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Abstract: We define a function to unify the well-known class of Janowski functions with a class of
spirallike functions of reciprocal order. We focus on the impact of defined function on various conic
regions which are symmetric with respect to the real axis. Further, we have defined a new subclass of
multivalent functions of complex order subordinate to the extended Janowski function. This work
bridges the studies of various subclasses of spirallike functions and extends well-known results.
Interesting properties have been obtained for the defined function class. Several consequences of our
main results have been pointed out.

Keywords: multivalent functions; Jackson’s g-derivative operator; reciprocal class; starlike functions;
convex functions; subordination; Fekete-Szeg® problem; coefficient inequalities

1. Introduction and Definitions

Let N, R, and C represent the respective sets of natural numbers, real numbers, and
complex numbers. For p € N, we let N/, denote the class of functions ¢ of the form

P(z) =z2F + i a,z" 1)

n=p+1

which are analytic in the open unitdisc E = {z: z € C and |z| < 1}. We let C and S*
denote the well-known subclass of A; which are convex and starlike in E. Additionally, let
P consist of functions )y which are analytic and is given by

X(z)zl—l—Zan”,zeE, Ry >0 (2)

n=1
and satisfies Re(x(z)) > 0,z € E. For —71/2 < ¢ < 71/2, a function ¢ € N, is said to be
o-spiral in E if

e eiaz¢/(z) 2
R { e } >0, (z € E). ©)]

Similarly, a function ¢ € N, is said to be convex ¢-spiral in E if

Re{ei” <1 + Z;f’;é?) } >0, (z€E). )

We denote o-spiral functions and convex o-spiral functions, respectively, by SL, (o)
and CSy (o).

The reciprocal class of o-spiral functions was defined by Uyanik et al. in [1], by
replacing > 0 in the right hand side of the inequality (3) by < A, (A > pcos ). We denote
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the reciprocal class by RSy (c, A). Similar generalization was used to define reciprocal
convex o-spiral, by replacing > 0 in the right hand side of the inequality (4) by < A,
(A > pcoso) and is denoted by RCp(c, A). Further, it was established in [1] that the
function ¢(z) € RSy(c, A) if and only if

ei(T Z‘P/(Z)
$(z)

where —7 < ¢ < 7 and A > pcosc. Here < denotes the usual subordination of analytic
function. Similarly, ¢ € N, is said to be in RC, (0, A) if and only if it satisfies the condition

. i 2 —A
e <1 + Zj:,é?) <2A —pe 7 + (pclosfaz), (z € E).

Purpose, Motivation and Novelty

2(pcoso —A)

A — —io
< pe + -2 ,

(z € E), (5)

The main purpose of this paper is to define a function A}(z) (see (7)) so as to unify
the superordinate function in (5) with the well-known class of Janowski functions. Our
study would consolidate or unify the study of various subclasses related to spirallike and
reciprocal spirallike functions.

Aouf [2] ([Equation 1.4] ) defined the class P (U, V, p, A) which consists of functions
h(z) = p+ Y1 pnz" analytic in the unit disc such that h(z) € P(U, V, p,A) if and only if

_ptpV+U-V)(p—A)]w(z)
[1+ Vw(z)] !

h(z) (-1<V<U<L0<A<1)  (6)
where w(z) is the Schwartz function. The class P (U, V, p, A) is an extension of the famous
Janowski class of functions [3]. Motivated by the class recently studied by Breaz et al. [4]
and in view of generalizing the superordinate function in (5), we now define and study the
following relation

[(1+ Ue™2)pe'” + AV — U) ]| x(z) + [(1 — Ue ) pel — A(V — U)]
[(V+Dx(z) + (1= V)] ’

AMz) = @)

where -1 <V <U<1, -F <0< Z,A>pcoscand x(z) € P.
To study the impact of A}(z) on various conic regions, we consider the following:

1. x(z) = 1= which maps unit disc onto the half plane Re(w) > 0.5

2. x(z) = 2% + 2z + 2 which maps the unit disc onto interior of the cardioid region with
cusp on the left hand side
For an admissible choice of the parameter U = 0.5,V = —05,p = 1,0 = ¥ and

A = 0.6, if the function

1. x(z) = 1L, then A}(z) maps the unit disc on to the interior of the circular domain
(See Figure 1a).

