
Citation: Jiang, Y.; Sun, Z.; Yu, S.;

Wang, S.; Song, Y. A Graph Skeleton

Transformer Network for Action

Recognition. Symmetry 2022, 14, 1547.

https://doi.org/10.3390/

sym14081547

Academic Editor: Dumitru Baleanu

Received: 1 July 2022

Accepted: 26 July 2022

Published: 28 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A Graph Skeleton Transformer Network for Action Recognition
Yujian Jiang 1,2,3,4,* , Zhaoneng Sun 1,2,3,4, Saisai Yu 1,2,3,4, Shuang Wang 1,2,3,4 and Yang Song 1,2,3,4

1 State Key Laboratory of Media Convergence of Communication, Communication University of China,
Beijing 100024, China; sunzhaoneng@cuc.edu.cn (Z.S.); sai_yss@cuc.edu.cn (S.Y.);
wangshuang@cuc.edu.cn (S.W.); songyang@cuc.edu.cn (Y.S.)

2 Key Laboratory of Acoustic Visual Technology and Intelligent Control System,
Ministry of Culture and Tourism, Communication University of China, Beijing 100024, China

3 Beijing Key Laboratory of Modern Entertainment Technology, Communication University of China,
Beijing 100024, China

4 School of Information and Communication Engineering, Communication University of China,
Beijing 100024, China

* Correspondence: yjjiang@cuc.edu.cn

Abstract: Skeleton-based action recognition is a research hotspot in the field of computer vision. Cur-
rently, the mainstream method is based on Graph Convolutional Networks (GCNs). Although there
are many advantages of GCNs, GCNs mainly rely on graph topologies to draw dependencies between
the joints, which are limited in capturing long-distance dependencies. Meanwhile, Transformer-based
methods have been applied to skeleton-based action recognition because they effectively capture
long-distance dependencies. However, existing Transformer-based methods lose the inherent connec-
tion information of human skeleton joints because they do not yet focus on initial graph structure
information. This paper aims to improve the accuracy of skeleton-based action recognition. Therefore,
a Graph Skeleton Transformer network (GSTN) for action recognition is proposed, which is based
on Transformer architecture to extract global features, while using undirected graph information
represented by the symmetric matrix to extract local features. Two encodings are utilized in feature
processing to improve joints’ semantic and centrality features. In the process of multi-stream fusion
strategies, a grid-search-based method is used to assign weights to each input stream to optimize the
fusion results. We tested our method using three action recognition datasets: NTU RGB+D 60, NTU
RGB+D 120, and NW-UCLA. The experimental results show that our model’s accuracy is comparable
to state-of-the-art approaches.

Keywords: action recognition; GCN; Transformer; undirected graph

1. Introduction

Human action recognition (HAR) aims to automatically detect human behavior. As
deep learning technology continues to develop, we can employ deep neural networks in
place of manual feature extraction techniques to get better feature extraction [1]. Further-
more, with the development of sizable public human action recognition datasets [2], HAR
has become a hot research topic in the field of computer vision. Typically, HAR holds great
value in video surveillance, human–computer interactions (HCI), virtual reality, security,
and so forth [3].

HAR has two main branches: RGB video-based action recognition and skeleton-based
action recognition. Compared with the former, the latter has the advantage of high com-
putational efficiency because the amount of data is smaller. In addition, skeleton data are
robust to illumination changes and background noise, and are invariant to camera views [4].
Given this, the research content of this paper is skeleton-based action recognition. Recently,
Graph Neural Networks (GNNs), especially graph convolutional networks (GCNs) have
come into the spotlight and were imported into skeleton graphs. The representative one is
the spatial–temporal graph convolutional network (ST-GCN) proposed by Yan et al. [5].

Symmetry 2022, 14, 1547. https://doi.org/10.3390/sym14081547 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14081547
https://doi.org/10.3390/sym14081547
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-3308-6157
https://orcid.org/0000-0002-5543-6675
https://doi.org/10.3390/sym14081547
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14081547?type=check_update&version=1

Symmetry 2022, 14, 1547 2 of 19

The ST-GCN, which constructs a spatial graph based on the natural connections of human
joints, adds temporal edges between the corresponding joints in consecutive frames and
then constructs multiple spatial–temporal graph convolutional layers to extract features
along the spatial–temporal dimension.

In recent studies, Transformer-based methods [6–8] have been chosen for skeleton-
based action recognition tasks because they are expected to address the following short-
comings of GCN-based methods: First, the dependencies of non-truly connected joints
cannot be effectively represented in some actions, such as hand-clapping, where the left
and right hands are disconnected joints. Yet, their correlation is essential to distinguish as a
hand-clapping action. ST-GCN only collected information from the local neighboring joints
of the two hands separately, neglecting the relationship between the two hands’ non-real
connected joints. In a subsequent study [9], new adaptive graphs have been built to further
establish this relationship. The adaptive graph convolution is repeatedly used to obtain
long-distance dependencies between non-real connected joints. However, this comes at the
cost of increased computational complexity.

Secondly, the GCN-based approach does not distinguish the higher-order semantic
information of the skeleton joints, while the semantic information is crucial for action
recognition. For example, for a joint above the head, if this joint is a hand joint, the action
is likely to be raising the hand; if it is a foot joint, the action is likely to be kicking the
leg, etc. In the existing research, the Transformer-based approach solves the problem that
the GCN-based approach is challenged by through extracting global features by focusing
directly on the global information of the skeleton through a self-attention mechanism. The
disadvantage of GCN-based methods not distinguishing semantic information is solved by
positional encoding.

However, Transformer-based methods still have two aspects that have not yet been
studied: Firstly, existing Transformer-based methods do not incorporate the topological
structure of the human skeleton. In contrast, the topological structure of the human
skeleton’s composition contains a priori knowledge of the natural connections of the
human body, which is a guide for model optimization, and ignoring the structural features
of the natural connections of the human body may degrade the model performance.

Secondly, most Transformer methods use multi-stream data as model inputs, such as
joints, bones, joint motion, and bone motion. The existing multi-stream fusion strategies are
based on manually fixing the input weights for each. However, the results of multi-stream
fusion using the same weights in different dataset settings cannot be optimal.

A Graph Skeleton Transformer network (GSTN) is proposed to address the above
issues. Our proposed method introduces information about the adjacency graph structure of
the skeleton joints in the attention map, which not only allows the use of the Transformer’s
self-attention mechanism for non-naturally connected joint features but also incorporates
the adjacency graph inherent to the human skeleton. Therefore, the natural connection
information in the skeleton graph is preserved.

To distinguish the semantic and centrality information expressed by different skeleton
joints, this paper uses both position encoding and centrality encoding to label the semantic
and centrality information of the joints.

In addition, a grid-search method is proposed to find the optimal multi-stream fusion
weights to further improve the action recognition accuracy. To verify the superiority of
the proposed model, extensive experiments were conducted on three large datasets: NTU
RGB+D 60, NTU RGB+D 120, and NW-UCLA. As a result, our model achieves state-of-
the-art performance on all three datasets. The main contributions of this paper are in the
following four areas.

1. A novel Graph Skeleton Transformer network is proposed, which is based on Trans-
former architecture and added the skeleton topologies of the graph so that our model
can learn local features better.

2. We adopted position encoding and centrality encoding to improve the semantic and
centrality features of joints.

Symmetry 2022, 14, 1547 3 of 19

3. Different from the fixed weight in the multi-stream fusion strategy, a grid-based search
for weights is utilized to traverse all possible weight combinations in the interval and
find the most optimal combination of each stream’s weight.

