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Abstract: Fuzzy arithmetic is of great significance in dealing with vague information, especially the
basic arithmetic operations (i.e., ⊕, 	, ⊗, �). However, the classical and widely accepted accurate
and approximate approaches, the interval arithmetic approach and standard approximation method,
cannot output accurate or well-approximated expressions of the membership function, which may
prevent decision makers from making the right decisions in real applications. To tackle this problem,
this paper first discusses the relationships among the membership function, the credibility distribu-
tion, and the inverse credibility distribution and summarizes the relationships as several theorems.
Then, by means of the theorems and the newly proposed operational law, this paper proposes an
inverse credibility distribution approach that can output the accurate expression of the membership
function for continuous and strictly monotone functions of regular LR fuzzy intervals. To better
demonstrate the effectiveness of the raised approach, the commonly-used LR fuzzy interval, the sym-
metric trapezoidal fuzzy number, is employed, and several comparisons with the other two methods
are made. The results show that the proposed approach can output an exact or well-approximated
expression of the membership function, which the others cannot. In addition, some comparisons
of the proposed approach with other methods are also made on a completion time analysis of a
construction project to show the effectiveness of the proposed approach in real applications.

Keywords: regular LR fuzzy interval; symmetric trapezoidal fuzzy number; inverse credibility
distribution approach; completion time analysis

1. Introduction

Since Zadeh’s previous work on fuzzy set theory [1], fuzzy sets have become a strong
tool in the description of incomplete and uncertain situations. By now, various fuzzy
sets have been proposed, such as linear Diophantine fuzzy sets [2] and spherical linear
Diophantine fuzzy sets [3], and have already assisted people in solving various important
practical problems, among which the LR fuzzy interval [4], one of of the famous fuzzy
sets and with decreasing shape functions L and R, has attracted research attention. In real
applications, the arithmetic operations (i.e., ⊕, 	, ⊗, �) of the fuzzy intervals are of great
significance, since the accuracy of the obtained results can influence the choice of decision
schemes and improper ones may result in huge loss. However, Zadeh’s extension principle,
the fundamental arithmetic for the above arithmetic operations, contains the operations min
and max, which means the arithmetic operations can be non-linear, tedious calculation, and
difficult to be applied. In view of this, from the perspective of simplifying the computational
process, the approximate and exact methods of fuzzy arithmetic operations emerge.

The initial approximate method for LR fuzzy intervals was proposed by Dubois and
Prade [5] by the use of a fuzzification principle, and its practical use reduces computational
complexity and is shown to be easily followed. However, too frequent use of the multi-
plication of the method may lead to extensive damage due to an inaccurate membership
function. To tackle this problem, subsequent scholars have carried out a great deal of work

Symmetry 2022, 14, 1554. https://doi.org/10.3390/sym14081554 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14081554
https://doi.org/10.3390/sym14081554
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym14081554
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14081554?type=check_update&version=2


Symmetry 2022, 14, 1554 2 of 22

to reduce the error generated from the approximate method. By the utilization of the α
values of triangular and trapezoidal fuzzy numbers (two kinds of LR fuzzy numbers),
Giachetti and Young [6] developed a new approximation method, and the error gener-
ated from the approximate method in [5] was reduced by a large margin. Guerra and
Stefanini [7] developed a novel procedure to reduce the computational error produced
among the arithmetic operations between fuzzy intervals by using the piecewise mono-
tonic interpolations. Ban et al. [8] integrated the weighted average Euclidean distance into
the approximation of the arithmetic operation of LR fuzzy numbers, and the examples
demonstrate that the developed method can output more accurate results. With the help of
the approximate methods, some practical problems were well solved, such as multi-criteria
decision-making [9], risk analysis [10], and so on.

Although the simple and easy-followed characters make the approximate method
famous, the error between the obtained results and the exact ones always exist and some-
times may lead to the production of an extremely large erroneous result. In view of this,
the accurate fuzzy arithmetic operations have come into being. As regards the triangular
and trapezoidal fuzzy number, Kaufmann and Gupta [11] studied the relationship between
the α-cuts points and the arithmetic operations and then proposed the widely accepted
interval arithmetic approach [12,13]. However, this method may lead to higher powers of α
as the number of the multiplied fuzzy terms increases and cannot acquire the expression of
the corresponding membership functions. By means of the credibility measure [14] and
the newly-proposed operational law [15], Xie et al. [16] proposed an inverse distribution
approach for the arithmetic of triangular fuzzy numbers, and the results show that the
approach can output not only the membership functions as [11] but also the corresponding
exact expressions. As clearly can be seen from the accurate methods, studies on accurate
fuzzy arithmetic operations are rare, and the scope of their application is only restricted to
some special fuzzy numbers (i.e., triangular or trapezoidal fuzzy numbers).

Considering that a fuzzy arithmetic operation method that has a wide application
scope and can output exact expression of the membership function may make a big dif-
ference in real applications, such as decision making, fuzzy optimization, and so on, this
paper chooses the frequently-encountered regular LR fuzzy intervals as the main object
and then exploits an operational law of the regular LR fuzzy intervals [17] based approach
for the membership functions of functions of fuzzy intervals (i.e., the inverse credibility
distribution approach), in which the inverse credibility distributions of functions of fuzzy
intervals are first managed by the operational law [17]; then, by studying the relationship
between the membership function and the two distributions (the credibility and inverse
credibility distribution), the expressions of the membership functions of functions of fuzzy
intervals are finally exported. The contributions of this paper are mainly in the following
three aspects: (1) some theorems concerning the membership function, the credibility distri-
bution, and the inverse credibility distribution of regular LR fuzzy intervals are developed;
(2) we develop an inverse credibility distribution approach for the exact expressions of
the membership functions of functions of LR fuzzy intervals, which can applied to any
regular LR fuzzy intervals with continuous and strictly monotone functions; (3) in order to
reflect the effectiveness of the proposed method, some numerical examples, together with a
completion time analysis incorporating the commonly-used LR fuzzy interval (trapezoidal
fuzzy number), are conducted, in which the classic standard approximate method [5],
interval arithmetic approach [11], and fuzzy simulation approach [18] are chosen to make
a comparison.

