symmetry MBPI|

Article

Automatic Repair Method for Null Pointer Dereferences
Guided by Program Dependency Graph

Yukun Dong *'*, Yuxue Sun and Xun Wang

check for
updates

Citation: Dong, Y.; Sun, Y.; Wang, X.
Automatic Repair Method for Null
Pointer Dereferences Guided by
Program Dependency Graph.
Symmetry 2022, 14, 1555. https://
doi.org/10.3390/sym14081555

Academic Editors: Jeng-Shyang Pan
and Sergei D. Odintsov

Received: 13 June 2022
Accepted: 25 July 2022
Published: 28 July 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

College of Computer Science and Technology, China University of Petroleum, Qingdao 266580, China;
220070064@s.upc.edu.cn (Y.S.); wangsyun@upc.edu.cn (X.W.)
* Correspondence: dongyk@upc.edu.cn; Tel.: +(86)-176-8551-1137

Abstract: Automatic program repair (APR) is an effective technique for eliminating defects. The
repair of null pointer dereferences, as the most common defects, requires accurate dependencies
among statements to determine where to repair and how to repair. In order to precisely identify the
data and control dependencies, the program dependency graph is adopted. Based on the symmetry
among a large number of patches, we propose four repair mechanisms in this passage, namely the
assignment mechanism, restraint mechanism, evading mechanism, and transfer mechanism, and
employ the decision tree algorithm to match the best repair mechanism for defects. The four repair
mechanisms locate the accurate repair position using the program dependency graph, and generate
candidate patches by reassigning the null pointer with an appropriate value, making a judgment for
the null value in advance, or throwing an exception. Our method was implemented in the repair
tool DTSFix, which supports the automatic repair of null pointer dereference in Java programs. The
experimental result on Defects4] shows that 73% of null pointer dereferences are successfully repaired
by DTSFix, and that the generated candidate patches do not contain over-fitting patches.

Keywords: automatic program repair; null pointer dereference; program dependency graph; program
patch; decision tree

1. Introduction

The repair of defects is necessary during software development and maintenance,
but it will consume numerous resources and result in a decrease in the developers’ en-
ergy and effectiveness. Therefore, APR has become a research hotspot [1]. At present,
the mainstream techniques of program repair are divided into three stages according to
the repair process: defect localization, which finds the best location of the repair; patch
generation, which generates candidate patches using static or dynamic analysis techniques;
patch verification, which verifies whether the candidate patch is correct. Since different
defects have different causes and code impact scopes, using generic repair strategies [2,3]
often results in inaccurate repair locations and inappropriate patch generation strategies.
Therefore, specific repair strategies aiming at a certain type of defect are required [4,5].

Null pointer dereference is one of the main types of program defects, and often leads
to abnormal program termination or system crashes. The detection methods of null pointer
dereferences [6] are relatively mature, but automatic repair methods and tools [7] are not
ideal: some repair tools [8,9] only repair one or two of the 15 null pointer dereferences
in Defects4] [10]. An analysis of the available studies suggests two main reasons for this
situation. First of all, nearly 80% of variables in the object-oriented programs are the object
types because objects can be assigned to each other, passed as parameters, etc. Secondly,
data and control dependencies need to be accurately analyzed for selecting the repair
location and generating the corresponding patches. VFix [11] was proposed to apply
the value flow graph to analyze the program, which mainly focused on the transmission
dependency of values in the analysis process. This method is also proposed to calculate

Symmetry 2022, 14, 1555. https:/ /doi.org/10.3390/sym14081555 https://www.mdpi.com/journal /symmetry

https://doi.org/10.3390/sym14081555
https://doi.org/10.3390/sym14081555
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-0787-5806
https://orcid.org/0000-0002-2741-433X
https://doi.org/10.3390/sym14081555
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14081555?type=check_update&version=1

Symmetry 2022, 14, 1555

20f19

the repair location by the frequency of each statement node in the blocking paths, but it is
often suitable for the repair of fewer null pointer dereferences. In view of this situation, we
also put forward new ideas to improve the repair.

The repair of null pointer dereferences requires identifying the location where this
null pointer is defined and tracing the source of the null pointer. In addition, it is important
to understand the complex dependencies among statements and to find the program
statements that are affected by a null pointer dereference. The program dependency
graph [12] can accurately describe the dependencies within a program, including data
dependencies and control dependencies, which are generated based on the analysis of
variable dependencies and the post-dominance relation among statements in the control
flow graph.

When summarizing the repair strategy for null pointer dereference, we mainly focus
on the statement symmetry and program dependency graph symmetry among a large
number of patches. Statement symmetry refers to the similarity of repair statement types
in the patch, and the program dependency graph symmetry refers to the similarity of
the affected program code range in the program dependency graph after the patch is
repaired. According to the symmetry, we propose four repair mechanisms: assignment
mechanism, restraint mechanism, evading mechanism, and transfer mechanism. The
assignment mechanism assigns an appropriate value to the faulty pointer at the source of
the defect whenever possible. In order to prevent null pointer dereferences in advance, the
restraint mechanism sets up a simple check to bring an affected scope by the defect into
the safe scope. In contrast with the restraint mechanism, the evading mechanism is more
restrictive and changes the execution of the program to avoid null pointer dereferences. The
transfer mechanism differs in that it throws null pointers to the external calling function
that catches and handles the defect. In the selection of the defect repair mechanism, this
paper used the trained decision tree classifier model to predict.

With the help of the program dependency graph, our repair mechanisms obtained
the statement defining the defect variable and the subsequent statements affected by the
defect variable. The repair process is as follows: firstly, the defect variable, the defect start
line, and the defect end line are acquired by a defect detection tool; secondly, the con-
trol dependency graph and data dependency graph are obtained by employing static
analysis, and these two are combined to generate the program dependency graph to re-
ceive the complex dependencies in a program; finally, different repair mechanisms are
implemented to generate candidate patches for inter-procedural and intra-procedural null
pointer dereferences.

The main contributions of this paper include: proposing four repair strategies, which
are the assignment mechanism, restraint mechanism, evading mechanism, and trans-
fer mechanism; presenting a method that applies a program dependency graph to find
the befitting repair location; implementing a repair tool, DTSFix, to realize the repair of
intra-procedural and inter-procedural null pointer dereferences; and demonstrating the
effectiveness of DTSFix through experiments on Defects4].

This paper is organized as follows: Section 1 introduces the progress of automatic
program repair and related work on the repair for null pointer dereferences; Section 2
describes the framework of the repair for null pointer dereferences based on the program
dependency graph; Section 3 analyzes how to build a program dependency graph or
extended program dependency graph; then, the repair patterns of four repair mechanisms
are presented in Sections 4, and Sections 5 presents the key processes of the automatic
repair method; Section 6 carries out a series of experiments to evaluate the effectiveness
and performance of DTSFix and discusses the limitations of DTSFix; Section 7 summarizes
the work of this paper and looks forward to the next research work.