4. The proposed GSTN achieves advanced performance on three skeleton recognition
open datasets. The model reaches 91.3% and 96.6% in the cross-sub and cross-
view benchmarks of the NTU RGB+D 60 dataset, 86.4% and 88.7% in the cross-
sub and cross-setup benchmarks of the NTU RGB+D 120 dataset, and 95.9% in the
NW-UCLA dataset.

2. Related Work

In previous works, due to the limitations of datasets, most methods for skeleton-based
action recognition were based on manual feature extraction [10–12]. With the development
of deep learning, neural network models have been widely used for skeleton-based action
recognition. These include recurrent neural networks (RNNs) [13–15], convolutional neural
networks (CNNs) [16–19], graph convolutional neural networks (GCNs) [20–25], etc.

The ST-GCN model proposed by Yan et al. [5] was the first to apply graph convolu-
tional neural networks to skeleton recognition. More scholars have used this work as a
baseline to improve their work by introducing attention and new graph structures. One
representative one is the 2S-AGCN [9]. This method uses a two-stream input and proposes
an adaptive graph convolutional network that divides the graph into three parts. The
first represents the physical structure of the body, the second represents an adjacency
matrix of trainable parameters, and the third represents a separate graph for each sample;
this data-driven approach improves the flexibility of the graph. Shi et al. [20] proposed
a DGNN representing skeletal data as a directed acyclic graph. A novel directed graph
neural network was designed to extract information about the joints, bones, and their
relationships and make predictions based on the extracted features. A Dynamic GCN pro-
posed by Ye et al. [25] introduced the Context-encoding Network (CeN), and the method
can automatically learn a graph’s topology. The method also explored three alternative
contextual modeling architectures that can serve as a guide for future graph topology
learning research.

The above graph convolution-based methods all use a data-driven approach to obtain
additional skeleton topologies of the graph to extract the relationships between global
joints. Still, the capability of these methods for global feature extraction could be improved.
Some scholars have used Transformer-based methods for skeleton-based action recognition
to extract global features better.

Transformer [26] is a novel architecture that was used early in natural language pro-
cessing (NLP). The core content of the Transformer is a self-attention mechanism, rather
than relying on RNN or CNN to handle long-distance dependencies relations. In addi-
tion, the sine and cosine functions are used for positional encoding. In computer vision,
Carion et al. [27] proposed a Detection Transformer (DETR), the first object detection frame-
work that combines a convolutional neural network and a Transformer Vision Transformer
(ViT) [28] that uses a Transformer structure without CNNs, which outperforms state-of-the-
art convolutional networks in various image classification tasks.

In the field of skeleton-based action recognition, for example, Shi et al. [6] proposed
a Transformer model based on sparse matrices to capture features between human skele-
ton joints in the spatial dimension through matrix multiplication operations, and a lin-
ear self-attention model using segmentation in the temporal dimension was proposed
to capture features in the temporal dimension. This method currently has the smallest
number of parameters and computational effort. Sun et al. [7] proposed the MSST-RT
model, which breaks the inherent skeleton topology in space and the sequence order of
the skeleton in the time dimension by introducing relay joints. In addition, the method
mines the dynamic information contained in the motion at different scales. DSTA-net
was proposed by Shi et al. [8]; in their work, a new decoupled spatial–temporal attention
network is proposed, and three techniques for building attention blocks are proposed,

Symmetry 2022, 14, 1547 4 of 19

namely spatiotemporal attention decoupling, decoupled position coding, and spatial global
regularization. DSTA-net achieves advanced performance in gesture recognition and action
recognition tasks.

All the above methods are based on self-attention mechanisms, which are more advan-
tageous in extracting long-range dependencies but do not focus on the graph topologies
inherent to the human skeleton.

To preserve the graph topologies inherent to the skeleton under a Transformer-based
model architecture, some scholars have started to use GCNs combined with Transformer
approaches. For example, the ST-TR proposed by Plizzari et al. [29] replaces some layers
of the traditional GCN using temporal self-attentive modules and spatial self-attentive
modules. The KA-AGTN proposed by Liu et al. [30] embeds the Transformer blocks into
the graph convolution blocks. However, both approaches still use the GCN to extract
features of action sequences, and the Transformer is only used as a secondary network
to help obtain global attention. The question of how to better incorporate the skeleton’s
inherent graph topology information for skeleton recognition based on the Transformer
attention mechanism remains to be solved.

Inspired by the above research work, the adjacency graph made by skeleton data
is helpful to the Transformer model and using the undirect adjacency graph can help
the Transformer model better focus on the local information of human actions. Therefore,
considering that a typical graph structure can represent human skeleton information, this re-
search proposes employing a graph Transformer approach to improve skeleton-based action
recognition accuracy by integrating the adjacency graph information in the Transformer.

3. Methods

This section will address the relevant theory involved in our proposed approach, as
shown in Figure 1. First, the network we proposed adopts the same four stream inputs as
MS-AAGCN [24], which are: joint, bone, joint motion, and bone motion. The network of
every stream is consistent. Second, for each stream input, the number of each channel is
expanded from 3 to 64 by convolution. Third, feature encodings are added to each stream
input. Fourth, the input passes through the graph transformer (GST) layer, feedforward
neural network (FFN), and temporal convolution (TCN) in turn. We call the combination
of the GST layer, FNN, and TCN the GST module, where each channel includes eight
such modules. Fifth, the input passes through a global average pooling (GAP) and full
connection layer (FC). Finally, all of the streams are fused into an output by the grid-search-
based multi-stream fusion strategy.

In particular, in Section 3.1, the introduction of our methods starts with the positional
and centrality encoding of the skeleton sequence, which is introduced to enhance the
semantic and centrality information of the input. Then, in Section 3.2, the Graph Skeleton
Transformer (GST) layer is introduced. To add natural information about the human body,
the adjacency matrix information and the learnable mask matrix are fused based on the
self-attention mechanism.

We introduce the GST module in Section 3.3 and the GST network composed of the
GST module in Section 3.4. Finally, a multi-stream fusion strategy based on grid-search
weights is presented in Section 3.5.

3.1. Feature Encoding

The input of the skeleton recognition task is a set of skeleton sequences containing
both temporal and spatial dimensional information. We assume X ∈ RN×T×C is the input
sequence for skeleton-based action recognition. N denotes the number of key joints in
the human skeleton, C denotes the number of channels in the input sequence, usually the
3D coordinates of the skeleton, and T denotes the number of frames in the sequence. The
skeleton data is typically presented as an input in the form of a vector sequence in the
same frame.

Symmetry 2022, 14, 1547 5 of 19Symmetry 2022, 14, x FOR PEER REVIEW 5 of 20

Figure 1. An overview of the proposed GSTN. Conv denotes Convolution, where the two numbers

behind Conv denote the input and output channels. ⊕ represent add.

3.1. Feature Encoding

The input of the skeleton recognition task is a set of skeleton sequences containing

both temporal and spatial dimensional information. We assume N T CX R   is the input

sequence for skeleton-based action recognition. N denotes the number of key joints in

the human skeleton, C denotes the number of channels in the input sequence, usually

the 3D coordinates of the skeleton, and T denotes the number of frames in the sequence.

The skeleton data is typically presented as an input in the form of a vector sequence in the

same frame.

However, the input data are not encoded in the graph convolution-based method,

resulting in features that lack semantic and centrality information in the input data. The

existing Transformer-based methods encode the joint positions and do not consider the

skeleton joints′ centrality. Experiments in Section 4.3.1 indicate that encoding data before

input can improve model recognition while preserving the original data information. To

ensure that the input sequence can fuse the semantic information and centrality infor-

mation of joints, two types of encoding are applied: positional encoding and centrality

encoding.