2. x(z) = 2% + 2z + 2, then A}(z) maps unit disc onto a cardioid region which is magni-
fied and the cusp of the cardioid gets rotated on to the right hand side (see Figure 1b).
Hence, the type of impact of A}(z) on various regions is not the same.
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Figure 1. Impact of A}(z) on the conic region x(z) if U = 0.5, V= —05,p=1,0=Zand A = 0.6

(a) The image of the unit disc under the mapping of A}(z), if x(z) = 1/1 — z. (b) The image of the
unit disc under the mapping of A}(z), if x(z) = 22 + 2z + 2.

Remark 1. Now we will list some recent studies, which are special cases of A} (z).
1. Ifwelet o = 0in (7), then A}(z) reduces to

[(A+Wp+ AV = Ux(z) + [(1 -~ U)p — AV - U)]

Rz = V+ Dxz) - (1 V)]

The function X(z) was defined and studied by Breaz et al. in [4].
2. IfweletU =1,V = ~1and x(z) = (1+2)/(1 —z) in (7), then A}(z) reduces to

2(pcoso—A)
—z

20 — pe~i0 4 2L (see the superordinate function in (5)).

For the function ¢ € N, givenby (1) and I € N, of the form h(z) =zV + Y T,z",
n=p+1
the Hadamard product (or convolution) of these two function is defined by

O(z) = (p*h)(z) :==2" + ) a,0u2", z€E. 8)
n=p+1
Unless otherwise mentioned

—1§V<U§1,|U|<§,A>pcosa.

Definition 1. For—g <o < g,O <y <1,A>pcoso,beC\{0}and QO = ¢« h defined

as in (8), we say that the function ¢ belongs to the class LS, (A, 1; b; x; h; U, V) if it satisfies the
subordination condition

o[ 102" () + [p(1—n) + ]2 (z) N
‘ {p " b{ p(1—1m)Q(z) + 120 (2) PH < 8(2), ©)

where “<" denotes subordination and A} (z) is defined as in (7).

Remark 2. Recall that RSy (0, A) were defined as a generalization of the class RS1(0, A) intro-
duced by Uralegaddi [5]. Further, the class RS (o, A) was extended and studied by various authors
(see [1,6-10]). Very recently, Altinkaya in [11] introduced and studied a new subclass of spirallike
functions closely related to the defined function class LS (A, 1; b; x; h; U, V). We note that all
the above mentioned studies can be obtained as special cases of our class LSy (A, 1; b; x; h; U, V).
The details of the special cases will be pointed out when we derive applications of our main results.
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2. Preliminaries

Here, we prepare the groundwork that is required to obtain our main results. Firstly,
we begin with the discussion of obtaining the Maclaurin series for the function A}(z).
From (7), we see that

AM(2) = MV —U) — (1 - Ue %) pe?] B [(1+Ue27)pel” + A(V — U)] x(2)
’ (V-1) AV —U) — (1— Ue 2)peic]
(V+1x(z)]"
X {1 — Vo1 }
MV =U) = (11— Uem ) pe] AV —=U) — (1 - Ue %) pel] (V + 1)
- V-1 " V-1 B
[(1+ Ue‘Zi‘E)‘/;J(z_i‘flJ)r MV —U)] }X )
MV —U) — (1 —Ue %) pel?| (V +1)? 14+ Ue 2% pel” + A(V —U)|(V +1
+{[ (V- (<v_61>3 )pel (V412 [(14Ue mzvtl; (v + )}[;((z)]2+"‘
_ 2pel? V41 V4+1\2 2[U(pe™@ — A) — V(pel” — A)]R
T 1+(v_1>+<x/_1> L -1y :
1+z(¥j)+3(¥j)2+... 24
2pei” V+1\]1 2[U(pe ™ —A) - V(pel — A)|R V+1\]2
--v5-(va)) U -(F5)) e