The rest of the paper is organized as follows. Section 2 introduces the basic concepts
of the regular LR fuzzy interval, involving the credibility measure, credibility and inverse
credibility distribution, and the operational law. By discussing the relationships among
the membership function and the two distributions, the inverse credibility distribution
approach is presented in Section 3. Some examples concerning the symmetric trapezoidal
fuzzy numbers are listed in Section 4 to demonstrate the effectiveness of the approach in



Symmetry 2022, 14, 1554 3 of 22

this paper. The proposed approach is further applied to a completion time analysis of a
construction project in Section 5.

2. Preliminaries

In this section, some related knowledge concerning the membership function, credi-
bility distribution, inverse credibility distribution, and the operational law of regular LR
fuzzy intervals is recalled.

2.1. Regular LR Fuzzy Interval

Dubois and Prade [4] initialized the LR fuzzy interval, which has four parameters:
(m, m) ∈ R2 ⋃{−∞,+∞}, ν > 0, η > 0 and the membership function,

µ(t) =



L
(

m− t
ν

)
, if t < m

1, if m ≤ t ≤ m

R
(

t−m
η

)
, if t > m,

(1)

where L and R are the shape functions for left and right (see for [4,17,19] for more details),
respectively. Among the LR fuzzy intervals, a special type, continuous and strictly mono-
tone in regard to t < m and t > m, has attracted researchers’ attention, as applied in [20–22]
with well-appreciated results. Liu et al. [23] named this kind of fuzzy interval the regular
LR fuzzy interval.

Definition 1 (Liu et al. [23]). Provided that the shape functions L and R are continuous and strictly
decrease with regard to t where 0 < L(t) < 1 and 0 < R(t) < 1, then the fuzzy interval is regular.

Example 1. If a fuzzy interval ξ has shape functions L(t) = R(t) = max{0, 1 − t} and
the membership function

µ(t) =



t− l
m− l

, if l ≤ t < m

1, if m ≤ t ≤ m

k− t
k−m

, if m < t ≤ k

0, otherwise,

where l and k are the boundaries of the interval that the possibility value of ξ is 1, then ξ is a trapezoidal
fuzzy number (TFN). Note that the TFN ξ is said to be symmetric if m− l = k− m. Denote that
δ = m− l = k−m, and a symmetric TFN ξ is symbolized by ξ ∼ T (m− δ, m, m, m + δ) which is
depicted in Figure 1.
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0 m mm− δ m+ δ

1

µ(t)

Figure 1. The membership function of a symmetric TFN ξ ∼ T (m− δ, m, m, m + δ).

2.2. Credibility and Inverse Credibility Distribution

Considering the lack of self-duality in the possibility measure (Pos) [24] and necessity
measure (Nec) [25], Liu and Liu [14] raised the credibility measure (Cr), which is the

average of the above two measures, i.e., Cr =
Pos + Nec

2
. For any fuzzy number ξ, the

credibility of the fuzzy events {ξ ≤ r} is

Cr{ξ ≤ r} = 1
2
(Pos{ξ ≤ r}+ Nec{ξ ≤ r}), (2)

where r is a real number, Pos{ξ ≤ r} = sup
t≤r

µ(t), and Nec{ξ ≤ r} = 1− sup
t>r

µ(t). With the

help of the credibility measure, Liu [26] proposed the credibility distribution Φ(t), which is,

Φ(t) = Cr{ξ ≤ t}. (3)

By means of Equations (1)–(3), we can obtain the credibility distribution of a fuzzy
interval ξ; that is,

Φξ(t) =



1
2

L
(

m− t
ν

)
, if t < m

0.5, if m ≤ t ≤ m

1− 1
2

R
(

t−m
η

)
, if t > m.

Example 2. The credibility distribution Φ(t) of the symmetric trapezoidal fuzzy number
ξ ∼ T (m− δ, m, m, m + δ) is,

Φ(t) =



0, if t < m− δ

t−m + δ

2δ
, if m− δ ≤ t ≤ m

0.5, if m < t < m

t−m + δ

2δ
, if m < t ≤ m + δ

1, if t > m + δ.
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the representation of which can be seen in Figure 2.

0 m mm− δ m+ δ

1

0.5

Φ(t)

Figure 2. The credibility distribution Φ(t) of a symmetric TFN ξ ∼ T (m− δ, m, m, m + δ).

From Figure 2, the shape of the credibility distribution Φ(t) is continuous and strictly
increasing with respect to t < m and t > m. By virtue of such superior properties,
Zhao et al. [17] proposed the concept of the inverse credibility distribution.

Theorem 1 (Zhao et al. [17]). Provided that a regular LR fuzzy interval ξ has four parameters m,
m, ν, and η, the inverse credibility distribution Ψξ is

Ψ(β) =


m− νL−1(β), if 0 < β < 0.5

[m, m], if β = 0.5

m + ηR−1(2− 2β), if 0.5 < β < 1.

Example 3. The inverse distribution Ψ of a symmetric TFN ξ ∼ T (m− δ, m, m, m + δ) is

Ψ(β) =


(2β− 1)δ + m, if 0 ≤ β < 0.5

[m, m], if β = 0.5

(2β− 1)δ + m, if 0.5 < β ≤ 1,

(4)

and presented in Figure 3.

0 0.5 1

m− δ

m

m

m+ δ

β

Ψ(β)

Figure 3. Inverse credibility distribution Ψ(β) of a symmetric TFN ξ ∼ T (m− δ, m, m, m + δ).
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2.3. The Operational Law of Regular LR Fuzzy Intervals

As can be seen from Section 2.2, the membership function, credibility distribution,
and the inverse credibility distribution of regular LR fuzzy intervals have praiseworthy
properties, i.e., they are continuous and strictly monotone with respect to t < m and t > m
or β < 0.5 and β > 0.5. In view of this, Zhao et al. [17] further explored them and then
proposed the operational law for the inverse credibility distribution of functions of regular
LR fuzzy intervals, which is as follows.