Symmetry 2022, 14, 1555

30f19

2. Related Work
2.1. Automatic Program Repair

According to the types of defects automatically repaired, the current automatic repair
tools are divided into two main categories: general repair for multiple types and specific
repair for a single type. The techniques adopted by APR tools can be classified into four
repair techniques roughly: search-based, template-based, constraint-based, and statistical-
analysis-based APRs. Search-based APR [13,14] uses manually defined heuristic rules to
repair multiple types of defects, which expands the search space to find candidate patches
using genetic algorithms, historical repair patches, and many other methods. Finally, it
determines the correct patch by patch verification. In 2018, Yang et al. [15] proposed a
genetic programming repair method based on the repair information of similar defects,
which greatly reduced the cost of developers. Similarly, the emerging statistical-analysis-
based APR [16,17] can also deal with different defects by applying deep learning methods to
extract the features of codes, and trains patches of massive open-source programs to guide
the repair. Huq et al. [18] trained a sequence-to-sequence model on a large number of code
reviews and code changes in 2022, and introduced new processing methods. The results
showed that the repair accuracy is greatly improved compared with other similar methods,
and some suggestions are provided for stylistics and non-code errors.

In contrast, template-based APR [19] is more targeted, with the guidance of manually
defined written templates, and specific repairs for a single type of defect can produce
patches with higher quality. Sketchfix [20], a template-based automatic repair technology;,
was proposed by Hua et al. in 2018, and uses the auxiliary function to replace the codes
to be repaired. The internal concrete implementation within the method is generated
according to the predefined patch template. In the repair process, only the codes in the
auxiliary function are modified each time, so the limited codes need to be updated and
compiled each time, which saves the time spent compiling the whole program each time.
Constraint-based APR [21] adopts symbolic execution and constraint solving algorithms to
obtain the constraints of patches and transforms patch generation into constraint solving,
which is suitable for general repair and specific repair. In 2021, Gao et al. [22] presented
a repair method to extract symbolic constraints that automatically symbolized program
variables related to security vulnerabilities to extract constraints in the process of sanitizers
tracking violations. The results of implementing the method in ExtractFix show that it is
very helpful in correctly repairing security vulnerabilities. However, it is not easy to apply
a unified repair strategy to various defects due to the different sets of statements affected
by the defect variables and the causes of defects.

2.2. The Repair of Null Pointer Dereferences

Null pointer dereferences in programs are more common and hidden than other
defects, so manual repair is difficult to complete. In recent years, many general repair tools
support automatic repair for null pointer dereferences. In 2013, Nguyen et al. [23] proposed
SemPFix to extract the correct constraints on patches semantically for the first time, and to
generate correct patches under these constraints with the help of a code synthesis method.
In 2018, Wen et al. [24] proposed an automatic repair tool, CapGen, to guide the repair
by extracting and comparing the context from both historical patches and defect codes.
To improve the repair efficiency, Ghanbari et al. [25] implemented PraPR in 2019, a JVM
byte code-based repair technique that applies mutation operators to generate patches at the
source code level of buggy programs. In 2020, Anil et al. [26] presented FixMiner, a method
for mining repair patterns that uses a rich edit script to capture context at the changed
AST level and mines more accurate repair patterns. Moreover, the proposed PARFixMiner,
an automatic repair tool, has higher precision.

However, the effectiveness of automatic repair for null pointer dereferences is still
limited, so Durieux et al. [7] proposed NPEfix specifically for the repair of null pointer
dereferences in 2017. NPEfix injects all repairing policies while transcoding the repair
program. The tool controls which repair behavior is enabled by executing failed test

Symmetry 2022, 14, 1555

40f19

cases dynamically, and finally obtains candidate patches that pass all test cases. In 2019,
Xu et al. [11] achieved the repair tool VFix to achieve defect repair; VFix applies the
chokepoints in the path of failed test cases on the value flow graph of a program to find
repair locations.

3. The Repair Framework of DTSFix

To automatic repair null pointer dereferences, we developed a repair tool named
DTSFix, whose repair framework is divided into three stages as shown in Figure 1: building
the program dependency graph, matching repair mechanisms, and patch generation and
verification. The repair takes a defective program and test cases as inputs and takes
candidate patches as outputs.

Building program dependency graph Matching repair mechanisms Patch generation and verification

| | 1 :
dependency analysis 3 ‘/ a i i patch generation p““h Ve“md“"n

test cases defect detecuon tool i
" . - "'* = - 5] — —’
func() ‘ — fail candidate
3 detect report sclcctcd & 3 patch

program dependency graph | repair mechanism i next repair mechamsm

defective program

Figure 1. The repair framework of DTSFix.

Firstly, the application of the program dependency graph integrates the data de-
pendency graph and the control dependency graph to obtain the overall dependency
relationship. A data dependency graph is constructed by analyzing the define-use chains,
which can obtain data dependencies. At the same time, by analyzing the post domination
relationship of the statement nodes in the control flow graph, the control dependency graph
can be determined in order to obtain the control dependency. The set of statements affected
by a faulty variable v is called ds(v), which is obtained from the program dependency
graph. In addition, the defined location n4,¢ of the faulty variable can be obtained from the
data and control dependencies in the program dependency graph.

Then, according to the detection report and relevant information of the fault object
obtained by the defect detection tool, four repair mechanisms were selected with the idea
of changing the program execution path in the minimum range.

Later, the corresponding operation was applied to complete the patch. Finally, regres-
sion tests or test cases can be used for verification. If the verification is successful, the patch
is considered as a candidate patch. Otherwise, the defect will be re-matched with other
repair mechanisms for repair.

4. Program Dependency Graph

Notably, the precise analysis of the context at the defective point has much to do with
correct repair, so it is necessary to analyze the dependencies precisely among objects and to
identify the set of statements affected, which can contribute to choosing the repair location.
The reason for applying the program dependency graph in the present paper is that it can
identify the data and control dependencies at the same time. By further analyzing the
process, data dependency can be captured by the define-use relation among variables in
statements as defined in Definition 3. The post-dominance relation in Definition 2 describes
which statement governs the execution of which statement. After that, in Definition 4,
analyzing the relations between the statements in the control flow graph can identify the
statements’ control dependency. In the end, the program dependency graph in Definition 5
integrates the dependencies of two different types, the data dependency and the control
dependency, which can accurately identify the context and the scope of the code affected
by a defect. The relevant definitions are as follows:

Symmetry 2022, 14, 1555

50f19

Definition 1. Post-dominance relationship. Given a control flow graph G =< N, E, Entry, Exit >,
ny and ny are statement nodes; if ny appears on every path from ny to Exit, we can confirm that np
post-dominates ny.

Definition 2. Data dependency. (DD) Given a control flow graph G =< N, E, Entry, Exit >,
nq and ny are statement nodes, and there is a reachable path p from nq to ny. The variable v defined
in ny is used in ny, and the path does not contain a redefinition of v; we can determine that ny data

DD
depend on ny, denoted as ny — ny.

Definition 3. Control dependency. (CD) Given a control flow graph G =< N, E, Entry, Exit >,
ny and ny are statement nodes, and there is a reachable path p from nq to ny. If all statement
nodes except ny and ny in p are post-dominated by ny, and nq is not post-dominated by ny, we can

determine that the ny control depends on nq, denoted as ny L no.

Definition 4. Program dependence graph. (PDG) A program dependence graph can be described

asa graph G =< N,E >, where E = {< n;,n; > |n;eN, nje N, n; S njor n; bp, ni}is
the set of edges, and N is statement nodes.

The directed edges in a program dependency graph contain control dependency edges
and data dependency edges. When n; points to 7, it means that n; is data-dependent
or control-dependent on n;. Let d_dep(n;) represent the set of statements that is data-
dependent on n;, which contains all nodes pointed to by 7; in data dependency edges.
In a similar way, the control-dependent set of statements c_dep(n;) can be computed.
When a faulty statement node n,,, appears, the error messages generated are likely to
contaminate d_dep(n.rr) and c_dep(nerr), so the set of statements ds_(,,,) caused by the
faulty statement can be obtained.