Hence, (7) can be rewritten as

[U(pe™ = A) = V(pe'” — A)| Ry

5 Z4- (10)

BY(z) = pel” +

Remark 3. In [12], Karthikeyan et al. have showed that convex function becomes starlike by
varying the parameters in A} (z). Hence, the function A)(z) may be convex univalent or starlike
univalent depending on the function x(z). It cannot be concluded that impact of A}(z) on a convex
region does not affect the convexity. However, if A}(z) is to be convex univalent, it is always
possible to find a function x such that A)(z) is convex univalent in E. For example, if we choose
x(z) = 1+ z then A}(z) is convex univalent in E for all admissible values of the parameters
involved. It is well-known that \/1 + z is convex univalent in E (see Lemma 2.5 [13]), the function
A} (z) does not alter the conic \/1+ z except for translation, magnification, and rotation. That is, it
does not affect the convexity or univalence as we vary the parameters involved (see Figure 2a—d).



Symmetry 2022, 14, 1598 50f17

(c) (d)
Figure 2. Impact of A}(z) on the conic region x(z) = v1+z. (a)if U=05,V = —05,p=1,¢
and A =06;(b)ifU=1,V=-1,p=10= %and/\:O.6;(c)ifU:1,V: -1L,p=20
and A =0.6;(d)ifU=0,V=—-05p=10=%and A =0.6.

SRR B

We need the following result to obtain the coefficient inequality.

Lemma 1 ([14], Theorem VII). Let x(z) = g anz" be analytic in E and g(z) = f buz" be
=1 n=1

n—=
analytic and convex in E. If x(z) < g(z), then |a,| < |b1| forn =1,2,....

We will use the following results to obtain the solution of the Fekete-Szeg® problem
for the functions that belong to the classes we defined in the first section.

Lemma 2 ([15], page 41). If ¢(z) = 1+ E 0,z" € P, then |9, < 2 forall n > 1, and the
n=1

14 puz
1—pz

inequality is sharp for ¢, (z) = Spl <1

Lemma 3 ([16]). If0(z) =1+ OZO: 8,z" € P, and v is complex number, then
n=1

‘192 - 019%‘ < 2max{1;|2v—1]|},
and the result is sharp for the functions

_1+z
T 1—z

. 1+22

% (2) and 0,(z) = -2
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3. Main Results
3.1. Integral Representation of LSy (A, 1; b; x; h; U, V)
For ¢ € LSs(A,1; b; x; h; U, V), we have by the definition of subordination
p20(2) + [p( =) + 70 (2) _p _ b{e " adw(z)] ~ p) -

p(1—1n)Q(z) + 120 (z) z z

where w is analytic in E with w(0) = 0 and |w(z)| < 1. Integrating (11), we have (integrat-
ing zg to z with zy # 0 and then let zg — 0)

I z —iT AA _
g (L1062 £ /P E)] _ e RO Py
Equivalently (12) can be rewritten as
z —i0AA _
(1= OG) + (/P (2) = 7 exp( [l ) dt). 1)

We have two cases, namely

1.  Fory =0, trivially we have

(z) = 2 exp </Oz b{e A [w(t)] - p} dt>.

t

2. ForO<ny <1,

O(z) = Bz”(“%) /(;Zu%_l exp (/Ou b{fiaAMw(t)] — p} dt) du.

t

Summarizing the above discussion, we have
Theorem 1. If ¢ € LSL(A,7; b; x; h; U, V), then
(i) for0<ny <1,

a() = 222(70) [ exp( [ e Akl -} dt)du. (14)

t

(i) forn =0,

) — 2 exp </O b{eiffAé[ZvO)} -p} dt)_ 15)
Corollary 1. If ¢ € RSy(0, A), then
$(z) =z exp ((2/\ —pcosa)e /OZ i% dt). (16)

Similarly, if p € RCy(0, A), then

Y L —ie [ [w(t)]
¢(z) = p/o b1 exp((z/\—pcosa)e /o t(l—w(t))dt>du' (17)
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Proof. SettingU =1,V = —1,h(z) =2/ + 137, ;2" and x(z) = (1+2)/(1 — z) in (13),
we get

(1= n)(z) + /)¢ () =2 exp (@0~ peosere™ [ D an). )

We get (16) if we let 7 = 0 in (18). If we let # = 1 in (18) and then integrate the
resulting equation, we obtain (17). O

Remark 4. Note that Uyanik et al. [1] did not obtain the integral representation for the classes
RSp(o,A) and RCy(0, A). However, Shi et al. in [17] (Theorem 1 & Corollary 1) obtained the
integral representation for the meromorphic analogue of RSy(c, A) and RCy(c, A).