Theorem 2 (Zhao et al. [17]). Let ξ1, ξ2, . . . , ξn be regular LR fuzzy intervals, with inverse cred-
ibility distributions Ψ1, Ψ2, . . . , Ψn. If the continuous function f (x1, x2, . . . , xn) is strictly increas-
ing with regard to x1, x2, . . . , xh and strictly decreasing with regard to xh+1, xh+2, . . . , xn, then
ξ = f (ξ1, · · · , ξh, ξh+1, . . . , ξn) is a regular fuzzy interval and has an inverse credibility distribution:

Ψ(β) = f (Ψ1(β), · · · , Ψh(β), Ψh+1(1− β), . . . , Ψn(1− β)).

Example 4. Denote ξ1 ∼ T (m1− δ1, m1, m1, m1 + δ1), ξ2 ∼ T (m2− δ2, m2, m2, m2 + δ2), and
f (x1, x2) = x1 − x2. Then, compute the inverse credibility distribution of ξ = f (ξ1, ξ2).

From Equation (4), we can obtain that Ψ(1− β) is

Ψ(1− β) =


(1− 2β)δ + m, if 0 ≤ β < 0.5

[m, m], if β = 0.5

(1− 2β)δ + m, if 0.5 < β ≤ 1,

(5)

Since the function f is continuous and strictly increasing with respect to ξ1 and decreasing
with respect to ξ2, we can obtain the inverse credibility distribution of ξ from Theorem 2; that is,

Ψξ(β) = f (Ψξ1(β), Ψξ2(1− β)) =


(2β1 − 1)δ1 + m1 − ((1− 2β2)δ2 + m2), if 0 ≤ β < 0.5

[m1 −m2, m1 −m2], if β = 0.5

(2β1 − 1)δ1 + m1 − ((1− 2β2)δ2 + m2), if 0.5 < β ≤ 1.

3. The Novel Inverse Credibility Distribution Approach

In this section, the relationship of the membership function µ, the credibility distri-
bution Φ, and inverse credibility distributions Ψ of a regular LR fuzzy interval ξ is first
discussed. Then, with the assistance of the operational law in [17], the inverse credibil-
ity distribution approach for the membership function of the regular LR fuzzy interval,
ξ = f (ξ1, ξ2, · · · , ξn), is conducted, where the function f (x1, x2, · · · , xn) is continuous and
strictly monotone with respect to x1, x2, · · · , xn.

3.1. The Relationship of µ, Φ, and Ψ of a Regular LR Fuzzy Interval

Theorem 3. Denote that ξ is a regular LR fuzzy interval, which has membership function µ and
credibility distribution Φ; then, we have

µ(t) =


2Φ(t), if t < m

1, if m ≤ t ≤ m

2− 2Φ(t), if t > m,

where m and m are the lower and upper modal values.
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Proof. To prove Theorem 3, three cases should be discussed, which are as follows.
Case 1: x ≤ m. It follows from the definition of the credibility distribution and

credibility measure that we have

Φ(t) = Cr{ξ ≤ t} = 1
2
(Pos{ξ ≤ t}+ 1− Pos{ξ > t}).

By virtue of Zadeh’s extension principle, we then have

Φ(t) =
1
2
(Pos{ξ ≤ t}+ 1− Pos{ξ > t})

=
1
2
(sup

i≤t
µ(i) + 1− sup

i>t
µ(i))

=
1
2

sup
i≤t

µ(i).

Because the sharp function µ is continuous and strictly increasing with regard to t ≤ m,
we can obtain

Φ(t) =
1
2

µ(t).

Finally, we have µ(t) = 2Φ(t).
Case 2: m ≤ t ≤ m. It is obvious that µ(t) = 1.
Case 3: t ≥ m. The procedure for the proof is the same as Case 1.

It can be clearly observed from Theorem 3 that the membership function µ and the
credibility distribution Φ can be transferred mutually; that is, once the expression of µ or Φ
is obtained, the other can be deduced immediately.

Theorem 4. Denote that ξ is a regular LR fuzzy interval, which has credibility distribution Φ and
inverse credibility distribution Ψ; then, we have

Φ(t) =

 Ψ−1(t), if t < inf{t|t = Ψ(0.5)} or t > sup{t|t = Ψ(0.5)

0.5, if inf{t|t = Ψ(0.5)} ≤ t ≤ sup{t|t = Ψ(0.5)},

where Ψ−1 is the inverse function of the inverse credibility distribution Ψ.

Proof. From [17], for a regular LR fuzzy interval, its inverse credibility distribution Ψ(β)
is continuous and strictly increasing with regard to 0.5 < β or β > 0.5. It follows from the
continuity and monotonicity that Φ(x) = Ψ−1(x).

Based on Definition 1, we have Φ(t) = 0.5 as inf{t|t = Ψ(0.5)} ≤ t ≤ sup{t|t =
Ψ(0.5)}. For all of these, Theorem 4 holds.

From Theorem 4, the functions of the two distributions also have a one-to-one relation-
ship in x < m and x > m, owing to the continuity and strict monotonicity of the credibility
distribution Φ and inverse credibility distribution Ψξ in this domain. Therefore, we can
deduce the expression of one of the two distributions Φ and Ψ if the other one is known.
Considering Theorems 3 and 4 comprehensively, if the inverse credibility distribution Ψ is
found, by using the relationship among the two distributions (Φ and Ψ) and the member-
ship function (µ), we can acquire the expression of µ with little hindrance. Inspired by this,
supposing that f is continuous and strictly monotone in regard to x1, x2, · · · , xn, resorting
to the relationship among µ, Φ and Ψ, we can output the expression of the membership
function of ξ = f (ξ1, ξ2, · · · , ξn) by virtue of the inverse credibility distribution Ψ obtained
by Theorem 2. However, there exists a gap regarding whether the inverse credibility Ψ and
the credibility distribution Φ of ξ = f (ξ1, ξ2, · · · , ξn) are in a one-to-one relationship or not,
which is discussed in the following.
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Theorem 5. Let ξ1, ξ2, . . . , ξn be independent regular LR fuzzy intervals with credibility distri-
butions Φ1, Φ2, . . . , Φn. If the continuous function f (x1, x2, . . . , xn) is strictly increasing with
regard to x1, x2, . . . , xh and strictly decreasing with regard to xh+1, xh+2, . . . , xn, then the inverse
credibility distribution Ψ of ξ = f (ξ1, ξ2, . . . , ξn) exists and is continuous and strictly increasing
in [0, 0.5) or (0.5, 1].