Figure 2 shows an example of the generation of the program dependency graph for a
simple program. Observe that the new objects defined in statements L2 and L4 are used in
other statements in Figure 2a, and the if condition in L5 controls the execution of L6 and
L8. As depicted in Figure 2b, data dependencies between statements are determined by
the define-use chains between variables. It can be seen that the set of data dependencies
of L8 is {L2, L4}, so <L2, L8> and <L4, L8> are included in the data dependency graph. A
data dependency graph (Figure 2c) is calculated and constructed through the statements’
dependency analysis. The control dependency graph is constructed by identifying the
post-dominance relation among statement nodes in the control flow graph (Figure 2d),
as shown in Figure 2e. Finally, the program dependency graph (Figure 2f) is built by adding
a data dependency edge to control the dependency graph .

Suppose that there is a faulty variable 4, and L2 is the position where a is defined.
Significantly, the directed edges marked (1) and (2) point to L5 and L8, which are affected
by L2, according to the data and control dependencies depicted in Figure 2f. Similarly,
the directed edges marked (3) and (4) point to L6 and L8, respectively, which are influenced
by the error statement node L5. Therefore, ds(a) is {L2, L5, L6, L8}. When the repair of inter-
procedural defects involves more than one method, it requires a combination of multiple
methods. In this case, it is necessary to further extend multiple program dependency
graphs to an extended program dependency graph that relies on the call relations in the
program. The extended rules are as follows:

(i) The extended program dependency graph adds an entry node and an exit node to a
called method, which are used to manipulate the input and output of parameters.

(i) The data of a formal parameter are dependent on the actual parameter, and the
extended program dependency graph adds a data dependency edge between them.

(iii) The received variable of the calling method depends on the return of the called method,
and the extended program dependency graph adds a data dependency edge between
the calling node of the calling method and the return node of the called method.

Symmetry 2022, 14, 1555

6 of 19

(iv) If a called method is in a control relationship of a calling method, the extended
program dependency graph adds a control dependency edge between the control node
or the controlled node of the calling method and the entry node of the called method.

L1: public void) { line | defined variable | dependent variable dependent statements
L2: Unumber a= new Unumber(2001); L2 a

L3: Unumber b,y;

L4: b=new Unumber(2002); L4 b

L5: ifla.compareTo(b)>0)

L6: Unumber x=b; L5 - {ab} {L2,L4}
L7: else L6 N (b e
L8: b=b+a;

19: y=b: L8 b {ba} (L2,L4}
Ho L9 y {b} (L4}

(@

@ — control dependencies

— = data dependencies

© (@) © ®

Figure 2. An example of program dependency graph. (a) code sample; (b) data dependency analysis
among variables; (c) data dependency graph; (d) control flow graph; (e) control dependency graph;
(f) program dependency graph.

5. Four Repair Mechanisms for Null Pointer Dereferences

According to the research analysis, the sources of null pointers can be divided into
three types. The first is from internal declarations using internal instantiation; the second is
from internal declarations calling other methods for assignment; the third is from external
declarations using the parameter passing for assignment. To repair null pointer derefer-
ences, an assignment mechanism, restraint mechanism, evading mechanism, and transfer
mechanism are proposed in this paper based on the context of defects identified by the
program dependency graph. This section illustrates the four repair mechanisms with
repair examples.

5.1. Assignment Mechanism

Note that the source of null pointer dereferences caused by the internal instantiation is
still located in the current method, so the primary goal of the assignment mechanism is to
correctly initialize or assign a proper value to the target object at the source of this defect.
This can be divided into two types: the first type is to find the location where the defective
variable is defined and to reassign the variable; the second type is to perform a null check
before the defect variable is used and to reassign the variable if it is null.

The equation used is a derivation rule, in which, the part on the horizontal line is the
applicable condition and the symbol interpretation used, and the part below the horizontal
line is the repair operation after the condition is matched. Equations (1) and (2) represent
these two types of repair templates for the assignment mechanism, respectively, where I, ¢
and [s, represent the defined and used statement of a variable v corresponding to n4, Y and

Symmetry 2022, 14, 1555 7 of 19

nyuse in the nodes of the program dependency graph. In addition, [represents the statement
to be added, and c indicates the judgment condition.

DU(ldgf, Luse, v) c:v==mnull |:v=new_value;
Luse = if(c) {1} Luse

)

DU(ldgf, Luse, v) ldgf cv=_,; |:v=new_value;

lde f =1 (2)

When a null pointer dereference occurs using a method or property of an object,
Equation (1) adds a judgment condition ¢ before using v, and the value of v is reassigned
through new_value if the judgment is true. Equation (2) replaces v = _ with v = new_value
to assign an appropriate value to v at lz.r, where _ denotes a null or error value and
new_value is the value reassigned to v.

Next, the four types of new_value are explained in detail. The first is the live variable
at the repair location with the same type of defective variable; the second, if the defect
type is a third-party API library, new_value is the instance object of the best-matched
constructor between the live variables at the repair location and the formal parameters;
regarding the third, if it is the custom-defined type without subclasses and there is only
one constructor, then new_value is the instance object of the current constructor, whereas,
if there are multiple constructors, then new_value is the instance object of the best-matched
constructor that can be selected by matching the live variables in the repair location with
the parameters in the constructors; regarding the fourth, if there is the custom-defined type
with subclasses, new_value is the instance object of the subclass that best matches the name
of the subclass and the name of the defective variable.

Shown in Figure 3a is an example with a null pointer dereference, where L6 is the
defect location and the fault variable is list. Through the dependency analysis of the
sample code, the program dependency graph shown in Figure 4 can be obtained. From the
control-dependent edge marked (1) in Figure 4, it can be found that list control depends on
L5, where L5 is a loop structure. Therefore, when the assignment mechanism is applied,
the assignment operation is set for list before L5. By using the constructor to give a new
value to [ist, the repaired program is shown in Figure 3b.

L1 public List<String> getData(BufferedReader br) L1 public List<String> getData(BufferedReader br)

throws Exception{ throws Exception{
L2 List list; L2 List list;
L3 if(br != null){ L3 if(br != null){
L4 String readLine = br.read Line(); L4 String readLine = br.readLine();
LS while(readLine != null) { + list = new ArrayList<String>();
L6 list.add(readLine); L5 while(readLine != null) {
L7 readLine= br.readLine(); L6 list.add(readLine);
L8 } L7 readLine= br.readLine();
L9 } L8 }
L10 return list; L9 }
L1l } L10 return list;
L1l }
(a) (b)

Figure 3. The sample program 1. (a) defective program 1; (b) repaired program 1.

Symmetry 2022, 14, 1555

8 of 19

— control dependencies

—— data dependencies

Figure 4. The extended program dependency graph of the sample program 1.

5.2. Restraint Mechanism

Null pointer dereferences are caused by external resources or services connection
failure or a null return from an external method, etc., which may not be properly repaired
using an assignment mechanism. In this case, the restraint mechanism can be adopted to
avoid defects in advance, which can be repaired in two ways. The first way is to employ
conditional judgment to constrain the set of statements influenced by the defect variable in
advance, which can be executed only when the defect variables are not empty. The second
way is to put the set of statements affected into the try block and to throw an exception
whenever it occurs. Equations (3) and (4) represent these two cases, respectively, where
ds(v) is the set of all statements impacted by the faulty variable.