3.1.1. Spatial Position Encoding

In the field of natural language processing, positional encoding is a typical encoding

method primarily used to rate the position of words in a sentence. However, in the skele-

ton-based action recognition task, positional encoding is done by numbering each joint

according to its semantic class and embedding the number into the input features. In the

work of other researchers, the joint position is not defined in advance for each skeleton

joint, and in the input phase, a set of unordered tensors is fed into the network. The se-

mantic features of the different joints in the model could not be represented.

For example, when the joint above the head is recognized as a hand or foot, the action

category results of the recognition task are completely different. Since Vaswani et al. [26]

demonstrated the effectiveness of the sine and cosine functions for positional encoding,

we used a similar approach for the positional encoding of skeletal sequences, as shown in

Equation (1):

Figure 1. An overview of the proposed GSTN. Conv denotes Convolution, where the two numbers
behind Conv denote the input and output channels. ⊕ represent add.

However, the input data are not encoded in the graph convolution-based method,
resulting in features that lack semantic and centrality information in the input data. The
existing Transformer-based methods encode the joint positions and do not consider the
skeleton joints’ centrality. Experiments in Section 4.3.1 indicate that encoding data before
input can improve model recognition while preserving the original data information. To
ensure that the input sequence can fuse the semantic information and centrality information
of joints, two types of encoding are applied: positional encoding and centrality encoding.

3.1.1. Spatial Position Encoding

In the field of natural language processing, positional encoding is a typical encoding
method primarily used to rate the position of words in a sentence. However, in the
skeleton-based action recognition task, positional encoding is done by numbering each
joint according to its semantic class and embedding the number into the input features. In
the work of other researchers, the joint position is not defined in advance for each skeleton
joint, and in the input phase, a set of unordered tensors is fed into the network. The
semantic features of the different joints in the model could not be represented.

For example, when the joint above the head is recognized as a hand or foot, the action
category results of the recognition task are completely different. Since Vaswani et al. [26]
demonstrated the effectiveness of the sine and cosine functions for positional encoding,
we used a similar approach for the positional encoding of skeletal sequences, as shown in
Equation (1):

PE(p, 2i) = sin
(

p/100002i/C
)

PE(p, 2i + 1) = cos
(

p/100002i/C
) (1)

where p ∈ (1, 2 · · ·N) represents the skeleton joint category, C represents the number of
input channels, 2i represents the even-numbered item in the channel count, and 2i + 1
represents the odd-numbered item in the channel count.

PE(p, 2i) and PE(p, 2i + 1) are conducted into a tensor PE of the shape N × C. Fur-
thermore, at t frame, the input Xt ∈ RN×C has the same shape as N×C, so that two tensors

Symmetry 2022, 14, 1547 6 of 19

of the same shape can be added together. The position code is added to the input, as shown
in Equation (2):

Xt = Xt + PE (2)

where Xt ∈ RN×C represents all the joint features of the t frame, each frame’s joints would
be encoded, so our joint features and the encoded shape are C × T × N, as shown in
Figure 2.

Symmetry 2022, 14, x FOR PEER REVIEW 6 of 20

() ()

() ()

2 /

2 /

, 2 /10000

,2 1 /10000

i C

i C

PE p i sin p

PE p i cos p

=

+ =
 (1)

where (1,2)p N represents the skeleton joint category, C represents the number of

input channels, 2i represents the even-numbered item in the channel count, and 2 1i+

represents the odd-numbered item in the channel count.

(), 2PE p i and (), 2 1PE p i + are conducted into a tensor PE of the shape N C .

Furthermore, at t frame, the input ×N C

tX R has the same shape as N C , so that two

tensors of the same shape can be added together. The position code is added to the input,

as shown in Equation (2):

t tX X PE= + (2)

where ×N C

tX R represents all the joint features of the t frame, each frame′s joints

would be encoded, so our joint features and the encoded shape are × ×C T N , as shown in

Figure 2.

Figure 2. Schematic diagram of the position encoding and the centrality encoding, where the joint

features are summed with two codes to obtain the encoded features. For the sake of brevity, only

five joints are shown in this diagram—indeed all the joints would be encoded.

3.1.2. Centrality Encoding

In graph structure, centrality is the main description of the importance of a joint. For

example, in a skeleton graph, centrality indicates the number of skeletal edges that are

connected to a joint. A joint at the end of a limb is adjacent to only one bone, whereas a

joint in a central position can be adjacent to more than one bone. The joints with different

centrality can influence action recognition differently. It is necessary to fuse information

about the centrality of joints before input.

There are various ways to measure graph joint centrality, including closeness [31],

betweenness, degree [32], etc. The degree of the human skeleton adjacency matrix can

directly represent the centrality of the skeleton. In this paper, we use a centrality encoding

method similar to Graphormer [33], which uses the degree information of the adjacency

matrix as the centrality encoding.

We let the symmetric adjacency matrix constructed by the skeleton joints be
N NA R  , and let N be the number of body joints. A symmetric adjacency matrix is used

to represent the undirected graph because the undirected graph can easily calculate the

degree of each joint. The degree of the p th joint in the adjacency matrix, A , ()pd A . The

centrality is calculated as shown in Equation (3):

()
(,)

pd A
CE p A E= (3)

Figure 2. Schematic diagram of the position encoding and the centrality encoding, where the joint
features are summed with two codes to obtain the encoded features. For the sake of brevity, only
five joints are shown in this diagram—indeed all the joints would be encoded.

3.1.2. Centrality Encoding

In graph structure, centrality is the main description of the importance of a joint. For
example, in a skeleton graph, centrality indicates the number of skeletal edges that are
connected to a joint. A joint at the end of a limb is adjacent to only one bone, whereas a
joint in a central position can be adjacent to more than one bone. The joints with different
centrality can influence action recognition differently. It is necessary to fuse information
about the centrality of joints before input.

There are various ways to measure graph joint centrality, including closeness [31],
betweenness, degree [32], etc. The degree of the human skeleton adjacency matrix can
directly represent the centrality of the skeleton. In this paper, we use a centrality encoding
method similar to Graphormer [33], which uses the degree information of the adjacency
matrix as the centrality encoding.

We let the symmetric adjacency matrix constructed by the skeleton joints be A ∈ RN×N ,
and let N be the number of body joints. A symmetric adjacency matrix is used to represent
the undirected graph because the undirected graph can easily calculate the degree of each
joint. The degree of the pth joint in the adjacency matrix, A, dp(A). The centrality is
calculated as shown in Equation (3):

CE(p, A) = Edp(A) (3)

where Edp(A) is the embedding vector of the degree of the pth joint. The embedding
dimension is equal to the number of channels C. Similarly, the centrality encode is added
to the input, as shown in Equation (4), so that different centrality features for joints with
different centralities are added:

Xt = Xt + CE (4)

As shown in Figure 2, if all frames are position encoded and centrality encoded, the
encoded features are shown in Equation (5):

Y = X + PE + CE (5)

where Y is the encoded feature.

Symmetry 2022, 14, 1547 7 of 19

3.2. GST Layer

The GST layer is used to extract joint space information. A self-attention mechanism
in the GST layer is introduced in Section 3.2.1. Section 3.2.2 discusses the method of
introducing graph information into the self-attention mechanism. Section 3.2.3 introduces
the multi-head attention mechanism.

The traditional visual Transformer network first transforms the input linearly to obtain
Q, K, and V. Q represents the query, K represents the keyword, and V represents the value.
Q is multiplied by K, and the result is normalized by scaling. Then, a Softmax function
is introduced to obtain an attention map between 0 and 1. Then, the attention map is
multiplied by V to obtain the output, as shown in Equation (6):

Attention(Q, K, V) = softmax(
QKT
√

dk
)V = (attmap)V (6)

where
√

dk denotes scaling and attmap denotes the attention map.