Proof. Without loss of generality, denote that ξ = f (ξ1, ξ2), where f is continuous and
strictly increasing with respect to ξ1 and decreasing to ξ2. From Theorem 2, we have
Ψ(β) = f (Φ−1

ξ1
(β), Φ−1

ξ2
(1− β))

From Definition 1, we can deduce that Φ−1
ξ1

(β) is strictly increasing and Φ−1
ξ2

(1− β)

is decreasing with respect to β in [0, 0.5) or (0.5, 1]. For any two points π1 and π2 with
π1 > π2, we have

Φ−1
ξ1

(π1) > Φ−1
ξ1

(π2),

and
Φ−1

ξ2
(1− π1) < Φ−1

ξ2
(1− π2).

Since the function f is continuous and strictly increasing with respect to ξ1 and decreasing
with respect to ξ2, we have

f (Φ−1
ξ1

(π1), Φ−1
ξ2

(1− π1)) > f (Φ−1
ξ1

(π2), Φ−1
ξ2

(1− π2)). (6)

That is, Ψ(π1) > Ψ(π2).
Since f and Φ−1 are both continuous in [0, 0.5) or (0.5, 1], the inverse credibility

distribution Ψ is obviously continuous.

Clearly, from Theorem 5, the two distributions (credibility and inverse credibility distri-
bution) of functions of ξ1, ξ2, · · · , ξn are in a one-to-one relationship.
Theorems 3–5 provide an idea for the acquisition of the expression of the membership
function µξ of functions of regular LR fuzzy intervals, which is depicted in Figure 4.

���1 , ��2, . . . , ��3�

���1
,��2

, . . . ,��2
�

��

s 

��

��

Figure 4. The idea of the inverse credibility distribution approach.

Based on the idea, we proposed an inverse credibility distribution approach for
the membership function of function f involving regular LR fuzzy intervals, where f is
continuous and of strict monotonicity, and the details are presented in the following section.

3.2. The Steps of the Inverse Credibility Distribution Approach

Let ξi, i = 1, 2, · · · , n be regular LR fuzzy intervals (RFIs), and f is continuous and of
strict monotonicity. Then, the membership function of ξ = f (ξ1, ξ2, · · · , ξn) can be deduced
by means of the inverse credibility distribution approach, the steps of which are presented
in the following.

Step 1: Derive the inverse credibility distributions Ψi(β) of ξi, i = 1, 2, · · · , m, when
the function f is strictly increasing, and Ψi(β) of ξi, i = m + 1, m + 2, · · · , n as f is strictly
decreasing, by using Equations (4) and (5).
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Step 2: Use the operational law (i.e., Theorem 2) to acquire the inverse credibility
distribution Ψ of ξ = f (ξ1, ξ2, · · · , ξn).

Step 3: Derive the credibility distribution Φξ of ξ by Ψξ by using Theorem 4. There
exists an inverse procedure in the acquisition of the credibility distribution Φξ , and this pro-
cedure may not proceed when the inverse credibility distribution Ψ is complex. To handle
this problem, this step is divided into two parts: use the inverse approach (i.e., Theorem 4)
to obtain the credibility distribution of ξ in the case of simple Ψ, and utilize the function
‘polyfit’ (input the expression of Ψ, and a well-approximated expression for Φ would be
outputted immediately) in MATLAB with the version of ”2015a” to acquire the credibility
distribution fo complex Ψ.

Step 4: Output the membership function µξ of ξ by taking advantage of the relation-
ships of the credibility distribution Φξ and the membership function µξ (i.e., Theorem 3).

The steps of the inverse credibility distribution approach are summarized in a flowchart
(see Figure 5). To better describe the procedures of the inverse credibility distribution ap-
proach, the next section uses the frequently-used symmetrical TFN as an example.

Input ξ = f(ξ1, ξ2, · · · , ξn)
(1)ξ1, ξ2, . . . , ξn are RFIs (2)f is strictly monotone

Derivation of Ψξi(β)

based on Eq. (4)

Derivation of Ψξj (1− β)

based on Eq. (5)

Derivation of Ψξ(β) based on Theorem 2

Derivation of the exact Φξ(t)

based on Theorem 4

Derivation of an approximate
Φξ(t) using some softwares

Derivation of µξ(t) based on Theorem 3

Output µξ(t) of ξ = f(ξ1, ξ2, · · · , ξn)

strictly increasing strictly decreasing

non-complicated cases complicated cases

Figure 5. The flowchart of the inverse credibility distribution approach.

4. Numerical Example

In this section, to clearly demonstrate the usage of the proposed approach, five ex-
amples, similar to many other references that studied fuzzy arithmetics, for symmetric
TFN are designed. The first example is used to show the effectiveness of the approach
with different types of regular LR fuzzy intervals, and the five examples are presented to
show the influence of different kinds of functions, where the last two examples are used to
demonstrate the implementation of the approach by the usage of some developed software.
Besides the classical and widely-used accurate and approximate approaches, the standard
approximate method and interval arithmetic approach are also introduced, and their results
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are also displayed graphically to clarify the effectiveness and correctness of the inverse
credibility distribution approach.