Equation (3) adds a non-full judgment for v before ds(v), and the statements in ds(v)
can be executed only if v passes the judgment. Because /5. is the used statement of v, it
must be included in ds(v). Therefore, we replace l,s, with ds(v) included in the non-null
judgment to avoid the trigger of null pointer dereferences. Equation (4) puts ds(v) into the
code block of try; the execution will be aborted once an exception occurs in the code block
of try. After that, the method enters the code block of catch to warn the developer.

Du(ldef, Luser v) c:ol=mnull ds(v) = {Iy,lo,...,In}

Towe = if(C) {d5(0)] @)
DU(ldef, luse ,T)) ds(v) = {ll,lz Ce ln}
1 : try{ds(v)} catch (NullPointerException e){...} 4)

luse =1

The program fragment is shown in Figure 5a, and there is a null pointer dereference
in the use of parser in L5. At the time, it is difficult to obtain a correct patch using the
assignment mechanism, so the trigger of parser is avoided as much as possible. Given
the program dependency analysis in Figure 6, {L6, L7, L9} depends on the faulty node L5
according to the directed edges (1), (2), and (3). The directed edges (4) and (5) indicate
that both L7 and L9 are controlled by L6, so ds(parser) is {L5, L6, L7, L9}. The restraint
mechanism is adopted to perform the null check before ds(parser) and ds(parser) is skipped
if parser is null.

Symmetry 2022, 14, 1555

90f19

L1 protected void analyzeAction (){ L1 protected void analyzeAction (){
L2 Point sta = pointState.getPoint(); L2 Point sta = pointState.getPoint();
L3 if (sta != null){ L3 if (sta != null){
L4 Parser parser = sta.getParser(); L4 Parser parser =sta.getParser();
L5 Action action = parser.findAction(); + if (parser != null){
L6 if (action != null) L5 Action action = parser.findAction();
L7 action.add(); L6 if (action != null)
L8 else L7 action.add();
L9 action.delete(); L8 else
L10 } L9 action.delete();
L1l 3 + }

L10 }

LIl }

(a) (b)

Figure 5. The sample program 2. (a) defective program 2; (b) repaired program 2.

— control dependencies
—— data dependencies

Figure 6. Program dependency graph of the sample program 2.

5.3. Evading Mechanism

The evading mechanism adds the appropriate statements to divert the execution
of the method to complete the repair, and the repair can be roughly divided into three
situations. First, a return statement appears in the set of statements impacted by the defect,
and a new return statement should be added to avoid the defect of no return value when
using conditional judgment repair. Second, when a return statement appears in the set of
statements influenced and is put into the code block of try for repair, a new return statement
needs to be added to the code block of catch. Third, if a null pointer occurs during one of
the loops, add continue to skip this execution and go to the next loop. Equations (5)—(7)
represent these three cases, respectively, where type(ds(v)) € return = true represents the
statement set containing the return statement, d_dep(v) represents the set of statements that
the variable v data depend on, and type(d_dep(v)) € loop = true denotes the statement in
d_dep(v) that contains the loop statement.

The condition in Equation (5) is satisfied if type(ds(v)) € return is true, and [in the
scope of the non-empty condition is executed. In the same case, Equation (6) replaces I,
with I, where [puts ds(v) into the code block of try and adds return valuees,r, into the catch
to avoid introducing a new defect. There are three cases of the value of valueyesyry: firstly,
if there is a live variable of the same type as the return value, then the value of value,etyry is
equal to the live variable; secondly, if the return value of a method belongs to primitive
types, the default value of the primitive type is assigned to value;etyrn; thirdly, if the return
value of a method belongs to reference types, valueetyr, is obtained by new_value. If a null
pointer dereference appears in the loop and type(ds(v)) € loop is satisfied, Equation (7)

Symmetry 2022, 14, 1555 10 of 19

sets a null judgment for the defective object and adds continue into the scope of the null
judgment to skip this loop.

DU (14ef, luse ,v) ¢ : v == null ds(v) = {I1,1p,...,1n} I: return valueyepyrn;
Luse type (ds(v_)))e return if(C){l} Lse

©)

Du(ldef, luse ,?J) dS(U) = {ll,lz e ln}

1 : try{ds(v)} catch (NullPointerException e){ return valueyeryrn; } (6)
] type (ds(v)) € return]
use —

DU (14ef, luse, v) ¢ : v == null
Lse type(d?dﬂv))eloop if (C)

) @)
{ continue;} lyse

As shown in Figure 7a, the faulty variable is people[i], and the defective location is
L3. The value of people[i] depends on the condition of the for and is null in one iteration.
Given the program dependency graph in Figure 8, the L3 data and control depend on
node 2.2, and the statement that 2.2 is located belongs to the loop. The above situation
satisfies type(ds(v)) € loop in Equation (7). Therefore, the wrong variable is judged by
using the null check. In addition, continue is executed to end this iteration and enter the
next iteration if the variable is null. The defect is repaired within the minimum scope in

Figure 7b.
L1 public void staff (People[] people){ L1 public void staff (People[] people){
L2 for (int i=0; i<3; it++) { L2 for (int i=0; i<3; i++) {
L3 people[i].addwork(); + if (people[i] == null)
L4) + continue;
L5 ¥ L3 people[i].addwork();
L4 }
Ls }
(a) (b)

Figure 7. The sample program 3. (a) defective program 3; (b) repaired program 3.

—— control dependencies
——»> data dependencies

Figure 8. Program dependency graph of the sample program 3.
5.4. Transfer Mehanism

In the worst case, if all of the previous three repair mechanisms fail, the transfer
mechanism is adopted to throw the exception to an external calling method that catches
and handles the exception. Equation (8) sets a null judgment before using an object; then,
I is executed if the result of the judgment is true. Further, the external calling method
captures the exception to processing.

DU(ldef, Luse, v) c:v ==null |: throw new NullPointerException(...);
Luse = if(c){1} Luse

®)

Symmetry 2022, 14, 1555

11 0f 19

Suppose that the passed argument axis is null in Figure 9a. The method getDomainAx-
isIndex(...) still calls an external method with axis as a parameter. Although the set of
statements affected by axis contains a return statement, the defect is not properly repaired
using the evading mechanism. In this case, Equation (8) conducts a null judgement on
the incorrect variable and adds / under the condition of the null. The repair is shown in
Figure 9b.

L1 public int getDomainAxisIndex(CategoryAxis axis) L1 public int getDomainAxisIndex (CategoryAxis axis)
{ {
L2 return this.domainAxes.indexOf (axis); + if (axis == null) {
L3 } + throw new NullPointerException
("Null'axis'argument."); }
L2 return this.domainAxes.indexOf (axis);
L3 }

(@) (b)
Figure 9. The sample program 4. (a) defective program 4; (b) repaired program 4.
5.5. The Location of the Null Check

In order to further explain the adding position of the null check of the four repair
mechanisms, we discuss the position from three aspects: sequential structure, loop structure,
and branch structure.

First, when the null pointer dereference appears in the sequential structure, we need
to find all of the statement nodes affected by the fault variable, and then set the null check
before the fault statement and the affected statement set, which avoid the error information
caused by the null pointer, as shown in Figure 10a.

S Y
: W

|
|
[
|

| | OQ
| 56,

(@) (b) © (d)

sequential structure loop structure branch structure

. the statement node defining the error variable . error statement node O the start of the null check @ the end of the null check

Figure 10. The location of the null check.