3.2.1. Self-Attention Mechanism in the GST Layer

Referring to the traditional Transformer method [26], the paper encodes X to get Y. Y
is linearly transformed to Q and K, as shown in Equation (7). Finally, the original input is
directly used as V:

Q = φ(Y), K = ϕ(Y), V = X (7)

where φ and ϕ are trainable linear transforms, which only change the number of channels.
Similar to the DSTA-net [8], in the skeleton recognition model, compared with the Softmax
function, the tanh function can represent negative values. It is more flexible in expressing
the attention map and can produce positive or negative attention. Therefore, we use
tanh instead of Softmax, and the calculation formula of the attention map is shown in
Equation (8):

attmap = tanh(
QKT
√

C
) (8)

where C is the number of channels of Q or K.
To analyze the attentional relationship between joint and other joints, we set q and k

as elements in Q, K respectively, representing a linear transformation of a joint in Y. The
correlation information between the two joints is obtained by the dot product of q and
k. Let υi and υj be any two different joints, and zi,j denote υi that updates the attention
relation with υj, as shown in Equation (9).

zi = ∑
j∈N

zi,j = ∑
j∈N(i)

(tanh(
qi · kT

j√
C

))vj (9)

where zi indicates that the joint υi has updated its attention relationship with other joints,
as shown in Figure 3.

3.2.2. Introduction of Graphical Information

The traditional Transformer approach does not focus on information about the graph
structure. While in the graph structure, any two adjacent objects may have a data structure
with a specific relationship. In the skeleton recognition task, the natural graph structure
of the skeleton can better guide the model in learning local features. In recent years, there
have been various related studies on Transformer incorporation of graph structure that
have achieved results.

For example, ref. [34] modifies the original self-attention mechanism by adding a
symmetric adjacency matrix, which performs well on various molecular prediction tasks,
thereby extending the Transformer network to isomorphic graphs of arbitrary structure
in [35]. The authors argue that to ensure graph sparsity, the attention mechanism in

Symmetry 2022, 14, 1547 8 of 19

the Transformer should only aggregate information from neighborhoods (i.e., using the
symmetric adjacency matrix as an attention mask). Furthermore, positional encoding
is represented by the Laplacian eigenvectors, which naturally generalize the sinusoidal
positional encodings often used in NLP. Their proposed model outperforms the baseline’s
GNNs. The Graphormer proposed by Ying et al. [33] uses three encodings (centrality
encoding, spatial encoding, and edge encoding) to fuse the information of the graph. The
accuracy is improved compared to a traditional Transformer.

Symmetry 2022, 14, x FOR PEER REVIEW 8 of 20

,

()

z = z (tanh())
j

T

i

i i j j

j N j N i

q k
v

C 


=  (9)

where zi indicates that the joint i has updated its attention relationship with other

joints, as shown in Figure 3.

Figure 3. The self-attention mechanism for joints. The colored arrows indicate the attention relation-

ship between each related joint of the joint
1t in frame t . The attention relationship contains all

joints and edges. For the sake of simplicity, only five joints and four arrows are drawn.

3.2.2. Introduction of Graphical Information

The traditional Transformer approach does not focus on information about the graph

structure. While in the graph structure, any two adjacent objects may have a data structure

with a specific relationship. In the skeleton recognition task, the natural graph structure

of the skeleton can better guide the model in learning local features. In recent years, there

have been various related studies on Transformer incorporation of graph structure that

have achieved results.

For example, ref. [34] modifies the original self-attention mechanism by adding a

symmetric adjacency matrix, which performs well on various molecular prediction tasks,

thereby extending the Transformer network to isomorphic graphs of arbitrary structure

in [35]. The authors argue that to ensure graph sparsity, the attention mechanism in the

Transformer should only aggregate information from neighborhoods (i.e., using the sym-

metric adjacency matrix as an attention mask). Furthermore, positional encoding is repre-

sented by the Laplacian eigenvectors, which naturally generalize the sinusoidal positional

encodings often used in NLP. Their proposed model outperforms the baseline′s GNNs.

The Graphormer proposed by Ying et al. [33] uses three encodings (centrality encoding,

spatial encoding, and edge encoding) to fuse the information of the graph. The accuracy

is improved compared to a traditional Transformer.

Inspired by the above research works and GCN-based methods [21–25], we believe

that the undirect adjacency graph can express connectivity information of the human

body, so the undirect adjacency graph information is added to the attention map. The

experiment’s results in Section 4.3.2 verified the effectiveness of the graph information

introduction. To represent an undirected graph, we design a symmetric adjacency matrix

Figure 3. The self-attention mechanism for joints. The colored arrows indicate the attention relation-
ship between each related joint of the joint υt1 in frame t. The attention relationship contains all joints
and edges. For the sake of simplicity, only five joints and four arrows are drawn.

Inspired by the above research works and GCN-based methods [21–25], we believe
that the undirect adjacency graph can express connectivity information of the human
body, so the undirect adjacency graph information is added to the attention map. The
experiment’s results in Section 4.3.2 verified the effectiveness of the graph information
introduction. To represent an undirected graph, we design a symmetric adjacency matrix
named A ∈ RN×N—as shown N aij is the number of body joints. The connectivity between
joints named aij is added to Equation (9), aij represents the adjacency between υi and
υj joints. The attention relationship between υi and other joints can be expressed as in
Equation (10).

zi = ∑
j∈N(i)

(tanh(
qi · kT

j√
C

+ aij))vj (10)

Considering all joints, the attention map is updated to Equation (11):

attmap = tanh(
QKT
√

C
+ A) (11)

To make the model learn more attention, and to prevent overfitting of the model, we
refer to the global regularization in DSTA-net [8], and a learnable attention mask matrix of
the shape N × N is introduced to the attention map, which is called matrix B. As shown
in Figure 4, matrix B learns entirely from training data. The addition of this mask matrix

Symmetry 2022, 14, 1547 9 of 19

allows the weights of the edges to be changed dynamically, and the attention map is further
updated to Equation (12):

attmap = tanh(
QKT
√

C
+ A) + B (12)

Symmetry 2022, 14, x FOR PEER REVIEW 9 of 20

named N NA R  —as shown N
ija is the number of body joints. The connectivity be-

tween joints named ija
 is added to Equation (9), ija

 represents the adjacency between i

and j
 joints. The attention relationship between i and other joints can be expressed

as in Equation (10).

()

z (tanh())
j

T

i

i ij j

j N i

q k
a v

C


= + (10)

Considering all joints, the attention map is updated to Equation (11):

attmap tanh()
TQK

A
C

= + (11)

To make the model learn more attention, and to prevent overfitting of the model, we

refer to the global regularization in DSTA-net [8], and a learnable attention mask matrix

of the shape N N is introduced to the attention map, which is called matrix B . As

shown in Figure 4, matrix B learns entirely from training data. The addition of this mask

matrix allows the weights of the edges to be changed dynamically, and the attention map

is further updated to Equation (12):

attmap tanh()
TQK

A B
C

= + + (12)

Finally, the original input feature V is multiplied with the attention map, so that

input V gets the corresponding attention weight, as shown in Equation (13):

(attmap) =(tanh())
TQK

Z V A B V
C

= + + (13)

3.2.3. Multi-Head Attention

Most Transformer-based methods use multi-headed attention because multi-head at-

tention allows the model to focus on features in different subspaces. We also adopt this

method. As shown in Figure 4, we split the number of channels of input X into groups
H by using a linear transformation. H is the number of heads of multi-head attention.