Example 5. This example employs the Gaussian fuzzy interval (G), triangular fuzzy number (Tr),
and trapezoidal fuzzy number (T) to show the effectiveness of the proposed approach. Let ξ1 be the
three kinds of regular fuzzy intervals and f (x) be x3.

Let the three parameters m, m and δ of the symmetric trapezoidal number ξ1 be 3, 2, and 1, and
then compute the membership function of ξT = f (ξ1). Owing to the continuity and strict increase
of the function f , we can gain the inverse credibility distribution Ψξ1 by means of Equation (4),
which is

Ψξ1(β) =


2β + 1, if 0 ≤ β < 0.5

[2, 3], if β = 0.5

2β + 2, if 0.5 < β ≤ 1.

According to Theorem 2, the inverse credibility distribution Ψξ of ξ is

ΨξT (β) = f (Ψξ1(β)) =


(2β + 1)3, if 0 ≤ β < 0.5

[23, 33], if β = 0.5

(2β + 2)3, if 0.5 < β ≤ 1.

From Theorem 4, the credibility distribution Φξ is obtained by means of a inverse procedure; that is,

ΦξT (t) =



0, if t < 1

3
√

t− 1
2

, if 1 ≤ t < 23

0.5, if 23 ≤ t ≤ 33

3
√

t− 2
2

, if 33 < t ≤ 43

1, if t > 43.

In view of Theorem 3, the membership function µξ of ξ is

µξT (t) =



0, if t < 1

3
√

t− 1, if 1 ≤ t < 23

1, if 23 ≤ t ≤ 33

4− 3
√

t, if 33 < t ≤ 43

0, if t > 43.

Let ξ1 be a Gaussian fuzzy interval, where the four parameters m, m, ν, and η are 3, 4, 1, and
1; then, we can obtain the membership function of ξG = f (ξ1) by using a similar procedure; that is,

µξG (t) =


e−(3−

3√t)2
, if t < 33

1, if 33 ≤ t ≤ 43

1− e−(4−
3√t)2

, if t > 43.
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Let ξ1 be a triangular fuzzy number, where the left and right boundaries (a,c) and median
value b are 2, 4, 3; then, we can obtain the membership function of ξTr = f (ξ1) by using a similar
procedure; that is,

µξTr (t) =



0, if t < 23

3
√

t− 2, if 23 ≤ t < 33

4− 3
√

t, if 33 ≤ t ≤ 43

0, if t > 43.

In this example, the results of the standard approximate method and interval arithmetic
approach are also calculated and represented in Figure 6, and we can clearly see the performance of
the membership function. In Figure 6, the symbols “−”, “•”, and “−·” represent the membership
functions of the inverse credibility distribution approach, the interval arithmetic approach, and the
standard approximation method, and (a), (b), and (c) illustrate the membership functions of the
trapezoidal fuzzy number, Gaussian fuzzy interval, and triangular fuzzy number, respectively. It
should be noted that the h−cuts points are the main basis of the interval arithmetic approach; that
is, a set of h−cuts points should be predetermined and then the arithmetic rules used to acquire
the accurate points in membership function, which means that the membership function from the
interval arithmetic approach is discrete and not continuous. The values of h are set to 0, 0.05, · · · , 1,
and the corresponding membership function of the interval arithmetic approach is presented in
Figure 6. Obviously, the “•” points all fall into the blue line “−” in all of the three graphs, which
demonstrates the accuracy of the membership function from the inverse credibility distribution
approach. The distances of the membership function from the standard approximate method to the
interval arithmetic are large, especially in the right part, and the standard approximate method
cannot be applied to the Gaussian fuzzy interval. For all inputs, the proposed inverse credibility
distribution approach can output the accurate expression of the membership function of functions of
regular fuzzy intervals, regardless of the type of fuzzy intervals. As a result, the following discusses
the performance of the approach with different functions.
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Figure 6. The membership function of the three approaches in Example 5.
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Example 6. Let ξ1 = (0.3, 0.6, 0.8, 1.2) and f (x) is x−2. Then, output the membership function
of ξ = f (ξ1).

The three parameters m, m and δ of the symmetric trapezoidal number ξ1 are 0.8, 0.6, and
0.3. Owing to the continuity and strict increase of the function f , by means of Equation (4) and
Theorem 2, the inverse credibility distribution Ψξ is

Ψξ(β) = f (Ψξ1(1− β)) =


(1.2− 0.8β)−2, if 0 ≤ β < 0.5

[0.6−2, 0.8−2], if β = 0.5

(0.9− 0.6β)4, if 0.5 < β ≤ 1.

In view of Theorem 4, the credibility distribution Φξ of ξ is

Φξ(t) =



0, if t < 1.2−2

1.5− 1.25√
t

, if 1.2−2 ≤ t < 0.8−2

0.5, if 0.8−2 ≤ t ≤ 0.6−2

1.5− 5
3
√

t
, if 0.6−2 < t ≤ 0.3−2

1, if t > 0.3−2.

Based on Theorem 3, we can obtain the membership function µξ :

µξ(t) =



0, if t < 1.2−2

3− 2.5√
t
, if 1.2−2 ≤ t < 0.8−2

1, if 0.8−2 ≤ t ≤ 0.6−2

10
3
√

t
− 1, if 0.6−2 < t ≤ 0.3−2

0, if t > 0.3−2.

The membership functions of the three approaches are all summarized in Figure 7. The
values of h in the interval arithmetic approach are also set to 0, 0.05, · · · , 1, and the obtained
membership function is represented by the symbol “•”. In the same way as the former example,
the membership function from the inverse credibility distribution also has praiseworthy accuracy,
since the “−” symbols penetrate all of the “•” symbols. The standard approximation method has
poor performance in the accuracy of the membership function due to the large distance from the “−·”
(representing the membership function of the standard approximation method) to the “−” and “•”
in 0.6−2 < x ≤ 0.3−2.