3.2. Coefficient Inequalities and Solution To The Fekete-Szeg6 Problem

We need the following result to obtain the coefficient estimate for functions in the class
LSs(A,1; 0; x 1 U, V).

. )
Lemma 4. Let A}(z) be convex univalent in E. If r(z) = pe!” + Y. r,z" is analytic in E
n=1

and satisfies

(14 Ue 27 pel” + A(V — U)] x(z) + [(1 — Ue %) pel” — A(V — U)]
[(V4+1x(z) +(1-V)] ’

r(z) < (19)

|[U(pe™ = A) — V(pe'” — A)|Ry|
5 ,

lrn] < n>1. (20)
Proof. Note that from Remark 3, it is possible to find a function x so that A}(z) is convex
univalent in E. From (10), we have

[U(pe™@ — A) = V(pe'” — 1) Ry

ey E.
> zZ+ z €

Ag(z) = pe” +

The assumption (19) is equivalent to
r(z) — pel? < AM(z) — pe”.
Additionally, because the convexity of A2(z) implies the convexity of A}(z) — pe'?,
from Lemma 1 it follows the conclusion (20). O

Theorem 2. Let ¢ € LS (A, 1; b; x; h; U, V) and x be chosen so that A)(z) is convex univalent
inE. If -1 <V <0, then, fork=1,2,3, ...
p L b[U(pe™ — A) — V(pel” — A)|Ry| +2j

i 21
[p+k’7]‘l—‘p+k‘ j=0 2(j4+1) (21)

|ap+k| <

Proof. Consider

7P @) +p(1 =) + 120 (z) = {p+b[e r(z) = p| }Ip(1 = )O) + 520 (2)] 22)
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. [eS)
where r(z) = pe'” + Y. ryz" is analytic in E and satisfies the subordination condition
n=1

r(z) < A}(z). Equivalently, (22) can be rewritten as

p2zPf + Z ) + nnlayT 2"
n=p+1
p+ Z brpe "z "] pzf + Z 1) + nylanlpz"
n=1 n=p+1

On equating the coefficient of z/ %, we get
k-1 .
(p+0)(p+10)ap ik = p(p+ k)T p ik +be Y [p(L—n) + (p+ i)ylreiTp ity
i=0
where a, =1, I, = 1. On computation, we have
14 ,
|ap x| < m Z|Vn illp(L =) + (p+)n]|Tppil lap]
Using (20) in the above inequality, we have

[b][Rq| U (pe™™ — A) — V(pe'” — A)|

a <
sl = 2k(p+ )Tyt
k—1
Y [p(=n)+ (p+ DT il lapil- (23)

Taking k = 1 in (23), we get

pbl|Ry||U(pe™ — A) — V(pe'” — A)|
2(p +1)[Tpya

‘ap+1| <

The hypothesis is true for k = 1. Now let k = 2 in (23), we get

M+ﬂ<|wRMuwa—A»44mW—Aw{
p —=

+|T +1)la }
4(p+21)[Tp1a P+ Cpal(p +m)lapsl

_ PIIR (e = 2) = Vipe” = W) 1 IR [U(pe™ = ) = V(pe? — 2)] |
(P+217)|Fp+2| 2

If we let k = 2in (21), we have

|apia| < ’ [{b[u(r)ei” —A) = V(pe” = MRy
N [p—|—217]‘1"p+k‘ 2
Jb[U(pe = 2) = V(pel” = 1)|Ry | +2
4

_ PIBIR[UGpe i~ 2) Ve )| [, BlIR[U(pe —2) — Vi(pe )]\
(P+277)|Fp+2| 2
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Therefore hypothesis of the theorem is true for k = 2. Now let us suppose (21) is valid
fork=2,3,...m,we get
p mL b [U(pe™™ — A) — V(pe'” — A)| Ry | +2j
P+m77]’rp+m| i=0 2(j+1) '

|apm| <
[
By induction hypothesis, we have

bl R | (pe — A) — V(pe® — 2| nt |
1ljutp P = I 1 — ) 4 (o4 1Tl

2mp =
- mLb[U(pe 7 — 1) — V(pe'” — A)|Ry| +2j
T i 2(j+1) '