The multi-head attention features can be expressed as 1zi
, ..., zH

i
. Then, we connect the

multi-head attention 1(z ,...,z)H

i iConcat to combine each head of the attention feature. The

overall multi-headed attention can be expressed as Equation (14):

(, ,)MHSA Q K V = 1(Z ,...,Z)HConcat (14)

Figure 4. The structure of the Graph Skeleton Transformer layer. Cin is the number of input chan-
nels, and Cinter is the number of hidden channels. Scale is the scaling. Cout is the number of
output channels.

Finally, the original input feature V is multiplied with the attention map, so that input
V gets the corresponding attention weight, as shown in Equation (13):

Z = (attmap)V = (tanh(
QKT
√

C
+ A) + B)V (13)

3.2.3. Multi-Head Attention

Most Transformer-based methods use multi-headed attention because multi-head
attention allows the model to focus on features in different subspaces. We also adopt this
method. As shown in Figure 4, we split the number of channels of input X into groups
H by using a linear transformation. H is the number of heads of multi-head attention.
The multi-head attention features can be expressed as z1

i , . . . , zH
i . Then, we connect the

multi-head attention Concat(z1
i , . . . , zH

i) to combine each head of the attention feature. The
overall multi-headed attention can be expressed as Equation (14):

MHSA(Q, K, V) =Concat(Z1, . . . , ZH) (14)

3.3. GST Module

The GST module extracts the spatial and temporal features of the input sequence,
as shown in Figure 5. The GST module is composed of a GST layer, feedforward neural
network layer (FFN), and temporal convolutional neural network layer (TCN). As described
in Section 3.2, for the input X ∈ RN×T×C, only spatial information is processed separately
using the GST layer. We let the output after the GST layer extracts the information be
represented as Z ∈ RN×T×C. After the feedforward neural network, Z is input to TCN to
extract the features of the skeleton sequence in the time dimension.

Symmetry 2022, 14, 1547 10 of 19

Symmetry 2022, 14, x FOR PEER REVIEW 11 of 20

3.3. GST Module

The GST module extracts the spatial and temporal features of the input sequence, as

shown in Figure 5. The GST module is composed of a GST layer, feedforward neural net-

work layer (FFN), and temporal convolutional neural network layer (TCN). As described

in Section 3.2, for the input × ×N T CX R , only spatial information is processed separately

using the GST layer. We let the output after the GST layer extracts the information be

represented as × ×N T CZ R . After the feedforward neural network, Z is input to TCN to

extract the features of the skeleton sequence in the time dimension.

Figure 5. Schematic diagram of the GST module consisting mainly of GST layers, FFN, and TCN.

The output is used as the input for the next layer up to the last layer. Residual indicates residual

connections. (The batch normalization layer is not drawn for brevity).

The convolution kernel of the feedforward neural network layer is 1 × 1, in order to

realize the aggregation of output information. Its function is to process the characteristics

of each joint independently and equally. Refs. [5,9] show that TCN can effectively extract

the features of joint sequences in the temporal dimension. We use a 2D convolution, and

the shape of the convolution kernel is (K, 1), where × ×N T CZ R is the input of TCN, as

shown in Equation (15):

* (B)KZ f W Z=  + (15)

where Z is the input to the TCN layer, KW is the K × 1 convolution kernel,  is the

convolution, and B is the bias matrix. f is the activation function, in this work, and the

LeakyRelu activation function has been chosen. The output after TCN is *Z . To improve

the stability of the training, three residual connections before and after the FFN layer, and

after the TCN, are added.

3.4. GST Network

The Graph Skeleton Transformer Network (GSTN) contains eight GST modules, as

shown in Figure 6. M stands for GST module, and the output channels of the eight mod-

ules are 64, 64, 128, 128, 128, 256, 256, and 256, respectively.

Figure 6. Schematic diagram of the Graph Skeleton Transformer Network structure. Eight GST mod-

ules are represented by M1–M8. Conv represents a 2D convolution with the kernel size of 1 × 1, and

GAP represents the global average pooling layer.

Figure 5. Schematic diagram of the GST module consisting mainly of GST layers, FFN, and TCN.
The output is used as the input for the next layer up to the last layer. Residual indicates residual
connections. (The batch normalization layer is not drawn for brevity).

The convolution kernel of the feedforward neural network layer is 1 × 1, in order to
realize the aggregation of output information. Its function is to process the characteristics
of each joint independently and equally. Refs. [5,9] show that TCN can effectively extract
the features of joint sequences in the temporal dimension. We use a 2D convolution, and
the shape of the convolution kernel is (K, 1), where Z ∈ RN×T×C is the input of TCN, as
shown in Equation (15):

Z∗ = f (WK ⊗ Z + B) (15)

where Z is the input to the TCN layer, WK is the K × 1 convolution kernel, ⊗ is the
convolution, and B is the bias matrix. f is the activation function, in this work, and the
LeakyRelu activation function has been chosen. The output after TCN is Z∗. To improve
the stability of the training, three residual connections before and after the FFN layer, and
after the TCN, are added.

3.4. GST Network

The Graph Skeleton Transformer Network (GSTN) contains eight GST modules, as
shown in Figure 6. M stands for GST module, and the output channels of the eight modules
are 64, 64, 128, 128, 128, 256, 256, and 256, respectively.

Symmetry 2022, 14, x FOR PEER REVIEW 11 of 20

3.3. GST Module

The GST module extracts the spatial and temporal features of the input sequence, as

shown in Figure 5. The GST module is composed of a GST layer, feedforward neural net-

work layer (FFN), and temporal convolutional neural network layer (TCN). As described

in Section 3.2, for the input × ×N T CX R , only spatial information is processed separately

using the GST layer. We let the output after the GST layer extracts the information be

represented as × ×N T CZ R . After the feedforward neural network, Z is input to TCN to

extract the features of the skeleton sequence in the time dimension.

Figure 5. Schematic diagram of the GST module consisting mainly of GST layers, FFN, and TCN.

The output is used as the input for the next layer up to the last layer. Residual indicates residual

connections. (The batch normalization layer is not drawn for brevity).

The convolution kernel of the feedforward neural network layer is 1 × 1, in order to

realize the aggregation of output information. Its function is to process the characteristics

of each joint independently and equally. Refs. [5,9] show that TCN can effectively extract

the features of joint sequences in the temporal dimension. We use a 2D convolution, and

the shape of the convolution kernel is (K, 1), where × ×N T CZ R is the input of TCN, as

shown in Equation (15):

* (B)KZ f W Z=  + (15)

where Z is the input to the TCN layer, KW is the K × 1 convolution kernel,  is the

convolution, and B is the bias matrix. f is the activation function, in this work, and the

LeakyRelu activation function has been chosen. The output after TCN is *Z . To improve

the stability of the training, three residual connections before and after the FFN layer, and

after the TCN, are added.

3.4. GST Network

The Graph Skeleton Transformer Network (GSTN) contains eight GST modules, as

shown in Figure 6. M stands for GST module, and the output channels of the eight mod-

ules are 64, 64, 128, 128, 128, 256, 256, and 256, respectively.

Figure 6. Schematic diagram of the Graph Skeleton Transformer Network structure. Eight GST mod-

ules are represented by M1–M8. Conv represents a 2D convolution with the kernel size of 1 × 1, and

GAP represents the global average pooling layer.

Figure 6. Schematic diagram of the Graph Skeleton Transformer Network structure. Eight GST
modules are represented by M1–M8. Conv represents a 2D convolution with the kernel size of 1 × 1,
and GAP represents the global average pooling layer.

The network takes the skeleton sequence (N × T × C) as an input. First, the convolu-
tion with a 1 × 1 kernel size is used, which expands the number of channels from 3 to 64.
Then, the inputs pass through eight GST modules to extract the spatial–temporal features
of the skeleton sequences. Then, we use the global average pooling layer to reduce the
vector dimension to one dimension (only including the number of channels). Finally, a
linear transformation of learnable parameters is adopted to map 256 channel data to the
number of action categories.