Second, when the definition of the defect variable is outside the loop structure, its use
in the loop structure fails, which indicates that the function executed by the loop structure
does not allow for the occurrence of a null pointer or null value. Therefore, according to
this situation, we take the null check before the start of the loop structure, as shown in
Figure 10b.

Third, when the definition of the defect variable is outside the branch structure and its
use in one branch or more branches fails, if the number of wrong branches exceeds half of
the total number of branches, the position of the null check is placed before the beginning
of the branch structure, as shown in Figure 10c. However, if the number of wrong branches
does not exceed half of the total number of branches, the null check is added before the

Symmetry 2022, 14, 1555

12 0of 19

fault statement and the affected statement set in the wrong branches, respectively, as shown
in Figure 10d.

6. Automatic Repair Algorithm for Null Pointer Dereferences

In the automatic repair for null pointer dereferences, the generation of a program
dependency graph and the matching of repair strategies are the key processes. Algorithm 1
describes the process for generating the program dependency graph or the extended
program dependency graph. In Step 3, the filter condition for nodes in the executable
path are defined based on the post-dominance relation. After that, nodes that satisfy the
condition are added to the control dependencies in Step 4. Steps 7 and 8 identify defined
and used nodes of variables applying the define-use chain, and then add them to the
data dependencies. Finally, the program dependency graph is generated by adding data
dependency edges to the control dependency graph in Step 10.

Algorithm 1: Generating a program dependency graph or an extended program
dependency graph.

Input: ps(source, sink, mid-node): the executable paths in the control flow graph.
source: the source node of an executable path;

sink: the sink node of an executable path;

mid-node: the intermediate nodes of an executable path;

def-use: the define-use relationships between statement nodes;

Output: G: program dependency graph.

e data_dep : data dependencies between statement nodes

e control_dep: control dependencies between statement nodes

e post_dominance(a,b): b post-dominates a

Begin

: data_dep<— @, control_dep < @

:for peps do

if 7 post_dominance (source, sink) && post_dominance(mid-node, sink) then
control_dep<— add(source, sink)

end if

: end for

: for du € def-use do

data_dep < add(def, use)

9: end for

10: G <— merger(control_dep, data_dep)

11: return G

END

—_

L A B

In the process of selecting the four repair mechanisms, we give priority to the successful
repair of defects that have the least impact on other functions of the program, precisely
because it reduces the side effects on the program as much as possible. The assignment
mechanism is used to assign a correct value to the fault variable at the source of the defect
as far as possible, which can ensure that the wrong program is fundamentally repaired and
the modified program code range is the smallest. The restraint mechanism and evading
mechanism are applied to different contexts, respectively. The restraint mechanism adds
null checking to bring the code set affected by the defect into the security scope of execution.
The evading mechanism changes the execution path of the program by adding appropriate
statements to avoid null pointer dereferences. Compared with the assignment mechanism,
the scope of code changes in these two mechanisms is larger. Therefore, when matching the
repair strategy, first judge the context that conforms to the assignment mechanism, and then
judge whether it conforms to the restraint mechanism and evading mechanism. Finally, the
transfer mechanism throws the null pointer dereference to the external calling program,

Symmetry 2022, 14, 1555

13 0of 19

which is captured and processed by the external. Its repair scope is further expanded and
depends on external methods, so it is the last repair mechanism to be matched.

In the matching process of repair mechanisms, the decision tree is used in this paper
to predict which repair mechanism can be selected to obtain candidate patches for defects.
The applicable features of the repair mechanism summarized in Section 4 are learned
in the summarized training samples, and the new defects are predicted in the learned
classification model, where the classification rules are shown in Figure 11. Each branch
of the decision tree prediction model will select a repair mechanism. After that, in the
process of applying the repair mechanism, the process ends as soon as a candidate patch
is acquired.

Y wdenes
@ ®F ©F © @Té)@b@@ﬁéF

o8 eoasy S® & ®
o o b

m

Cyilge 0;: assignment mechanism
C2 Eype(d dep(v)) € loop? 0y:restraint mechanism
Cq: type(ds(v)) € return? 0q: evading mechanism

C4: pass test cases using assignment? 04: transfer mechanism

Cs: pass test cases using restraint? 0Os:no patch
Cg: pass test cases using evading&loop?

Cyipass test cases using evading&return?

Cg: pass test cases using transfer?

Figure 11. The decision tree corresponding to the choice of repair mechanisms.

Whether the definition position of the fault variable /4, can be located should be
judged first. If it is found, the test cases are used to verify the repair of the assignment
mechanism. If it is not found or the patch cannot pass the test cases, whether the set
of statements d_def (v) that are data-dependent by the faulty variable contains the loop
statement should be judged next. If type(d_def(v)) € loop is true, the test cases are
used to judge whether the evading mechanism can obtain candidate patches. However,
if type(d_def (v)) € loop is false or the test cases fail to pass the verification, the set ds(v)
of statements affected by the fault variable needs to be judged regarding whether the
return statement is included in the set. Then, if type(ds(v)) € return is true, the test cases
that verify the evading mechanism continue to be used. If it is false, then the repair of
the restraint mechanism is verified by using the test cases. Finally, if the candidate patch
cannot be obtained through the evading mechanism or restraint mechanism, an exception
is thrown to try to repair through the transfer mechanism.

7. Evaluation

Based on the defect detection in DTSJava [27], this paper carried out further research
to implement DTSFix for the automatic repair of null pointer dereferences. The analysis
procedure of DTSFix described by the UML activity diagram is shown in Figure 12. This
section focuses on an experimental evaluation of DTSFix, with the main purpose of as-
sessing DTSFix's ability in practice. Experiment 1 compares the repair of 15 null pointer
dereferences in Defects4] by DTSFix with other existing tools to verify the superiority of
DTSFix. Further, experiment 2 verifies the effectiveness of DTSFix on various datasets and
compares the repair capabilities of the four mechanisms by working on the defect detection
tool DTSC [28], the public dataset BugSwarm [29], and Bugs.jar [30].

Symmetry 2022, 14, 1555

14 of 19

generate the abstract
syntax tree
build the control flow
graph

create the define-use chain analyse post-dominance
relatmn

generate the data generate the control
dependency graph dependency graph

generate the cI graph

combing into the program
dependency graph
match the repair
mechanisms

can the repair

mechanisms
be matched? I Ives]

apply the repair fa\l to malch?he repair)
mechanisms mechanisms

generate the patch
vaildate the patch
does the patch pass
[ng] the test cases?

Figure 12. The analysis procedure of DTSFix.

[ng]

7.1. Comparison of Repair Results between DTSFix and Existing Repair Tools

Experiment 1 takes 15 null pointer dereferences from Defects4] summarized by VFix
as the dataset. Table 1 lists the details of the null pointer dereferences in the four projects
of Defects4], including seven in Chart, five in Lang, and three in Math. To better compare
DTSFix with other tools, we chose the same dataset that they used. As for evaluation
metrics, recall and precision were applied, and they are defined as Equations (9) and (10).
The higher the recall, the stronger the patch generation capability of the automatic repair
tool, and the higher the precision, the higher the quality of the patches generated by the
repair tool.

COP (correct patches)
DEN (all defects)

COP (correct patches)
CAP (candidate patches)

RE(recalll) =)

(10)

PR(precision) =

Table 1. Null pointer dereferences in Defects4].

