with a correlation coefficient (r) value higher than 0.25 were selected
as the model’s nominated input variables. Figure 8a–c show the two stations’ correlation
between rainfall and the climate variables of lead time at t + 1, t + 2, and t + 3 months,
respectively. We found that the delay was appropriate for correlation analysis, with each
climate variable showing different maximum relevant results.

Figure 8. Average correlation between climate variables and rainfall at lead times of t + 1 (a), t + 2 (b),
and t + 3 (c) months.

While the deep learning model’s selection of features and classifiers is automated, the
neural network learns which feature to choose. In contrast, traditional machine learning
models require scientists or users to extract data and create features to make learning
algorithms work by reducing the complexity of the data and making patterns more visible.
This is an advantage of deep learning over the traditional machine learning models.

For large-scale climate variables, correlations between rainfall and SOI were positively
and negatively weak (r = −0.06 to 0.17). Rainfall and SOI have a direct relationship since
a negative SOI value results in higher temperatures, lower rainfall or drought conditions
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(El Niño) and periods of high rainfall (La Niña), and positive SOI values result in low
temperatures and increased rainfall [81] as seen from Figure 9a. In addition, the correlation
between rainfall and DMI was the weakest (r = −0.08 to 0.11). There were no stations
with a DMI greater than 0.25, implying that DMI was not chosen as an input variable for
all stations. Similarly, we found that the climate indices having the greatest influence on
two weather gauged stations in the Songkhla Lake basin were SST: NINO1 + 2 (r = −0.5
to 0.5), NINO3 (r = −0.43 to 0.43), NINO3.4 (r = −0.29 to 0.26), and NINO4 (r = −0.28 to
0.10). The relationship between rainfall and DMI/SST is inverse, where positive DMI and
SST result in reduced rainfall or drought (El Niño). In contrast, negative SST results in
high rainfall (La Niña) [14], demonstrated in Figure 9b,c. Our study is consistent with a
study by Sein et al. Sein et al. [82] that found that SOI had a greater influence on rainfall in
neighboring Myanmar than IOD (DMI).

Figure 9. Trend and direction relationship between climate variables and rainfall between 2004
and 2018; (a) The correlation between Southern Oscillation Index and Rainfall (SOI-R), (b) The
correlation between Dipole Mode Index and rainfall (DMI-R), (c) The correlation between Sea Surface
Temperature and Rainfall (SST-R), (d) The correlation between Temperature and Rainfall (T-R), (e) The
correlation between Relative Humidity and Rainfall (RH-R), and (f) The correlation between Wind
Speed and Rainfall (WS-R).
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Meteorological variables (i.e., air temperature: T; relative humidity: RH; wind speed:
WS; and rainfall: R) were significantly related to rainfall. T and WS (r = −0.43 to 0.47) were
inversely related to the present rainfall, as shown in Figure 9d,f, while RH (r =−0.38 to 0.44)
and R (r = −0.22 to 0.50) had a direct relationship with the present rainfall. As shown in
Figure 9e, the relationship between RH and R shows that as the relative humidity increases,
precipitation also increases. RH is the main factor in cloud formation resulting in rainfall.
Rainfall chances are lower as the wind speed increases. The northeast monsoon blowing
between October and February influences the rain in the Gulf of Thailand. However, during
January and February, there is considerably less rainfall. This clearly shows the variability
in rainfall. However, such factors depend on the geographical features of each area as well.
In addition, the increase in air temperature results in a decrease in the amount of rainfall.
The high air temperature favors very hot and dry conditions.

3.2. Tuning Hyperparameters for Machine Learning Methods

This study used the Weka Experiment Environment for trial and error. The lowest root
relative squared error value (RRSE) was used to select the best parameter. However, for
ANNdotNet (LSTM), we used a trial-and-error method and observed the best parameters
from an efficiency standpoint since there is no tool for tuning parameters. Table 2 shows
the optimal model parameters, which can be explained as follows.

Table 2. Summary of the acceptable hyperparameters for soft computing models.