3.5. Grid-Search-Based Multi-Stream Fusion Strategy

Some existing skeleton recognition methods [7,8,20,21,24] use multi-stream fusion
strategies, resulting in significant accuracy improvements. In the process of building a

Symmetry 2022, 14, 1547 11 of 19

multi-stream input network, most methods use manually fixed weight combinations and
do not design a separate weight combination for each dataset setting. As described in [24],
different input streams are complementary in different dataset settings. Therefore, it is
necessary to set a multi-stream weight combination for each dataset. To avoid the extra
time cost caused by manually finding the weight combination, and to find the optimal
multi-stream weight combination more accurately, this paper proposes a multi-stream
input strategy based on grid search.

The grid search method is an exhaustive search method for specified parameter values.
It is also an ergodic parameter calling method. In this method, first, the possible values of
each parameter are arranged and combined. Then, the results of all possible combinations
are listed and a “grid” is generated. After traversing all parameter combinations, it is
automatically adjusted to the best parameter combination.

In our experiments, a weight is assigned to each stream, where the range of weights
was set to 0.3–0.7 and the step of variation is 0.1. We traverse all the weight combinations
in this interval and output the accuracy. By comparing the accuracy, we can find the weight
combination with the highest accuracy.

4. Experiments

We used three human action recognition datasets (NTU RGB+D 60 [36], NTU RGB+D
120 [37], and NW-UCLA [38]). The specific contents of the three ablation experiments are
as follows: First, we did ablation experiments on the NW-UCLA dataset to demonstrate
the effectiveness of the two types of encoding. Secondly, we tested the validity of two
matrices (the adjacency matrix A and the learnable mask matrix B) that were added to
the attention map on the NTU RGB+D 60 dataset. Then, to test the effectiveness of the
grid-search-based multi-stream fusion strategies, we recorded the best weight combination
searched by each benchmark of each dataset. Finally, we compared the accuracy of the
above optimal combination with that of multi-stream fusion with fixed weights. At last, we
compared the experimental results with state-of-the-art methods.

4.1. Datasets

NTU RGB+D 60: The NTU RGB+D 60 dataset [36] is a widespread human action
recognition dataset containing 56,000 action clips and 4 million frames. These clips were
captured by 40 subjects in a filming laboratory environment using three different views of
Kinect v2 [39]. Every subject contains 25 joint points and their 3D positions, as shown in
Figure 7. In addition, 60 action categories are available in the NTU RGB+D dataset, the last
11 of which are double people actions. The evaluation benchmarks for this dataset include
cross-subject (X-Sub) and cross-view (X-View). The training and test sets consisted of
40,320 and 16,560 video clips. In the cross-subject benchmark, the training clips were taken
from a subset of the subjects, and the test clips were taken from the remaining subjects.
The training and test sets in the X-View benchmark consisted of 37,920 and 18,960 clips,
respectively. The 37,920 clips captured from cameras 2 and 3 were used for training and the
other 18,960 clips captured from camera 1 were used for testing.

NTU RGB+D 120: The NTU RGB+D 120 dataset [37] extends the NTU RGB+D
60 dataset and is currently the largest dataset containing 3D joint information. It includes
57,600 new action clips to represent 60 new action categories, a total of 114,480 video clips,
and 120 action categories for a total of 106 subjects, which were filmed from 32 different
camera settings. The dataset also followed two benchmark assessments: cross-subject (X-
Sub) and cross-setup (X-Set). In the X-Sub benchmark research, similar to NTU RGB+D 60,
the 106 subjects were divided into a training and a test group, each containing 53 subjects.
For the cross-view evaluation, the 32 camera setup IDs were split into two parts according
to the serial number of the IDs, with the even-view IDs being used for training and the
odd-view IDs for testing.

Symmetry 2022, 14, 1547 12 of 19

Symmetry 2022, 14, x FOR PEER REVIEW 13 of 20

NTU RGB+D 120: The NTU RGB+D 120 dataset [37] extends the NTU RGB+D 60 da-

taset and is currently the largest dataset containing 3D joint information. It includes 57,600

new action clips to represent 60 new action categories, a total of 114,480 video clips, and

120 action categories for a total of 106 subjects, which were filmed from 32 different cam-

era settings. The dataset also followed two benchmark assessments: cross-subject (X-Sub)

and cross-setup (X-Set). In the X-Sub benchmark research, similar to NTU RGB+D 60, the

106 subjects were divided into a training and a test group, each containing 53 subjects. For

the cross-view evaluation, the 32 camera setup IDs were split into two parts according to

the serial number of the IDs, with the even-view IDs being used for training and the odd-

view IDs for testing.

NW-UCLA: The NW-UCLA is known as the Northwestern–UCLA dataset [38]. It is

also captured by three Kinect cameras. It contains 1494 clips covering 10 action categories.

Each action is performed by 10 actors. The evaluation protocol is the same as in [38]. Sam-

ples from the first two cameras constitute the training data and samples from the other

camera constitute the testing data.

The position of each joint in the NTU RGB+D 60 datasets and the NW-UCLA datasets

is shown in Figure 7.

(a) (b)

Figure 7. Positions of human joints in the two datasets. (a) The joints distribution for the NTU

RGB+D 60 dataset; (b) the joints distribution for the NW-UCLA dataset.

4.2. Experimental Details

All experiments were performed in the PyTorch framework and were optimized us-

ing a stochastic gradient descent method with Nesterov momentum (0.9). A GeForce

NVIDIA 3090 GPU was used for training. We used a cross-entropy loss function. To pre-

vent overfitting of the model, we used L2 regularization, and the weight decay is set to

0.0005.

For the NTU RGB+D 60 and NTU RGB+D 120 datasets, the partitioning and pre-pro-

cessing were done using the 2s-AGCN method. The maximum number of training epochs

is set to 60, and the batch size is 64. A strategy that updates the learning rate with the

number of training steps is introduced. The initial learning rate is 0.1. At 20 and 40 steps,

the learning rate is multiplied by 0.1.

The partitioning of the NW-UCLA dataset is done according to the cross-view setting

in [38]. The initial learning rate is 0.1. The maximum number of training epochs is 200.

The learning rate is updated as the accuracy increases. The batch size is set to 16, and the

learning patience is set to 12. The learning threshold is set to 0.0001.

In Section 4.3.3, the performance of a grid-search weight method for the multi-stream

fusion strategy is compared with conventional multi-stream fusion strategies. The multi-

Figure 7. Positions of human joints in the two datasets. (a) The joints distribution for the NTU
RGB+D 60 dataset; (b) the joints distribution for the NW-UCLA dataset.

NW-UCLA: The NW-UCLA is known as the Northwestern–UCLA dataset [38]. It is
also captured by three Kinect cameras. It contains 1494 clips covering 10 action categories.
Each action is performed by 10 actors. The evaluation protocol is the same as in [38].
Samples from the first two cameras constitute the training data and samples from the other
camera constitute the testing data.

The position of each joint in the NTU RGB+D 60 datasets and the NW-UCLA datasets
is shown in Figure 7.

4.2. Experimental Details

All experiments were performed in the PyTorch framework and were optimized
using a stochastic gradient descent method with Nesterov momentum (0.9). A GeForce
NVIDIA 3090 GPU was used for training. We used a cross-entropy loss function. To prevent
overfitting of the model, we used L2 regularization, and the weight decay is set to 0.0005.