Project Defect ID Defects
Chart 2,4,14,15,16,25,26 7
Lang 20,33,39,47,57 5
Math 4,70,79 3
Time - 0
Total - 15

After selecting the appropriate dataset, this paper compared DTSFix with nine typical
APR tools. jGenProg [9], JKali [3], Nopol [2], ACS [31], CapGen, HDRepair [8], and
SimFix [32] are general automatic repair tools, whereas NPEFix [7] and VFix are automatic
repair tools specifically for null pointer dereferences. Figure 13 shows a comparison of the
experimental results, where the repair results of both the general repair tools and VFix are
taken from their papers. We can see that SimFix is the best among the eight general repair

Symmetry 2022, 14, 1555

15 0f 19

tools, with a recall of 27% (4/15) and a precision of 80% (4/5). In contrast, DTSFix has a
recall of 73% (11/15), which is 46% higher than SimFix, and a precision of 100%, which is
20% higher than SimFix. The experimental results show that DTSFix is more effective than
the existing general repair tool for null pointer dereferences.

Chart Lang Math
2 4 | 14| 15|16 |25 |26 |20 |33 |39 |47 |57 4 70 | 79
SimFix x v v v v
jGenProg X X v
JKali x x x
ACS v x v
Nopol X X X X
CapGen v v
HDRepair v
NPEFix x | x| x| x| x| x x | v v | x| x| x
VFix SV VA 2 VA VAR VA VA Y VA VAR YA B S
DTSFix v |V |V v [V V[V | V| V|V

correct patch overﬁtting patch |:| incorrect patch

Figure 13. The comparison results with other automatic repair tools.

A comparison among DTSFix, NPEFix, and VFix is shown in the last three rows of
Figure 13, which are specialized in repairing null pointer dereferences. NPEFix generates 12
candidate patches, of which, only 2 are correct, while DTSFix repairs 11 defects successfully.
Although VFix repairs 13 defects, it contains 1 over-fitting patch, whereas all the candidate
patches generated by DTSFix are correct. As is known to all, over-fitting patches do not
completely repair the defects and may damage some of the functions in the program. Thus,
manual verification is required to ensure the quality of patches, which, however, will
increase human work and violate the original intention of automatic repair. Therefore,
reducing over-fitting patches is of great importance, which is the strength of DTSFix. In
Math 70, the defect appears in the statement fmin = f.value (min) in the method solve(), where
f is null. However, f is declared as an interface UnivariaterealFunction, which contains
multiple classes implementing the interface of SinFunction and QuinticFunction. When
the defect variable is declared as an interface or a parent class with subclasses, the repair
needs to select the appropriate class implementing the interface or subclass to create a
new object using their constructor. The value flow graph in VFix mainly focuses on the
change and transmission of variables, and cannot obtain the types of active variables
at the program point, so it is impossible to find the class that implements the interface
or the subclass being used to assign the value to the defect variable. However, DTSFix
can obtain the types of active variables in program points through context, and can create
appropriate objects according to the specific class implementing the interface or the subclass
types currently used. In the main calling method solve(), there is a definition of the same
type as f: UnivariaterealFunction f = new SinFunction(). DTSFix applies the extended
program dependency graph to find the definition, and adds its same class implementing
the interface f = new SinFunction() before using the defect variable. In this way, the defect
can be successfully repaired.

7.2. The Repair Ability of DTSFix on Large Projects

To verify the effectiveness of the DTSFix, we needed to collect a large number of
null pointer dereferences from different datasets. DTSC, BugSwarm, and Bugs.jar were
selected as the datasets in experiment 2. DTSC, which contains 522 java files with a total of

Symmetry 2022, 14, 1555

16 of 19

approximately 160,000 lines of code, employs a static analysis approach to detect defects.
BugSwarm and Bugs.jar are both public datasets. After the defect detection on the three
datasets, it was manually confirmed that DTSC, BugSwarm, and Bugs.jar contain 69, 25,
and 32 null pointer dereferences, respectively. Table 2 lists the number of candidate patches
(CAP), correct patches (COP), and defects (DEN) in DTSC, BugSwarm, and Bugs.jar.

Table 2. The repair result of experiment 2.

Projects Defects Repair Mechanisms (CAP/COP/DEN) Total Evaluation
Assignment Restraint Evading Transfer (CAP/COP/DEN) (RE/PR)

DTSC 69 7/8/10 22/28/29 10/14/16 9/12/14 48/62/69 69.5%/77 4%

BugSwarm 25 3/4/4 9/11/13 2/3/4 2/4/4 16/22/25 64.0%/72.7%

Bugs.jar 32 2/3/5 13/16/17 1/2/4 4/5/6 20/26/32 62.5%/76.9%

As shown in Table 2, the recall of all three tools exceeds 60%, with an average recall
of 65.3%, and the precision of candidate patches exceeds 70%, with an average precision
of 75.7% for all three tools. To some extent, these two metrics are constrained by each
other, because a higher recall means that the repair tool generates more patches and more
overfitting patches are involved as well, leading to a decrease in precision. The experimental
results show that DTSFix exhibits a relatively high precision of candidate patches on a wide
scope of datasets while ensuring a stable recall.

To accurately evaluate the repair capability of different repair mechanisms in DTSFix,
Figure 14 compares the precision of the candidate patches generated by the four repair
mechanisms on the three datasets, and the fold line shows the average precision for the
four mechanisms. It is widely observed in Figure 14 that the precision of candidate patches
from the assignment mechanism and restraint mechanism are significantly higher than that
of the other two, and the repair ability of the evading and transfer mechanisms are not very
stable. This is mainly because the evading and transfer mechanisms have a greater impact
on the program semantics and the repairs are associated with the program code. Figure 15
compares the number of correct patches for the four repair mechanisms of DTSFix on the
three data sets. It can be seen that the restraint mechanism produces more correct patches
and candidate patches than the other three repair mechanisms. The reason is to that these
three mechanisms adapt to fewer situations than the restraint mechanism, and the added
repair statements in the three mechanisms may have side effects on the program semantics,
while the restraint mechanism only sets the null judgment in front of the codes affected by
defects and completes the repair within a small change.

100 A
90
80
70 1
60
50 1
40+
301
20

Assignment Restraint Evading Transfer
DTSC M BugSwarm Bugs.jar

Figure 14. The precision of candidate patches for four repair mechanisms(%).

Symmetry 2022, 14, 1555

17 of 19

304

25

20

154

104

Assignment Restraint Eawing Transfer
—A— p1sCc - BugSwarm Bugs.jar

Figure 15. The number of correct patches for four repair mechanisms.

7.3. Discussion and Limitations

According to the existing automatic repair research, the appropriate repair location is a
key factor to determine the candidate patch. By analyzing the program dependency graph
of the whole program or the extended program dependency graph, accurately grasping
the data and control dependencies related to the error variables can help us to analyze the
context and match the repair template to select the appropriate repair location. In order
to further improve the ratio of correct patches, we trained a large number of defective
programs to build a decision tree to predict the repair methods of defective programs.
Through screening each attribute, we eliminated inappropriate repair mechanisms, which
reduces the generation of incorrect patches and improves the repair efficiency. Moreover,
since the null pointer dereference is a semantic defect, the defect detection tool using static
analysis technologies in this paper can carry out regression testing, which plays a good role
in the patch verification stage. The best way to eliminate software defects is to set preventive
measures in advance to avoid damage caused by defects. The processing method is also
being studied in blockchain and microservices, which has made good progress [33-35].