Example 7. Let ξ1 = (8, 9, 10, 11), ξ2 = (1, 2, 3, 4) and f (x1, x2) =
x1

x2
. Then, compute the

membership function of ξ = f (ξ1, ξ2).
The three parameters m, m, and δ of the symmetric trapezoidal numbers ξ1 and ξ2 are 9, 10,

1, and 2, 3, 1, respectively. Owing to the continuity and strict monotonicity of the function f , by
means of Equation (4), we can output the inverse credibility distribution Ψξ :
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Ψξ(β) = f (Ψξ1(β), Ψξ2(1− β)) =



2β + 8
4− 2β

, if 0 ≤ β < 0.5

[3, 5], if β = 0.5

2β + 9
3− 2β

, if 0.5 < β ≤ 1.

On account of Theorem 4, we can obtain the credibility distribution Φξ :

Φξ(t) =



0, if t < 2

2t− 4
t + 1

, if 2 ≤ t < 3

0.5, if 3 ≤ t ≤ 5

3t− 9
2t + 2

, if 5 < t ≤ 11

1, if t > 11.

Then, from Theorem 3, the membership function µξ is

µξ(t) =



0, if t < 2

4t− 8
t + 1

, if 2 ≤ t < 3

1, if 3 ≤ t ≤ 5

11− t
t + 1

, if 5 < t ≤ 11

0, if t > 11.

The results of the three approaches are presented in Figure 8, in which “•”, “−”, and “−·”
represent the membership function of the interval arithmetic approach, the inverse credibility
distribution approach, and the standard approximation method, respectively. Unsurprisingly, our
approach has the same level of accuracy as the interval arithmetic approach, and both of them are
much better than the standard approximation method. The aforementioned three examples discuss
three different kinds of strictly monotone functions, i.e., strictly increasing, strictly decreasing, and
strict monotone, which are widely-used in areas such as forecasting [22,27] and the vehicle routing
problem [28]. However, in some situations, the function f involves many ⊗ and � procedures,
which lead to difficulties in acquiring the inverse function of the inverse credibility distribution Ψ of
ξ, i.e., the credibility distribution Φ of ξ, and then make the membership function hard to achieve.
Owing to the continuity and strict monotonicity of the function f in (0, 0.5) or (0.5, 1), we can
obtain its well approximate inverse function by means of the “polyfit’ function in MATLAB to
handle the problem, the usage of which is presented in the following example.
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Figure 7. The membership function of the three approaches in Example 6.
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Figure 8. The membership function of the three approaches in Example 7.

Example 8. Let ξ1 = (2, 4, 5, 7), ξ2 = (3, 4, 5, 6), ξ3 = (1, 2, 3, 4), ξ4 = (1, 2, 4, 5), and the func-
tion f (x1, x2, x3, x4) = x2

1x3
2 − x2

3x4. Then, output the membership function of ξ = f (ξ1, ξ2, ξ3, ξ4).
The three parameters m, m, and δ of ξ1, ξ2, ξ3 and ξ4 are (4, 5, 2), (4, 5, 1), (2, 3, 1), and

(2, 4, 1), respectively. Owing to the continuity and strict increase to x1 and x2 and strict decrease to
x3 and x4 of the function f , based on Theorem 2, the inverse credibility distribution Ψξ is

Ψξ(β) = f (Ψξ1(β), Ψξ2(β), Ψξ3(1− β), Ψξ4(1− β))

=


(4β + 2)2(2β + 3)3 − (4− 2β)2(5− 2β), if 0 < β < 0.5

[45 − 32 × 4, 55 − 23], if β = 0.5

(4β + 3)2(2β + 4)3 − (3− 2β)3, if 0.5 < β < 1.

Then, by using the function ‘polyfit’ in Matblab, the credibility distribution Φξ can be
approximated as
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Φξ(t) =



0, if t < 28

7.891× 10−16t5 − 2.506× 10−12t4 + 3.248× 10−9t3

−2.361× 10−6t2 + 1.369× 10−3t− 0.0352, if 28 ≤ t < 988

0.5, if 988 ≤ t ≤ 3117

4.964× 10−21t5 − 2.098× 10−16t4 + 3.708× 10−12t3

−3.657× 10−8t2 + 2.561× 10−4t− 0.03683, if 3117 < t ≤ 10583

1, if t > 10583.

Then, we can obtain the membership function µξ from Theorem 3:

µξ(t) =



0, if t < 28

15.782× 10−16t5 − 5.012× 10−12t4 + 6.496× 10−9t3

−4.722× 10−6t2 + 2.738× 10−3t− 0.0704, if 28 ≤ t < 988

1, if 988 ≤ t ≤ 3117

2.07366− 9.928× 10−21t5 + 4.196× 10−16t4 − 7.416× 10−12t3

+7.314× 10−8t2 − 5.122× 10−4t, if 3117 < t ≤ 10583

0, if t > 10583.

Similarly, Figure 9 represents the membership functions µ of the three approaches. The
membership function of the standard approximation method has the worst performance in terms of
accuracy and sometimes may have an extremely large error to the exact values. Even though the
credibility distribution Φ is approximated by the “polyfit” function in MATLAB, the accuracy of
the membership function from our approach can still compete with that obtained by the interval
arithmetic approach.
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Figure 9. The membership function of the three approaches in Example 8.

Example 9. Let ξ1 = (2, 4, 5, 7), ξ2 = (3, 4, 5, 6), ξ3 = (1, 2, 3, 4), ξ4 = (1, 2, 4, 5),
ξ5 = (1, 4, 6, 9), and the function f (x1, x2, x3, x4, x5) = x3

1 + x3
2x2

3 − x2
4 − x5. Then output

the membership function of ξ = f (ξ1, ξ2, ξ3, ξ4, ξ5).
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The three parameters m, m, and δ of ξ1, ξ2, ξ3, ξ4, and x5 are (4, 5, 2), (4, 5, 1), (2, 3, 1),
(2, 4, 1), and (4, 6, 3), respectively. Owing to the continuity and strict increase to x1, x2, and x3 and
strict decrease to x4 and x5 of the function f , based on Theorem 2, the inverse credibility distribution
Ψξ is

Ψξ(β) = f (Ψξ1(β), Ψξ2(β), Ψξ3(β), Ψξ4(1− β), Ψξ5(1− β))

=


(4β + 2)3 + (2β + 3)3(2β + 1)2 − (5− 2β)2 − (9− 6β), if 0 < β < 0.5

[298, 1242], if β = 0.5

(4β + 3)3 + (2β + 4)3(2β + 2)2 − (3− 2β)2 − (7− 6β), if 0.5 < β < 1.