From the above inequality, we have

mob[U(pe™ — A) — V(pe'” — A)|Ry| + 2j

].:HO 2(j+1)
_ [blIR[U(pei = A) = V(pel” — A)| [b[U(pe™ = A) = V(pel” = A)] Ry | +2m
- 2pm 2(m+1)
m—1

;} (1 —=n) + (p+ )Tyl |apil

_ BlIR[U(pe = 2) — V(pe” — )
= 2p(m+1)

[[pa — )+ (p ATyl 12l

m—1
FL P+ Ty |ap+z-|}

b||Ry||U(pe™ — A) — V(pel” — A)| [ & ;
_JBl[R | <pe2p(m+>1) (pe >|{g[pu_mﬂpwmnrﬁA|ap+i,

implies that inequality is true for k = m + 1. Hence the assertion of the Theorem. [
Ifweletx(z) =1+, 122", U=1,V=—-1,b=1,n=0andl, =1(n>p+1)in

Theorem 2, we get

Corollary 2 ([1] ([Theorem 2])). If ¢ € RSy(c, A), then

1 k—1 )
|ay k] < H '1—%[2(/\ —pcoso)+j], (k=1,2,3,...).
]:
Letting x(z) =1+ Y, 22", U=1,V=-1,b=1,n=1andl, =1 (n > p+1)in
Theorem 2, we get

Corollary 3. If ¢ € RCp(0, A), then

k-1

p .
a §7||2)\— coso)+ijl, (k=1,23,...).
‘ p+k| (P k)k! ]‘:0[ ( p ) ]] ( )
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Theorem 3. If ¢(z) = zF + apﬂzp+1 + ap+2z”+2 +- € LSy (A, y; b; x; h; U, V), then we

have for all y € C we have

p|[U(pe ™ = A) = V(pe'” = A)]bR|
4(p +27)Tps2

‘ﬂp+2 — W;2a+1‘ < max{1, |20, — 1|},

where Q1 is given by

1 Rz) peb[U(pe™ — A) — V(pel” — 1) Ry
= S (VH DR +2(1-32) —
< 4{( = ( Ry (P+mTpa
L 2upe bR [U(pe™ = A) = V(pe'” = M) (p +21)Tp2 }
(p+1)T5

The inequality is sharp for each u € C.

Proof. As ¢ € LSs(A,1; b; x; h; U, V), by (9) we have

- 1{ n22Q" (2) + [p(1 =) + )20 (2) p} — e AN w(2)]. (24)

b p(1=1)Q(2) +n20Y(2)
Thus, let ¢ € P be of the form #(z) =1+ Y ;2 ; 9,z" and defined by

1+ w(z)

= E.
1—w(z)’ z€

9(z)

On computation, we have
1 1 1 1 1
w(z) = 51912 + 5 <l92 - 219%)22 + 5 (193 — %1% + 419%)23 +.--,z€eLE.

The right hand side of (24)

: be " [U(pe~" — A) — V(pe'” — A)]R
p—l—b{eil(’Ag[w(z)} _ P} — P+ [ (P ; (p )] 1

bfivu fiU_)\ . v4 itT_)\

|:;l912+;<192—;19%)22+...:|+ e [ (pe 2) (pe )}

1 1 1,) 2

RZ
Ry — 71(V+1)2

be IR0 [U(pe™ — A) — V(pe'& — A
— e 11[ (pe _ ) (pe )]Z+

be~io [U(Pe_i‘f —A)— V(Pei‘f - /\)} Ry {192 - 19% ((V PR 2(1 _ %> ) ] 224
4 4 |

The left hand side of (24) is given by

1220"(2) + [p(A—p) +nl2Q'(z) _
p(1—1)Q(z) + 72 (z)