Models Hyperparameters Sensitive Start End Rang of
RRSE

M5
batchSize No 100 1000

85.15–99.46minNumInstances Yes 4.00 30.00
numDecimalPlaces No 4.00 4.00

RF
batchSize No 100 1000

78.93–96.02numIteration Yes 100 1000
numExecutionSlots No 1.00 1.00

SVR-poly
c Yes 0.1 50

80.57–94.16epsilonParameter Yes 0.0001 0.1
exponent Yes 1.00 1.00

SVR-rbf
c Yes 0.1 100

74.72–94.70epsilonParameter Yes 0.0001 0.1
gramma Yes 0.01 0.5

MLP

hiddenLayers Yes * *

84.87–115.76
learningRate Yes 0.1 0.5
momentum Yes 0.1 0.5

trainingTime Yes 100 1000

LSTM

Rate Yes 0.1 0.9

N/A

Momentum No 0.1 0.9
Epoch Yes 500 1000

Progress Frequency Yes 10 100
Normalization Layer Yes N/A N/A

LSTM Layer
Activation (tanH) Yes 40 80

Dense Layer1
Activation (tanH) Yes 10 50

Dense Layer2
Activation (Relu) Yes 10 50

Output Layer
Activation (Relu) Yes 1 1

Remark: * is structure of a hidden layer as explained by the hypertuning parameter of MLP models and N/A is
not applicable.
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3.2.1. M5 Model Tree

In the M5 model, three parameters were investigated: batchSize, minNumInstances,
and numDecimalPLaces. The batchSize option specifies the recommended number of
instances to handle if the batch prediction is used. It is possible to offer more or fewer
instances. However, this allows the implementation of a preferred batch size. The minimum
number of instances to allow at a leaf node is minNumInstances. Bae et al. [83] explained
that minNumInstances is implemented to prevent overfitting in a regression function.
numDecimalPLaces is the number of decimal places to be used for the output of numbers
in the model. Overall, batchSize of 100, minNumInstances ranging from 4 to 30 and
numDecimalPLaces of 4 are appropriate hyperparameters for an M5 model tree with a
testing data set. All two gauged stations gave RRSE values in the range of 85.15–99.46. We
found that minNumInstances is a sensitive parameter. Due to the increase in the value of
minNumInstances, the model is overfitting, and decreasing the minNumInstances value
allows the model to reduce excessive complexity, which corresponds to Bae, Han, Lee,
Yang, Kim, Lim, Neff, and Jang’s [83] statement that the parameter minNumInstances
prevents overfitting in the regression function, while batchSize and numDecimalPLaces
were not sensitive.

3.2.2. Random Forrest

RF have several default parameters in WEKA software; however, three parameters (i.e.,
bathSize, numIteration, and numExecutionSlots) were selected in this study. The bathSize
is as described in section M5. The numIteration is the number of trees in the random
forest, while numExecutionSlots is the number of execution slots (threads) to construct the
ensemble. Findings revealed that a batchSize of 100, numIteration ranging from 100 to
100 and numExecutionSlots of 1 are appropriate hyperparameters for an RF with a testing
data set. Both stations gave RRSE values in the range of 78.93–96.02. The numIteration
was a sensitive parameter. Having a number of trees means that it takes a long time to
run the model. Their larger numbers improve model performance until a certain point,
after which the number of trees no longer affects model performance. The batchSize and
numExecutionSlots were not sensitive.

3.2.3. Support Vector Regression

The performance of the SVR model is dependent on the kernel function and model pa-
rameters selected. This study examines two kernel functions: a polynomial kernel function
and a radial basis function (RBF). The SVR’s parameterization involves the adjustment of
the regularization parameter, namely, complexity parameter (C) and epsilon parameter (ε).
It also concerns parameters in two kernel functions: i.e., the exponent parameter (n) of the
polynomial kernel function and the gamma parameter (γ) of the radial basis function. The
C defines the extent to which the data set or margin can be placed and the ε parameter of
the epsilon insensitive loss function. The value of ε can affect the number of supporting
vectors used to construct the regression function. A larger ε value results in fewer support
vectors, whereas a smaller ε value makes the model more flexible [84].