Then, we can obtain the membership function µ of ξ by taking advantage of the function
“polyfit” and Theorem 2, and we have the membership function µξ :

µξ(t) =



0, if t < 0

12.164× 10−13t5 − 9.538× 10−10t4 + 3.058× 10−7t3

−5.62× 10−6t2 + 8.978× 10−3t− 0.0295, if 28 ≤ t < 298

1, if 298 ≤ t ≤ 1242

2.2104− 1.442× 10−18t5 + 2.318× 10−14t4 − 1.5214× 10−10t3

+5.604× 10−7t2 − 1.4768× 10−3t, if 1242 < t ≤ 3797

0, if t > 3797.

The results are illustrated in Figure 10. The function f in this example is much more complex
than that in Example 7. However, the result of our approach is satisfying, as before that, it can
return almost an exact membership function, whereas the standard approximation approach has
a large gap from the other two approaches. From the two examples, it can be clearly seen that the
approximate procedures by the “polyfit” function in MATLAB have not much influence on the
accuracy of the membership function, no matter whether the function f is simple or complex.
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Figure 10. The membership function of the three approaches in Example 9.
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The above five numerical examples range from simple to complex. The functions f of
the former three are simple but frequently-used in real applications, and the functions f ,
containing many ⊗ and � arithmetic operations, of the last two are much more complex.
In simple examples, the membership function resulting from our approach is consistent
with that from the interval arithmetic approach, but the superiority of the former approach
is the acquisition of the exact membership function. No matter whether the right or the left
part of the exporting membership function is considered, the distance from the standard
approximation method to the exact value exists and may be extremely large. More details
can be seen from the trends of the three approaches’ membership functions represented by
the symbols “•”, “−”, and “−·” in Examples 5 and 6. In the complex examples, although the
membership function obtained by inverse credibility distribution approach is approximated
in terms of the “polyfit” function in MATLAB, it can still achieve almost the same accuracy
as that of the interval arithmetic approach, which can be clearly seen from the result of
“•” and ‘−’ in Figure 9. In brief, compared with the other two approaches, the inverse
credibility distribution approach can output not only the exact same membership function
as the interval arithmetic approach, but also the expression that the interval arithmetic
approach cannot acquire. It should be noted that this is not restricted to the symmetric
TFN represented in the aforementioned examples; the inverse credibility distribution
approach can apply to all continuous and strictly monotone functions involving regular
LR fuzzy intervals.

5. The Application on a Completion Time Analysis
5.1. The Completion Time Analysis of a Construction Project

The completion time of a construction project is of great significance in a construction
project, since the start and completion time of each activity can only be determined if the
completion time is confirmed. In a construction project, various activities, such as material
preparation and foundation engineering construction, are included, and those activities
have logical dependencies. Scholars and project engineers usually use a project network to
describe the relationship in which a pair of nodes (i, j) with i < j represents the activity and
the nodes i and j demonstrate the start and finish node of the activity (see Figure 11, which
has six nodes and seven activities). Denote that A is the set of activities in the construction
project, and Tij and Dij are the stat and duration time of the activity (i, j). We then have the
start time of the activity (i, j); that is,

Tij = max
(u,i)∈A

{Tui + Dui}. (7)

Theoretically speaking, if the node i is larger than all the other nodes, the result of Equa-
tion (7) is actually the completion time of the project.

�25�1,4,5,8�

D35�2,3,5,6� D56�3,4,5,6�

D46�2,4,6,8�

D12�1,2,3,4�

�14�1,2,4,5�

�13�1,2,4,5�

Figure 11. A construction project with six nodes and seven activities.

In real applications, the duration time of each activity is not crisp but fuzzy due to
the influence of weather and government policy, which creates much more difficulties
for the acquisition of the completion time. To tackle this problem, Ke and Liu [18] used
a Monte Carlo method-based fuzzy simulation to approximate the membership function
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of fuzzy completion time, and its main basis is Zadeh’s extension principle [29], which is
as follows.

Definition 2. Let ξ and η be two fuzzy numbers with membership functions µξ and µη . Then, for
a real-valued function f , the membership function µ of f (ξ, η) is

µ(x) = sup{µξ(y) ∧ µη(z)|x = f (y, z)}. (8)

Denote that Tobject is the completion time of the project, Dij is the duration time of
the activity (i, j) ∈ A with i < j, and f is the function relationship of the activities in
Equation (7); we can obtain the completion time, that is, Tobject = f (D12, D13, · · · , Dnm),
where (n, m) ∈ A. The Monte Carlo method-based fuzzy simulation for the completion
time can be designed as follows. Firstly, generate uk = (uk

12, uk
13, . . . , uk

nm) from the ε-
level set of D = (D12, D13, . . . , Dnm), k = 1, 2, . . . , N, where ε > 0 is a sufficiently small
number. Suppose that rj, j = 1, 2, . . . , m are all the possible values in the set { f (uk), k =
1, 2, . . . , N}, apparently with m ≤ N. Based on the operations of sup and min in Equation (8),
the membership degree of f (D) at rj, i.e., the membership function µTobject of Tobject, is
estimated by

µ∗(rj) = max
1≤k≤N

{
min

(n,m)∈A
µnm(uk

nm)
∣∣ f (uk) = rj

}
, (9)

where µnm is the membership function of the duration of the activity (n, m) ∈ A. Generally
speaking, if the number N is extremely large, µ∗ can well approximate the membership
function of µTobject .