2(p+2 -
% (p ! D gy — P ! n)rpwiﬂ}zz I

(p+

1) Ipi1ap41z (26)
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From (25) and (26) , we obtain

pe bR %, [U(pe’i” —A) = V(pel — A)]

a = (27)
P 4(p+mMlyn
" BU(pe 1)~ V(pe” )]
pe b |U(pe™ —A) = V(pe'” —A)|Ry [ 1
a = Hh—-—{(V+1)R
p+2 8+ 21Tz 2= 4 )Ry o
42 (1 R2) pe~b[U(pe™™ — A) — V(pe'” — 1) Ry 192]
Ry (P+m)Tpsa g

To prove the Fekete-Szeg® inequality for the class LS, (A, 1; b; x; h; U, V'), we consider

pe b[U(pe~ — A) — V(pe'” — 1) Ry

1
’ap+2—ya§+1’ = [192—4{(V+1)R1

8(p +2n)Ipi2
+2 (1 B Rz) B pe”b[U(pe™™ = A) = V(pe” = A)|Ry lﬂ
Ry (p+mTIpa
‘upze’zwbzR%ﬂ% [U(pe’i” —A) = V(pel” — A)]z
16(p +1)°T5 4

pe b[U(pe™ — A) = V(pe'” — M) Ry
8(p+211)Tp12
o <1 B Rz> B pe~b[U(pe™ — A) — V(pe'” — M) Ry
Ry (P+mTpp
+Z;z;ae_""le [U(pe‘i” —A) = V(pe” — M (p+21)Tpy2 H ’
(p+ W)zr%+1

2
[192 - %{(V+ 1Ry

b =i _ \) — V(pel? — A)R 2
_ ple[utpe ) — V(pe” = A)] 1|[2+1’1 <2R2_w+1)1<1

8(p +21)Tpt2 4 \|R;
2<1 R2> pe b [U(pe™™ — A) — V(pe'” — A)| Ry
(p+mTpi

Rq

_ 2upe bRy [U(pe™ — A) = V(pe'” = M)] (p +211)Tp2 }’ - 2)]
(p+m)2T2, '

(29)

Denoting

“Tp[U(pe~ — A) — V(pel” — A)|R

Haoo |22y qyg, o PP Upe ) = V(pe” = V)| Ry
Ry (p+mTpn

_ 2pupe bRy [U(pe™"” — A) = V(pe'” = )] (p +211)Tps2 }

(p+ 17)2F%+1

7

if H <2, from (29) we obtain

p|b[U(pe™ — A) — V(pe'” — A)] Ry
4(p +21)Lpr2

’ap+2 - yaf,H’ < . (30)
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Further, if H > 2 from (29) we deduce
b[U(pe ™ — A) — V(pe'” — A)|Ry| (|2R
_ a2 | o plplulp p 1 (2R _ y 4 1),
ﬂp+2 :uap-‘rl‘ — 4(p+2’7>1-'p+2 1 ( + )
pe~b[U(pe™ — A) — V(pe'” — 1) Ry
(P + W)rp—&-l
B 2upe bRy [U(pe™ — A) — V(pe'” — A)](p + 217)Tp42 H 31)
(p+m)2T5, '

The equality for (30) will be attained if ¢ = 0, ¥, = 2. Equivalently, by Lemma 3 we

2
have 8(2%) = 9,(z) = 1+7; Therefore, the extremal function of the class LS, (A, 17; b; x; h;
U, V) is given by

1—

1 y22Q"(z) + [p(1 —y) + )20/ (2)

”*b{ p(1— )0 + 720/ (2) ”}
el Wp o (V= W) + (1= U)p — o(V — )
- (V+1)9() + (1-V)] |

Similarly, the equality for (30) holds if ¢, = 2. Equivalently, by Lemma 3 we have
1
¥(z) = %(z) = 7 i_i Therefore, the extremal function in LS, (A, 1; b; x; h; U, V) is

given by

1{y22Q"(z) + [p(1
P +b{ pI—n)0G
i+ Wp+o(V-U)]o(z
—¢ (V+1)8

O

- )+71]ZQ’()_
)+ 720 (z) p}
(2) + [(1 = U)p—o(V — )]
(z)+(1-V)] ’

and the proof of the theorem is complete.