Recently, annotation technology can be used to check null pointers in programming
languages. Adding a non-null annotation to a particular field will be equivalent to setting a
null check judgment in advance in this field. In the stage of program design and implemen-
tation, the appearance of a non-null annotation will reduce a large amount of repetitive
work of verification and relieve code redundancy. According to the particular requirements
of some fields in the design stage, the non-null annotation of custom-defined can help the
program to select the processing method and request. Non-null annotation is used to check
whether the field is empty during program operation, but DTSFix applies static analysis
technologies to analyze and repair the program.

However, in the repair process, our method still has some shortcomings. When the
program structure of a program is very complex, it is difficult to summarize it into a repair
template to repair. This is also a common problem in the automatic repair of programs
based on the repair template. Faced with such a program, DTSFfix will give up the repair
after the repair time out or the candidate patch cannot be obtained.

8. Conclusions

In this paper, we implemented the automatic repair for null pointer dereferences by
using the program dependency graph to obtain program dependencies, proposing four
repair mechanisms and eight repair templates. DTSFix proposed in this paper first analyzes
program dependencies of the defective program to select repair mechanisms by matching
the context and the conditions of the repair mechanism. It is proven that DTSFix can
accurately judge the repair location and generate appropriate patches. The experiment
evaluated DTSFix with 15 null pointer dereferences in the Defects4], and the result shows

Symmetry 2022, 14, 1555 18 of 19

that the automatic program repair guided by the program dependency graph can generate
candidate patches for 11 defects, and that all of them are correct. Additionally, the experi-
ments on a large project and two public datasets further verify the effectiveness of DTSFix
in practical projects. In the future, we plan to further improve the precision of DTSFix and
summarize more repair mechanisms for null pointer dereferences based on the program
dependency graph.

Author Contributions: Conceptualization, Y.D. and Y.S.; methodology, Y.S.; software, Y.D.; validation,
XW.,, YD. and Y.S,; formal analysis, Y.S.; investigation, Y.D.; resources, X.W.; data curation, Y.S,;
writing—original draft preparation, Y.S.; writing—review and editing, Y.D. and Y.S.; visualization,
Y.D. and Y.S.; supervision, X.W.; project administration, Y.D. and Y.S.; funding acquisition, Y.D. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Shandong Provincial Natural Science Foundation ZR2021MF058,
the Fundamental Research Funds for the Central Universities (20CX05016A) and the Major Scientific
and Technological Projects of CNPC under Grant ZD2019-183-007.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.

13.

Vu, D.L.; Pashchenko, I.; Massacci, F. Please hold on: More time = more patches? Automated program repair as anytime
algorithms. In Proceedings of the 2021 IEEE/ACM International Workshop on Automated Program Repair (APR), Madrid, Spain,
1 June 2021; pp. 9-10. [CrossRef]

Martinez, M.; Durieux, T.; Sommerard, R.; Xuan, J.E; Monperus, M. Automatic Repair of Real Bugs in Java: A Large-Scale
Experiment on the Defects4] dataset. Empir. Softw. Eng. 2017, 22, 1936-1964. [CrossRef]

Qi, Z.; Long, E; Achour, S.; Rinard, M. An analysis of patch plausibility and correctness for generate-and-validate patch generation
systems. In Proceedings of the 2015 International Symposium on Software Testing and Analysis (ISSTA 2015), New York, NY,
USA, 12-17 July 2015; pp. 24-36. [CrossRef]

Hong, S.; Lee, J.; Lee, J.; Oh, H. SAVER: Scalable, precise, and safe memory-error repair. In Proceedings of the ICSE"20: 42nd
International Conference on Software Engineering, New York, NY, USA, 27 June 2020; pp. 271-283. [CrossRef]

Klieber, W.; Martins, R.; Steele, R.; Churilla, M.; Svoboda, D. Automated Code Repair to Ensure Spatial Memory Safety. In
Proceedings of the 2021 IEEE/ACM International Workshop on Automated Program Repair (APR), Madrid, Spain, 1 June 2021;
pp- 23-30.

Aslanyan, H.; Arutunian, M.; Keropyan, G.; Kurmangaleev, S.; Vardanyan, V. BinSide: Static Analysis Framework for Defects
Detection in Binary Code. In Proceedings of the 2020 Ivannikov Memorial Workshop (IVMEM), Orel, Russia, 25-26 September
2020; pp. 3-8. [CrossRef]

Durieux, T.; Cornu, B.; Seinturier, L.; Monperrus, M. Dynamic Patch Generation for Null Pointer Exceptions Using Metapro-
gramming. In Proceedings of the 2017 IEEE 24th International Conference on Software Analysis, Evolution, and Reengineering
(SANER), Klagenfurt, Austria, 20-24 February 2017; pp. 349-358.

Le, X.B.D,; Lo, D.; Le Goues, C.L. History driven program repair. In Proceedings of the 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), Osaka, Japan, 15 March 2016; pp. 213-224. [CrossRef]

Le Goues, C.; Nguyen, T; Forrest, S.; Weimer, W. GenProg: A Generic Method for Automatic Software Repair. IEEE Trans. Softw.
Eng. 2012, 38, 54-72. [CrossRef]

René, J.; Darioush,].; Michael, D.E. A database of existing faults to enable controlled testing studies for Java programs. In
Proceedings of the 2014 International Symposium on Software Testing and Analysis (ISSTA 2014), New York, NY, USA, 21 July
2014; pp. 437-440. [CrossRef]

Xu, X.Z.; Sui, Y.L.; Yan, H.; Xue, J.L. VFix: Value-Flow-Guided Precise Program Repair for Null Pointer Dereferences. In
Proceedings of the 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), Montreal, QC, Canada, 25-31
May 2019; pp. 512-523.

Noda, K.; Yokoyama, H.; Kikuchi, S. Sirius: Static program repair with dependence graph-based systematic edit patterns.
In Proceedings of the 2021 IEEE International Conference on Software Maintenance and Evolution (ICSME), Luxembourg,
27 September-1 October 2021; pp. 437-447. [CrossRef]

Villanueva, O.M.; Trujillo, L.; Hernandez, D.E. Novelty search for automatic bug repair. In Proceedings of the 2020 Genetic and
Evolutionary Computation Conference (GECCO’20), New York, NY, USA, 8-9 July 2020; pp. 1021-1028. [CrossRef]

http://doi.org/10.1109/APR52552.2021.00009
http://dx.doi.org/10.1007/s10664-016-9470-4
http://dx.doi.org/10.1145/2771783.2771791
http://dx.doi.org/10.1145/3377811.3380323
http://dx.doi.org/10.1109/IVMEM51402.2020.00007
http://dx.doi.org/10.1109/SANER.2016.76
http://dx.doi.org/10.1109/TSE.2011.104
http://dx.doi.org/10.1145/2610384.2628055
http://dx.doi.org/10.1109/ICSME52107.2021.00045
http://dx.doi.org/10.1145/3377930.3389845

Symmetry 2022, 14, 1555 19 of 19

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Dantas, A.; de Souza, E.F,; Souza, J.; Camilo, C.G. Code Naturalness to Assist Search Space Exploration in Search-Based Program
Repair Methods. In Proceedings of the 11th International Symposium on Search-Based Software Engineering (SSBSE), Tallinn,
Estonia, 31 August-1 September 2019; Volume 11664, pp.164-170. [CrossRef]