As shown in Equation (8), the relationship function f contains the operations “∨”
and “+”, and it can be easily deduced that the function f is continuous and of strict
monotonicity from [15], which means that the proposed inverse credibility distribution
approach can be used to acquire the membership function of Tobject. The following employs
a construction project example from Zhao et al. [30] to illustrate the performance of the
simulation approach in [18], the inverse credibility distribution approach, and the interval
arithmetic approach.

Consider a construction project with six nodes and seven activities (see Figure 11),
in which the duration time Dij of each activity is symmetric TFN. From Equation (7), the
completion time can be calculated by

Tproject = ((D12 + D25) ∨ (D13 + D35) + D56) ∨ (D14 + D46).

Since the function f is continuous and strictly increasing with respect to the dura-
tion time Dij, by means of Theorem 1, we can obtain the inverse credibility distribution
ΨT of Tproject as

ΨT(β) =


((8β + 2) ∨ (4β + 3) + (2β + 3)) ∨ (6β + 3), if 0 ≤ β < 0.5

[10, 14], if β = 0.5

((8β + 4) ∨ (4β + 7) + (2β + 4)) ∨ (6β + 7), if 0.5 < β ≤ 1.
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By taking advantage of Theorems 2–4, the membership function µT of Tproject is

µT(t) =



0, if t < 6

1
3

t− 2, if 6 ≤ t < 7.5

1
5

t− 1, if 7.5 ≤ t < 10

1, if 10 ≤ t ≤ 13

−1
3

t +
17
3

, if 13 < t ≤ 15.5

−1
5

t +
18
5

, if 15.5 < t ≤ 18

0, if t > 18.

The results of the three approaches are all illustrated in Figure 12, in which the symbols
“−”, “•”, and “+” demonstrate the membership function obtained by the inverse credibility dis-
tribution approach, the interval arithmetic approach, and the fuzzy simulation [18], respectively.
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Figure 12. The membership function µT of the completion time [29].

It should be noted that the standard approximation method cannot apply to the
calculation of the completion time, since they have no arithmetic rules in the operations
∨ or ∧. Obviously, the symbol “−” passes through all “•”, which further demonstrates
the effectiveness of the inverse credibility distribution approach, in that it can output the
accurate membership function not only in numerical examples but also in real applications.
Fuzzy simulation performed poorly in terms of accuracy, especially in the domain 1 <
x < 2, and in most cases, the membership function is smaller than the other approaches,
which may because of the operations min and max in Equation (9). The completion time
analysis clearly shows the strength of the proposed approach, which is that it can output
the exact expression of the membership function, whereas the interval arithmetic approach
and fuzzy simulation cannot.

5.2. Comparison Analysis of Proposed Approach with Existing Techniques

The completion time time analysis, together with the aforementioned five examples,
gives strong proof for the effectiveness of the proposed approach. To better illustrate the
effectiveness of the proposed inverse credibility distribution approach, the performances
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of the standard approximation method, the interval arithmetic approach, and the fuzzy
simulation approach are all summarized in Table 1, where the application area, accuracy,
and output expression are employed as the evaluation criteria.

Table 1. The comparisons of the four approaches.

No. Name Application Area Accuracy Output Expression
Function f Fuzzy Interval Accurate Approximate Yes No

1 STA BAO TFN
√ √

2 IAA CSM Regular
√ √

3 ICDA CSM Regular
√ √

4 FS [18] All All
√ √

STA: standard approximation method, IAA: interval arithmetic approach, FS: fuzzy simulation, ICDA: inverse
credibility distribution approach, TFN: trapezoidal fuzzy number, CSM: continuous and strictly monotone, BAO:
basic arithmetic operations.

Disappointingly, although the standard approximation method can output the ex-
pression of the membership function for functions of fuzzy intervals, its application area
is narrow, only for the basic arithmetic operations (i.e., ⊕, 	, ⊗, �) with a trapezoidal
fuzzy number, and the obtained expression is inaccurate and sometimes has large error
(see Example 5 in Section 4). The fuzzy simulation approach can be applied to any func-
tions of fuzzy intervals, but the insufficiency also exists that it cannot output accurate
expressions of the membership functions for functions of fuzzy intervals. The application
areas of the interval arithmetic approach and the inverse credibility distribution approach
are the same, whereas the latter performs even better for the accurate expression of the
membership function.

In summary, compared with the other approaches (i.e., the standard approximation
method, the interval arithmetic approach, and the fuzzy simulation approach), our ap-
proach can output accurate or well-approximated expressions of the membership function
of functions involving regular LR fuzzy intervals, which the others cannot.

6. Conclusions

Our contributions can be summarized in the following three parts: (1) the relation-
ship among the membership function µ, the credibility distribution Φ, and the inverse
credibility distribution Ψ of the regular LR fuzzy interval ξ is proved and summarized in
Theorems 2–4. (2) We derive a novel inverse credibility distribution approach for the mem-
bership function µξ of the functions of regular LR fuzzy intervals, i.e., ξ = f (ξ1, ξ2, · · · , ξn),
in which the function f is continuous and of strict monotonicity. (3) Some numerical
examples, together with a completion time time analysis, equipping commonly-used sym-
metric TFNs, are presented to demonstrate the effectiveness of our approach, in which
the well-accepted standard approximation method, interval arithmetic approach, and the
fuzzy simulation approach are introduced to make a comparison. The comparisons show
that the inverse credibility distribution can not only output as accurate a membership
function as the interval arithmetic approach but also can acquire the expression of the
membership function.

However, it should be noted that although the proposed method is helpful to handle
fuzzy arithmetic on functions of regular LR fuzzy intervals, its application area is only
restricted to continuous and strictly monotone functions with regular LR fuzzy intervals.
Thus, in the future, we will extend the inverse credibility distribution approach to more
general situations, i.e., non-continuous or non-monotone functions regarding other types
of fuzzy numbers (such as spherical linear Diophantine fuzzy sets or a circular fuzzy set).
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