For the NTU RGB+D 60 and NTU RGB+D 120 datasets, the partitioning and pre-
processing were done using the 2s-AGCN method. The maximum number of training
epochs is set to 60, and the batch size is 64. A strategy that updates the learning rate
with the number of training steps is introduced. The initial learning rate is 0.1. At 20 and
40 steps, the learning rate is multiplied by 0.1.

The partitioning of the NW-UCLA dataset is done according to the cross-view setting
in [38]. The initial learning rate is 0.1. The maximum number of training epochs is 200.
The learning rate is updated as the accuracy increases. The batch size is set to 16, and the
learning patience is set to 12. The learning threshold is set to 0.0001.

In Section 4.3.3, the performance of a grid-search weight method for the multi-stream
fusion strategy is compared with conventional multi-stream fusion strategies. The multi-
stream inputs are the same as [24], including joint (J), bone (B), joint motion (JM), and bone
motion (BM).

4.3. Experimental Details
4.3.1. Effectiveness of Feature Encoding

To verify the effectiveness of feature encoding, we listed the accuracy of using the
centrality encoding (CE) and position encoding (PE) in Table 1. Our experiments were set
up to use no encoding, only use CE, only use PE, and both CE and PE.

Symmetry 2022, 14, 1547 13 of 19

Table 1. The effectiveness of centrality encoding and position encoding on the NW-UCLA dataset.
Fusion denotes the fusion of the four streams.

Encoding Method Acc (%)
(J)

Acc (%)
(B)

Acc (%)
(JM)

Acc (%)
(BM)

Acc (%)
(Fusion)CE PE

8 8 92.5 89.01 90.1 87.7 94.8
4 8 90.9 92.0 91.2 88.1 95.5
8 4 92.2 92.7 92.2 88.1 95.0
4 4 92.5 93.8 90.3 88.1 95.9

As shown in Table 1, CE + PE in the joint stream achieved the highest result of 92.5%,
and in the bone stream, CE + PE achieved the highest accuracy of 93.8%, which is at least 1%
ahead of the other encoding methods. In the JM stream, the highest accuracy was achieved
using PE alone, while in the BM stream, there was little difference between the various
encoding methods, and in the final four-stream fusion, the highest accuracy was achieved
using both encodings. The experimental results show that both centric and positional
encoding help to improve recognition accuracy. The effect is enhanced even more when
the two methods are combined, which also demonstrates the necessity of adding semantic
information to skeleton joints.

4.3.2. Effectiveness of the Introduction of Graphical Information

To verify the effectiveness of our introduction of graph information in the Transformer,
we conducted separate ablation experiments for the added adjacency matrix A and the
learnable mask matrix B. The comparative analysis shows that adding the adjacency matrix
alone, without the learnable mask matrix, results in a lossy non-convergence of the model.
Therefore, Table 2 shows the comparison results using the matrix, the matrix A + B, and
not using any matrix.

Table 2. The effectiveness of graph information introduction on the X-Sub benchmark of NTU RGB+D
60 dataset.

Matrix Acc (%)
(J)

Acc (%)
(B)

Acc (%)
(JM)

Acc (%)
(BM)

Acc (%)
(Fusion)A B

8 8 86.0 86.3 84.1 83.6 90.6
8 4 87.4 86.9 85.0 85.5 90.6
4 4 87.6 87.9 85.7 85.7 91.3

The experimental results show that adding matrix B alone improves the accuracy
by 0.3%. Adding both matrix A and matrix B at the same time improves the accuracy
significantly after the fusion of multiple streams, although the improvement in accuracy
is not high for every single stream using the adjacency matrix. We believe that the two
added matrices have complementary contributions to different motion recognition in the
four inputs. This is because more abundant information can be extracted by adding two
kinds of matrices to introduce graph information.

4.3.3. Effectiveness of Grid-Search-Based Multi-Stream Fusion Strategy

Table 3 shows the details of the multi-stream inputs in the NTU RGB+D 60 dataset.
The 2s denote the joint stream and bone stream. The 4s denote all 4 streams. The results
show that the accuracy has improved significantly with the two-stream inputs and reaches
even higher accuracy with the fusion of the four-stream inputs.

To demonstrate the validity of grid-search weights for multi-stream fusion strategies,
we used multi-stream fusion with fixed weights as a comparison. We have designed
a weight that can be automatically searched for each class of four stream inputs. The
weight range of each stream is 0.3–0.7. The step is 0.1. The highest precision weights are

Symmetry 2022, 14, 1547 14 of 19

obtained after the grid-search traversal of all weight combinations. The highest accuracy
and corresponding weights are recorded in Table 4.

Table 3. The detailed accuracy (%) of the multi-stream inputs in the NTU RGB+D 60 dataset.

Methods X-Sub X-View

J-GSTN 87.6 95.1
B-GSTN 87.9 93.5

JM-GSTN 85.7 92.9
BM-GSTN 85.7 92.8
2s-GSTN 89.8 95.7
4s-GSTN 91.3 96.6

Table 4. The effectiveness of the multi-stream fusion strategy with or without grid-search. NTU60
denotes the NTU RGB+D 60 dataset, and NTU120 denotes the NTU RGB+D 120 dataset.

Datasets Weight
(J)

Weight
(B)

Weight
(JM)

Weight
(BM)

Acc (%)
(Fusion

W/O GS)

Acc (%)
(Fusion
w/GS)

NTU60 X-Sub 0.6 0.6 0.4 0.5 91.1 91.3
NTU60 X-View 0.5 0.5 0.4 0.4 96.5 96.6
NTU120 X-Sub 0.5 0.7 0.4 0.3 86.0 86.3
NTU120 X-Set 0.4 0.6 0.4 0.3 88.4 88.7

NW-UCLA 0.4 0.6 0.6 0.4 95.7 95.9

Table 4 shows the weights of each stream by grid search and the fusion results. Fusion
w/o GS indicates a configuration where the weights of each stream are all fixed to 1. Fusion
w/GS shows the results of multi-stream fusion after using the grid search. As can be seen
from the table, the weights obtained by applying the automatic weight search are 0.1–0.3%
more accurate than when fusing the four-stream directly.

4.4. Comparison with Previous Methods

We evaluated our method with state-of-the-art methods for skeleton-based action
recognition on three datasets: NTU RGB+D 60, NTU RGB+D 120, and NW-UCLA.

As shown in Table 5, our model has an excellent performance in the NTU RGB+D
60 datasets. “VA-LSTM” [15] and “Synthesized CNN” [19] are two representative methods
for RNN-based and CNN-based methods, respectively. GSTN outperforms them by 11.9%
and 11.3% in accuracy for the X-Sub benchmark, respectively. Compared with GCN-based
methods [9,21,22,40,41], our method has higher accuracy than the above methods. In
contrast to the latest method, KA-AGCN [30], which applies Transformer and GCN, our
model does not use GCN but adds the topological structure of the graph to the attentional
map. Our method outperforms the KA-AGCN by 0.9% on the X-Sub benchmark and 0.5%
on the X-Set benchmark.

Table 5. Comparisons of the accuracy (%) with the state-of-the-art methods on the X-Sub and the
X-View benchmark of the NTU RGB+D 60 dataset.

Methods Year X-Sub X-View

Lie Group [11] 2014 50.1 52.8
VA-LSTM [15] 2017 79.4 87.6

TCN [42] 2017 74.3 83.1
Synthesized CNN [19] 2017 80.0 87.2

2s-AGCN [9] 2019 88.5 95.1
SGN [22] 2020 89.0 94.5

Symmetry 2022, 14, 1547 15 of 19

Table 5. Cont.