We found that the optimal hyperparameters for SVR with polynomial kernel functions
(SVR-poly), C ranging from 0.1 to 50, ε ranging from 0.0001 to 0.1, and n of 1.0 were
appropriate. Moreover, it gave RRSE values ranging from 80.57 to 94.16. The SVR with
the radial kernel function (SVR-rbf) provided the parameter C in the range of 0.1 to 100
and ε in the range of 0.0001 to 0.1, and γ ranging from 0.01 to 0.5. It gave RRSE values
ranging from 74.72 to 94.70. Additionally, we find that the γ parameter is very sensitive.
It can be seen that in both cases there is a small value of parameter C, indicating that it is
possible to find outliers in the general decision boundary. In contrast, large C values limit
the possibility of outliers and determine more precise decision boundaries. Maximizing
the C value for the decision region shows good results [83]. If C is large, the model may be
overfitting, whereas if C is small, the model may be underfitting. However, it depends on
the data set.
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3.2.4. Multilayer Perceptron

For MLP, we focused on parameter tuning related to network structure (hidden layer)
and hyperparameters related to the training algorithm (i.e., momentum, learning rate, and
training time). The hidden layer defines the hidden layers of the neural network. To adjust
the hidden layer, we specify a wildcard value consisting of “a” ((attributes + classes)/2), “I”
(attributes), “o” (classes), “t” (attributes + classes)). As previously stated, MLP is linked to
weight and bias, so the learning rate is applied to weight and bias updates, momentum is
applied to weight updates, and the training time is the number of epochs to train through.
We found that the optimal number of hidden layers was two, and in terms of the learning
rate, momentum, and training time, the ranges were from 0.1 to 0.5, 0.1 to 0.5, and 100
to 1000, respectively, with RRSE values ranging from 84.87 to 115.76. The learning rate
and training time are pretty sensitive to our data set. When both are large, the model
is overfitting.

3.2.5. Long Short-Term Memory

For LSTM, we have adjusted two parameters consisting of (1) visual network designer,
which allows the visual creation of different types of deep network architecture (i.e.,
normalization layer, LSTM layer, dense layer, output layer), and (2) the learning and
training parameters (i.e., learning rate, momentum, number of epochs, and progress
frequency). The normalization layer takes the numerical features and normalizes their
values at the beginning of the network. The dense layer is a classic neural network layer
with an activation function. The LSTM is a special version of the recurrent network layer
with an option for peephole and self-stabilization. We found that the optimal number of
the normalization layer was one layer, the LSTM layer was one layer, the dense layer was
two layers, and the output layer was one layer. The ideal values for the LSTM were layer
and cell dimensions in the range of 70 and 80 and dense layer dimensions ranging from 10
to 50. The output was only one, and the layer dimension was 1. The learning rate ranging
from 0.1 to 0.9, momentum 1, the number of epochs of 1000, and progress frequency of
10 were optimal hyperparameters for this model. The findings revealed that the suitable
activation functions with good performance for the LSTM layer, dense layer 1, dense layer
2, and output layer were tanh, tanh, Relu, and Relu, respectively.

3.3. Influence of Climate Variables on Monthly Rainfall and Model Performance Comparison

Figure 10 shows a bar graph comparing three scenarios with different input variables.
It shows the influence of climate variables on rainfall prediction performance at 1 month
lead time. OI is the performance indicator used to choose the best scenarios. For the
training period, we discovered that most methods for the 568005 and 568301 stations gave
higher OI values in scenario 1 than in scenarios 2 and 3, except for the MLP method on the
568005 station and the RF and SVR-poly on the 568301 gauged station. When considering
the average, scenario 1 had a higher OI average than scenario 2, indicating better perfor-
mance. In comparison, scenario 3 has a lower average than scenarios 1 and 2. For the testing
period, we discovered that the OI value of the situation where scenario 1 is lower than
other at the 568005 station and one method at the 568301 gauged station. However, when
considering the average value, scenario 1 still has a slightly higher OI average than scenario
2. Scenario 3 had a lower average than scenarios 1 and 2. It indicated that large-scale
climate variables were clearly a factor influencing monthly rainfall predictions. However,
rainfall alone is not enough to predict rainfall in this basin, resulting in the complex model
being more suitable for our study. In conclusion, scenario 1 was the most suitable model
input variable.
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Figure 10. The bar graphs for the comparison of three scenarios with different input variables (lead
time at 1 month); (a) training period and (b) testing period.