Corollary 4. If ¢(z) = z +apz® + asz> + - - - € S*(¢) and Y(z) = 1+ Ryz + Rpz? + ..., with
Ri,Ry € R, Ry > 0, then for all u € C we have

y4 i
zexp/0 M(it, if ‘Rl +% —2;4R1‘ >1,
«(z) = 32
p-(2) 1 0 (32)
zexp/ ———dt, if ‘Rl + == —2;1R1‘ <1
0 t Ry

R
Ry + =2 —2uR,

R
‘ug—yu%‘ < ;max{l; R,

The inequality is sharp for the function ¢, given by

Proof. In Theorem 3, taking U =1,V = -1,y = p=b =1land o = = 0 we get
the inequality

R R
- if \Rw—z—zle\g,
2
‘”3*%’5 R R, R
Ry+ =2 —2uRy|, if ‘R1+——2yR1‘>l

2 R4



Symmetry 2022, 14, 1598

13 of 17

Y;(0,A;2) =

4. Properties of Q-Spirallike Functions

Keeping with the recent trend of research, in this section we will define a class replacing
the classical derivative with a quantum derivative in LS, (A, #; b; x; h; U, V).

We begin with a brief introduction on quantum calculus. For ¢ € N, given by (1) and
0 < g < 1, the Jackson’s g-derivative operator or q-difference operator for a function ¢ € N, is
defined by (see [18,19])

{¢’(0), ifz=0,
Tap(z) = | ¢(2) — o(g2) (33)
=gz fz#0.

From (33), if ¢ has the power series expansion (1) we can easily see that 7;¢(z) =

pzP1 4 2+l[n]qanz”_1, for z # 0, where [n], is defined by
n=p

1—-4g"
1—9q’

and note that lir? Ts¢(z) = ¢’ (z). Throughout this paper, we let denote
g=1"

([n]g)k :=[n]gln +1g[n+2]4... [n +k—1],

The g-Jackson integral is defined by (see [20])

hig@)) = [ gyt =21 -0) L o) 30

provided the g-series converges. Srivastava et al. [21-28] introduced several function
classes using quantum derivative and also studied its impact involving conic regions. Let
7;2(]7(2) = T [T;¢(z)] denote the second order g-difference.

Definition 2. For —g <0< g, 0<n<1,A>pcosc,beC\{0}and Q= ¢ xhdefined
as in (8), we say that the function ¢ belongs to the class QS (A, n; b; x; h; U, V) if it satisfies the
subordination condition

oo (o], + 1 1922 T20(2) + ([plg(1 — 1) +1)2T,0(2)
b Pl (0 — 1)) + 127,0z)

- [p]Q}> = Yq(az/\}z)/ (35)

where Y4(0, A; z) is the g-analogue of A} (z), which is defined by

[(1+ Ue29)[plge’” + A(V — U) ] x(z) + [(1 — Ue %) [p]ge’ — A(V — U)]

[(V+Dx(z) +(1-V)] : (36)

Remark 5. We note that everything in classical calculus cannot be generalized to quantum calculus,
notably the chain rule needs adaptation. Hence, logarithmic differentiation needs some application
of analysis. In [29], Agrawal and Sahoo obtained the following result on logarithmic differentiation.
For ¢ € N1and 0 < q < 1, we have

Tap(z)  q-—1

T¢(z)  Ing

where I;¢ is the Jackson q-integral, defined as in (34).

log ¢(2), (37)
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|‘1p+k‘ <

Integral Representation, Coefficient Estimates and Fekete-Szego Inequalities of
QSe(A1; 0; x h; U, V)

Analogous to the result obtained in Theorem 1, we now present the integral represen-
tation for functions f belonging to the family OSy(A,1; b; x; h; U, V).

Theorem 4. Let ¢ € QSs(A,m; b; x; h; U, V) and e AMz) is convex in E with
Re(b{e A} w(z)] — [plqg}) > O, then

—ioc AA _
Q( ) 2P exp{ ;rlq Oz b{e Aa[ut)(t)] [p]q}dqt}, lf"? =0 ( )
_ n ub e_"’AQ w(t)]— .
Jo ub™! eXP{;ql Jo { E ol p}dqt}dﬂi”/ ifn =1

Proof. Suppose that ./\/lf;(z) = [plg(1 = 1)Q(z) + 12T;Q(z), then the condition (35) can be

rewritten as , ‘
TeMy(z)  [plg _ b{e Az [w(2)] - [plg}
M) (z) z z '
Integrating the above expression (see (37)), we have
_ p z —io AN _
-1, { wz)} U ),

Ing zP t

or equivalently,

z —iT AN _
[p]qun>o<z>+nz7‘qo<z>:zpexp{;iql./o e el “’]q}dqt}.