Yang, G.; Jeong, Y.; Min, K.; Lee,] W.; Lee, B. Applying Genetic Programming with Similar Bug Fix Information to Automatic
Fault Repair. Symmetry 2018, 10, 92. [CrossRef]

White, M.; Tufano, M.; Martinez, M.; Monperrus, M.; Poshyvanyk, D. Sorting and transforming program repair ingredients via
deep learning code similarities. In Proceeding of the 2019 IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER), Hangzhou, China, 24-27 February 2019; pp. 479-490. [CrossRef]

Gulwani, S.; Radi¢ek, I.; Zuleger, F. Automated clustering and program repair for introductory programming assignments. In
Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), Philadelphia,
PA, USA, 18-22 June 2018; pp. 465-480. [CrossRef]

Hug, F; Hasan, M.; Haque, M.M.A. Review4Repair: Code review aided automatic program repairing. Inf. Softw. Technol. 2022,
143, 106765. [CrossRef]

Liu, K.; Koyuncu, A.; Kim, D.; Bissyandé, T.F. TBar: Revisiting template-based automated program repair. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis, Beijing, China, 15-19 July 2019; pp. 31-42.
[CrossRef]

Hua, J.R.; Zhang, M.S.; Wang, K.Y; Khurshid, S. Towards practical program repair with on-demand candidate generation. In
Proceedings of the 40th International Conference on Software Engineering (ICSE), Gothenburg, Sweden, 27 May-3 June 2018;
pp. 12-23. [CrossRef]

Afsson, A.; Manish, M.; Kathryn, S.; Yuriy, B.; Claire, L.G. SOSRepair: Expressive semantic search for real-world program repair.
IEEE Trans. Softw. Eng. 2019,47, 2162-2181. [CrossRef]

Gao, X.; Wang, B.; Duck, GJ; Ji, RY,; Xiong, Y.F. Roychoudhury A. Beyond Tests: Program Vulnerability Repair via Crash
Constraint Extraction. ACM Trans. Softw. Eng. Methodol. 2021, 30, 1-27. [CrossRef]

Nguyen, H.D.T.; Qi, D.W.; Rocychoudhury, A.; Chandra, S. SemFix: Program Repair via Semantic Analysis. In Proceedings of the
35th International Conference on Software Engineering (ICSE 2013), San Francisco, CA, USA, 18-26 May 2013; pp. 772-781.
Wen, M.; Chen, J.J.; Wu, RX,; Hao, D.; Cheung, S.C. Context-aware patch generation for better automated program repair.
In Proceedings of the 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE), Gothenburg, Sweden,
27 May-3 June 2018; pp. 1-11. [CrossRef]

Ghanbari, A.; Benton, S.; Zhang, L.M. Practical program repair via bytecode mutation. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA), Beijing, China, 15-19 June 2019; pp. 19-30. [CrossRef]
Koyuncu, A.; Liu, K,; Bissyandé, T.F.; Kim, D.; Klein, J.; Monperrus, M.; Le Traon, Y. Fixminer: Mining relevant fix patterns for
automated program repair. Empir. Softw. Eng. 2020, 25, 1980-2024. [CrossRef]

Zhou, H.B,; Jin, D.H.; Gong, Y.Z. Application of Interval Arithmetic in Software Testing Based on Field-Sensitive Point-to Analysis.
J. Comput. Res. Dev. 2012, 49, 1852-1862.

Wang, S.D.; Yin, WJ.; Dong, YK.; Zhang, L.; Liu, H. Data flow analysis for sequential storage structures. J. Softw. 2020, 31,
1276-1293.

Tomassi, D.A.; Dmeiri, N.; Wang, Y.C.; Bhowmick, A.; Liu, Y.C.; Devanbu, P.T.; Vasilescu, B.; Rubio-Gonzélez, C. Bugswarm:
Mining and continuously growing a dataset of reproducible failures and fixes. In Proceedings of the 41st International Conference
on Software Engineering (ICSE), Montreal, QC, Canada, 25-31 May 2019; pp. 339-349. [CrossRef]

Saha, R.; Lyu, Y.J.; Lam, W.; Yoshida, H.; Prasad, M.R. Bugsjar: A large-scale, diverse dataset of real-world java bugs. In
Proceedings of the 15th International Conference on Mining Software Repositories (MSR), Gothenburg, Sweden, 28-29 May 2018;
pp- 10-13.

Xiong, Y.F; Wang, J.; Yan, R.F,; Zhang,].C.; Han, S.; Huang, G.; Zhang, L. Precise Condition Synthesis for Program Repair. In
Proceedings of the 2017 IEEE/ ACM 39th International Conference on Software Engineering (ICSE), Buenos Aires, Argentina,
20-28 May 2017; pp. 416-426. [CrossRef]

Jiang, J.J.; Xiong, Y.F.; Zhang, H.Y.; Gao, Q.; Chen, X.Q. Shaping Program Repair Space with Existing Patches and Similar Code. In
Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2018), Amsterdam,
The Netherlands, 15-21 July 2018; pp. 298-309. [CrossRef]

Six, N.; Herbaut, N.; Salinesi, C. Blockchain software patterns for the design of decentralized applications: A systematic literature
review. Blockchain Res. Appl. 2022, 100061. [CrossRef]

Gorski, T. Reconfigurable Smart Contracts for Renewable Energy Exchange with Re-Use of Verification Rules. Appl. Sci. 2022,
12, 5339. [CrossRef]

Waseem, M.; Liang, P.; Shahin, M.; Di Salle, A.; Marquez, G. Design,monitoring, and testing of microservices systems: The
practitioners’ perspective. J. Syst. Softw. 2021,182, 111061. [CrossRef]

http://dx.doi.org/10.1007/978-3-030-27455-9_12
http://dx.doi.org/10.3390/sym10040092
http://dx.doi.org/10.1109/SANER.2019.8668043
http://dx.doi.org/10.1145/3192366.3192387
http://dx.doi.org/10.1016/j.infsof.2021.106765
http://dx.doi.org/10.1145/3293882.3330577
http://dx.doi.org/10.1145/3180155.3180245
http://dx.doi.org/10.1109/TSE.2019.2944914
http://dx.doi.org/10.1145/3418461
http://dx.doi.org/10.1145/3180155.3180233
http://dx.doi.org/10.1145/3293882.3330559
http://dx.doi.org/10.1007/s10664-019-09780-z
http://dx.doi.org/10.1109/ICSE.2019.00048
http://dx.doi.org/10.1109/ICSE.2017.45
http://dx.doi.org/10.1145/3213846.3213871
http://dx.doi.org/10.1016/j.bcra.2022.100061
http://dx.doi.org/10.3390/app12115339
http://dx.doi.org/10.1016/j.jss.2021.111061

	Introduction
	Related Work
	Automatic Program Repair
	The Repair of Null Pointer Dereferences

	The Repair Framework of DTSFix
	Program Dependency Graph
	Four Repair Mechanisms for Null Pointer Dereferences
	Assignment Mechanism
	Restraint Mechanism
	Evading Mechanism
	Transfer Mehanism
	The Location of the Null Check

	Automatic Repair Algorithm for Null Pointer Dereferences
	Evaluation
	Comparison of Repair Results between DTSFix and Existing Repair Tools
	The Repair Ability of DTSFix on Large Projects
	Discussion and Limitations

	Conclusions
	References