Table 3 shows a comparison of the model performance criteria matrix, including r,
MAE, RMSE, and OI, for two rainfall stations. As mentioned previously, the ML model
type, giving the highest performance for 1-month lead time, was selected to develop a
model for predicting monthly rainfall at 2- and 3-month lead times. The model training
period performed better than the testing period, specifically the RF model. This evidently
might show the overfitted model. The LSTM model was the most popular among both
stations when considering the testing period. The efficiency values r, MAE, RMSE, and
OI for the 568005 gauged station were 0.74, 88.63 mm, 128.11 mm, and 0.70, respectively.
Additionally, those values for the 568301 gauged station were 0.75, 83.99 mm, 130.09 mm,
and 0.70, respectively. While MLP provides the lowest performance for both stations, the
methods of SVR-rbf, SVR-poly, RF, and M5 for the 568005 gauged station and SVR-poly,



Symmetry 2022, 14, 1599 18 of 24

SVR-rbf, M5, RF for the 568301 gauged station provided an inferior performance compared
to LSTM, respectively.

Table 3. Performance comparison for the six models applied at the two rain gauged stations.

Stations Methods

Performance Criteria

Training Testing

r MAE
(mm)

RMSE
(mm) OI r MAE

(mm)
RMSE
(mm) OI

568005

M5 0.79 75.47 111.80 0.75 0.49 127.27 172.38 0.49
RF 0.98 33.17 51.24 0.93 0.53 124.70 164.50 0.53

SVR-poly 0.74 71.01 130.19 0.67 0.56 114.67 164.49 0.53
SVR-rbf 0.78 76.04 116.97 0.73 0.55 116.95 161.66 0.55

MLP 0.76 77.38 118.39 0.72 0.57 128.97 172.72 0.49
LSTM * 0.83 64.91 102.37 0.78 0.74 88.63 128.11 0.70

568301

M5 0.80 82.69 111.44 0.75 0.53 119.46 165.80 0.54
RF 0.98 36.30 50.84 0.93 0.52 126.14 169.74 0.52

SVR-poly 0.71 89.10 133.20 0.66 0.60 102.96 155.41 0.59
SVR-rbf 0.74 89.77 126.90 0.69 0.53 112.78 163.12 0.55

MLP 0.73 94.93 128.89 0.68 0.46 144.55 188.16 0.42
LSTM * 0.83 59.97 108.13 0.77 0.75 83.99 130.09 0.70

Remark: * The results in bold show the selected model.

3.4. Multi-Month-Ahead Rainfall Predicting

The LSTM model was identified as the best among the six ML models, according
to the preliminary testing. Therefore, it was further applied in the multi-month rainfall
prediction (lead time = 1, 2, and 3 months) at two weather gauge stations. Table 4 shows
the performance criteria matrix of the different multi-month models: r, MAE, RMSE, and
OI. The LSTM model provided a little difference in the rainfall predictions for the lead
times of 1, 2, and 3 months. Evidently, as the prediction time increases, the efficiency
gradually decreases.

Table 4. Summary of the statistical efficiency of predicting monthly rainfall at the lead times of 1, 2,
and 3 months.

Stations Lead-Time
(Month)

Performance Criteria

Training Testing

r MAE
(mm)

RMSE
(mm) OI r MAE

(mm)
RMSE
(mm) OI

568005
1 0.83 64.91 102.37 0.78 0.74 88.63 128.11 0.70
2 0.81 58.26 110.27 0.75 0.73 89.03 134.23 0.68
3 0.79 78.79 112.18 0.75 0.71 96.48 134.74 0.67

568301
1 0.83 59.97 108.13 0.77 0.75 83.99 130.09 0.70
2 0.75 85.02 122.21 0.71 0.72 93.75 133.09 0.69
3 0.69 93.20 132.26 0.67 0.69 91.87 139.71 0.66