Thus, if ¢ € QSL(A, 5; b; ¢; h; U, V), then we have

Ing 2 b{e A3 [w(t)] — [plg}
qg—1Jo t

dqt}, (if y =0),

and

Q(z) _ /Oz = exp{ qlrlql Ou b{eiaAff\[a;(f)] - [p]q}dqt}dqu, (if77 _ 1).

Hence the proof of the Theorem. [

Theorem 5. Let ¢ € QS (A, 1; b; x; h; U, V) and x be chosen so that Y,(c, A;z) is convex
univalent in E. If =1 <V <0, then, fork=1,2,3, ...

[plg =1 [6[U(ploe ™ = A) = V([plge” = M) Ra| +247[f]y (39)

{[plg( =)+ [p+ Klgn } [ Tpa| 50 297+ 1],

Proof. Consider

N2 TEO() + [P =) + 1)zT3Q(2) = {p+b|er(z) = p| } [p(1 = 1)OQ2) +12T,0(2)] (40)
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where 7(z) = pe“’ + Z ryz" is analytic in E and satisfies the subordination condition
=1

r(z) < A}(z). Using the equality q[p — 1]; = [p]; — 1, we can rewrite (40) as

([p] ) zP + Z la{lplg(1 = 1) + [n]gy }anTnz"

n=p+1

= ([p]q + ibme‘“’z”) ([p]qu+ i {[plg(1—1) + [n]qq}anl"nz”).

n=p+1
On equating the coefficient of z/ ¥, we get
[P+ Klg{[plg(1 =) + [P+ Klgn }apxTpsk = [Pla{[Pla(L = 1) + [P+ Klgn }Tpixapi

e Z{ p—I—l q’?}"k i p+zap+1/

where a, =1, I', = 1. On computation, we have

Ayl < i
{ (1 —=n)+[p+kgn} {Ip +klg = [Pla }Tpkl
E|rn iI{[p] + [p +ilgn T pril lapyl

Using (20) in the above inequality, we have

(pin] < = IR PLae~2) =V(plee )
et = 2 flply(1=n)+lp+klgn } {Ip+Klg —[plq JITp ] (41)
oo {[Pla(L =) + [p +ilgn } Tpsil 1ap4al.

Using the equality {[p + k], — [p]} = ¢”[k]; and following the steps as Theorem 2, we can
establish the assertion of the Theorem. O

For completeness, we just state the following result.

Theorem 6. If ¢(z) = zF + apﬂzerl + api2zP T2+ € Q8o (A b; x; h; U, V), then we
have for all y € C we have

[Plq| [U([plge™"" — A) = V([plge' — A)] bR, |

1,120, — 1},
4{[ply + 2Ty max{1, 20 ~ 1}

2
’ﬂp+2 - Wpﬂ’ <

where Qj is given by

1 C Ry [plee b [U([plge = A) = V([plge” = )Ry
%= 4{”“”““(1 &) [ly + 1
 2ulploe bR [U([plae™ — A) = V([plge” = M)]([ply +2)Tp+2 }
([plg+1)Th oy '

The inequality is sharp for each u € C.

5. Conclusions

We have defined a new family of multivalent spirallike functions of reciprocal order,
which was entirely motivated by Uyanik et al. [1]. Integral representation and solutions to
the Fekete-Szego problem are the main results of this paper. We also point out relevant
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connections which we investigate here, with those in several related earlier works on
this subject.

This study can be extended by replacing x(z) in A}(z) with special functions such as
exponential function, Legendre polynomial, g-Hermite polynomial, Chebyshev polynomial,
or Fibonacci sequence. Additionally, notice that in definition of LS, (A, #; b; x; h; U, V) we
have used convolution of two functions which opens the door to many real life applications.
Further, if h(z) in (8) is replaced with generalized Mittag-Leffler function, we enter the
fascinating world of fractional differential equations.
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