At a lead time of 1 month, when considering the testing period, r, MAE, RMSE, and
OI for the 568005 gauged station were 0.74, 88.63, 128.11, and 0.70, respectively, and for
the 568301 gauged station they were 0.75, 83.99, 130.09, and 0.70, respectively. This reflects
satisfactory results. Predicting performance at a lead time of 2 months was a little less
satisfactory with r, MAE, RMSE, and OI values of 0.73, 89.03, 134.23, and 0.68 for the
568005 gauged station, and 0.72, 93.75, 133.09, and 0.69 for the 568301 gauged station,
respectively. Finally, for a lead time of 3 months, efficiency values were a little lower than
those at the lead times of 1 and 2 months, with r, MAE, RMSE, and OI being 0.71, 96.48,
134.74, and 0.67 for the 568005 gauged station and 0.69, 91.87, 139.71, and 0.66 for the
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568301 gauged station, respectively. RMSE is sensitive to outlier data [85]. If the data set
has an outlier increase, the RMSE tends to increase because the RMSE is a square of the
error value. This may be due to the nonstationary nature of the observed monthly rainfall.
The average OI value greater than 0.6 provides acceptable overall performance for both the
training and testing periods.

Figure 11 shows the relationship between predicted and observed rainfall at lead
times of 1, 2, and 3 months. In addition, Figure 12 presents the scatter plot between
predicted and observed rainfall. Although they could simulate monthly rainfall quite
well, the errors could be observed at high flows. The model’s peak rainfall range was
underestimated. It indicated that the developed model could not accurately foresee and
predict such events. Outlier data, repeated data, and the magnitude and number of data
points bias are factors that affect model performance [86]. However, according to Liyew
and Melese [87], when interpreting the correlation coefficient range, r values greater than
0.6 and less than 0.8 correlate strongly. Overall, the LSTM model provided an acceptable
model performance for monthly predictions for both stations. The model’s performance
for predicting a 3-month lead time of rainfall was slightly lower than that for a predicting
lead time of 1 and 2 months. This is because the latest monthly rainfall was more related to
the expected rainfall than monthly rainfall in the more extended period. The longer the
prediction period, the more uncertain and worse predictions are obtained. This is because
using the past predicted values accumulates errors into future predictions. Thus, multi-step
predictions are susceptible to error accumulation problems [88]. This is consistent with a
study by Hung, Babel, Hung, Babel, Weesakul, and Tripathi [40], which predicted rainfall
in Bangkok, the central region of Thailand. They found that the ANN model’s performance
declined when the lead time was increased from 4 to 6 h. However, the influence of weather
variables on the predicted rainfall at each lead time for each station is different [89].

Figure 11. Cont.
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Figure 11. The relationship between predicted and observed rainfall at a 3-month lead time.

Figure 12. The scatter plot between predicted and observed rainfall at a 3-month lead time.

4. Conclusions

Accuracy of rainfall prediction is essential for water resources planning and man-
agement, requiring the symmetry of water supply and demand. This paper analyzed
various machine learning algorithms (i.e., M5, RF, SVR-poly, SVR-RBF, MLP, and LSTM)
for predicting monthly rainfall at two gauged stations in the Thale Sap Songkhla basin,
Thailand. We discovered four significant issues, which are as follows:

(1) The most relevant input variables for monthly rainfall prediction in the Thale Sap
Songkhla basin, Thailand, were large-scale climate variables (i.e., SOI, DMI, and SST)
and meteorological variables (i.e., air temperature: T; relative humidity: RH; and
wind speed: WS).
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(2) Among large-scale climate variables (i.e., SOI, DMI, and SST), SST had the most
influence on monthly rainfall prediction in the Thale Sap Songkhla basin, Thailand,
followed by SOI and DMI, respectively. In addition, the developed models with SST
as input variables provided the best model performance in most models.

(3) The investigated results of the applicability of six ML techniques (i.e., M5, RF, SVR
with polynomial and RBF kernels, MLP, and LSTM) in the multiple-month-ahead
prediction of rainfall using small data sets revealed that the LSTM model provided
the best performance for both gauged stations. In addition, it provided the predictive
rainfall models for two rain gauged stations with the acceptable average performance:
r (0.74), MAE (86.31 mm), RMSE (129.11 mm), and OI (0.70) for 1 month ahead, r
(0.72), MAE (91.39 mm), RMSE (133.66 mm), and OI (0.68) for 2 months ahead, and r
(0.70), MAE (94.17 mm), RMSE (137.22 mm), and OI (0.66) for 3 months ahead.

(4) This research benefits farmer’s plantation plans and water-related agencies for irri-
gated water allocation plans and long-term flood forecasting. The proposed approach
could be used for monthly rainfall prediction at all rainfall stations in this river basin.
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