Methods Year X-Sub X-View

4s-Shift-GCN [21] 2020 90.7 96.5
PA-ResGCN-B19 [40] 2020 90.9 96.0

TRIPOOL [41] 2021 88.0 95.3
ST-TR [29] 2021 89.9 96.1

DSTA-net [8] 2021 91.5 96.4
KA-AGTN [30] 2022 90.4 96.1

MTT [43] 2022 90.8 96.7
4s-GSTN (ours) - 91.3 96.6

Compared with the state-of-the-art methods on NTU RGB+D 120, our method has
higher accuracy than the GCN-based methods [21,22,40,41] and GCN combined with Trans-
former methods [29,30,43], as is shown in Table 6. In addition, our method outperforms
the KA-AGTN by 0.3% on the X-Sub benchmark and 0.7% on the X-Set benchmark.

Table 6. Comparisons of the accuracy (%) with the state-of-the-art methods on the X-Sub and X-Set
benchmark of the NTU RGB+D 120 dataset.

Methods Year X-Sub X-Set

SGN [22] 2020 79.2 81.5
4s-Shift-GCN [21] 2020 85.9 87.6

PA-ResGCN-B19 [40] 2020 87.3 88.3
TRIPOOL [41] 2021 80.1 82.8

ST-TR [29] 2021 82.7 84.7
KA-AGTN [30] 2022 86.1 88.0

MTT [43] 2022 86.1 87.6
4s-GSTN (ours) - 86.4 88.7

As shown in Table 7, our model achieves state-of-the-art performance in the NW-
UCLA dataset, and 1.3% higher accuracy than Shift-GCN [21]. Compared with manual
feature extraction [11], CNN-based methods [18], and RNN-based methods [44–46], our
method has much higher accuracy.

Table 7. Comparisons of the accuracy (%) with the state-of-the-art methods on the NW-UCLA dataset.

Methods Top-1

Lie GROUP [11] 74.1
Actionlet ensemble [18] 76.0

HBRNN-L [44] 78.5
Ensemble TS-LSTM [45] 89.2

2s-AGC-LSTM [46] 93.3
4s-Shift-GCN [21] 94.6
4s-GSTN (ours) 95.9

To verify the training speed of the Transformer network, we compared our method
with a traditional graph convolutional network-2s-AGCN, and we compared it with two
lightweight networks, as shown in Table 8. We used an Intel (R) Xeon(R) Silver 4210R CPU
(2.40 GHz) and a GeForce NVIDIA 3090 GPU, and we tested the 16,487 sequences in the
NTU RGB+D 60 dataset and calculated the average time to predict an action sequence,
denoted as speed. As a result, our model’s computation time with a single stream input
was nearly 0.2 times that of AGCN, which is comparable to the faster models of SGN and
ResGCN-n51.

Symmetry 2022, 14, 1547 16 of 19

Table 8. Comparisons of the run time performance with the traditional methods and the faster
methods on the NTU RGB+D 60 dataset.

Method Params GFlops Speed (ms)

AGCN [9] 3.47 9.34 75.2
SGN [22] 0.69 3.4 15.2

ResGCN-n51 [40] 0.77 - 16.8
1s-GSTN (ours) 3.80 7.91 15.6

4.5. Visualization of Attention Map

Since our model is based on a self-attention mechanism, the attention map was vi-
sualized to demonstrate the effectiveness of our self-attention mechanism. As shown in
Figure 8: (a) shows the attention map of the first GST layer of our model, and (b) shows the
attention map of the last GST layer of our model.

Symmetry 2022, 14, x FOR PEER REVIEW 17 of 20

To verify the training speed of the Transformer network, we compared our method

with a traditional graph convolutional network-2s-AGCN, and we compared it with two

lightweight networks, as shown in Table 8. We used an Intel (R) Xeon(R) Silver 4210R

CPU (2.40 GHz) and a GeForce NVIDIA 3090 GPU, and we tested the 16,487 sequences in

the NTU RGB+D 60 dataset and calculated the average time to predict an action sequence,

denoted as speed. As a result, our model′s computation time with a single stream input

was nearly 0.2 times that of AGCN, which is comparable to the faster models of SGN and

ResGCN-n51.

Table 8. Comparisons of the run time performance with the traditional methods and the faster meth-

ods on the NTU RGB+D 60 dataset.

Method Params GFlops Speed (ms)

AGCN [9] 3.47 9.34 75.2

SGN [22] 0.69 3.4 15.2

ResGCN-n51 [40] 0.77 - 16.8

1s-GSTN (ours) 3.80 7.91 15.6

4.5. Visualization of Attention Map

Since our model is based on a self-attention mechanism, the attention map was visu-

alized to demonstrate the effectiveness of our self-attention mechanism. As shown in Fig-

ure 8: (a) shows the attention map of the first GST layer of our model, and (b) shows the

attention map of the last GST layer of our model.

The attention maps learned in each layer are different because the semantic infor-

mation contained in each layer is not the same. In addition, the attention in the first layer

map is more focused on parts related to the limbs (ankles, feet, hands, fingers, etc.). The

focus on the head is less pronounced. This phenomenon is due to the joints in the limbs

having an inherent ability to distinguish between human actions. When information is

highly aggregated at a higher level, the differences between each joint become less obvi-

ous, and thus the phenomenon becomes less obvious.

(a) (b)

Figure 8. The schematic of the attention map. (a) Our method′s attention map of the NTU RGB+D

60 dataset after the first GST layer; (b) our method′s attention map of the NTU RGB+D 60 dataset

after the last GST layer.

5. Conclusions

In this work, we propose a Graph Skeleton Transformer Network (GSTN) for action

recognition. The main contributions of the paper include: (1) The skeleton joints have been

encoded so that the joints′ features contain information about the position and centrality.

(2) Graph information is added to make up for the lack of graph information in the

Figure 8. The schematic of the attention map. (a) Our method’s attention map of the NTU RGB+D 60
dataset after the first GST layer; (b) our method’s attention map of the NTU RGB+D 60 dataset after
the last GST layer.

The attention maps learned in each layer are different because the semantic information
contained in each layer is not the same. In addition, the attention in the first layer map is
more focused on parts related to the limbs (ankles, feet, hands, fingers, etc.). The focus
on the head is less pronounced. This phenomenon is due to the joints in the limbs having
an inherent ability to distinguish between human actions. When information is highly
aggregated at a higher level, the differences between each joint become less obvious, and
thus the phenomenon becomes less obvious.

5. Conclusions

In this work, we propose a Graph Skeleton Transformer Network (GSTN) for action
recognition. The main contributions of the paper include: (1) The skeleton joints have
been encoded so that the joints’ features contain information about the position and cen-
trality. (2) Graph information is added to make up for the lack of graph information in
the Transformer. (3) Grid-search was used in the multi-stream fusion strategies, and these
methods outperformed previous methods in terms of recognition accuracy. Advanced
results were achieved on three major datasets. Finally, we tested the model’s speed. The
results show that the Transformer-based method is more than five times faster than the
traditional 2s-AGCN method.

In the field of skeleton-based action recognition, due to the adoption of the multi-
stream fusion strategy, the number of calculations and parameters are large. It lacks

Symmetry 2022, 14, 1547 17 of 19

application in portable embedded systems. In the time dimension, the traditional TCN
is still used, which brings large parameters and FLOPs. After we tried shift convolution
and dilated convolution methods, the accuracy decreased, thus we adopted the traditional
TCN method.

Scope of future work should aim to fuse the multi-stream before inputting the model,
and to use the time transformer in the time dimension to replace the convolution oper-
ation. All of the above aim to further reduce the parameters and FLOPs and improve
recognition accuracy.

Author Contributions: Conceptualization, Y.J., S.Y. and Z.S.; methodology, Y.J. and Z.S.; software,
Z.S. and S.W.; validation, Z.S., S.W. and Y.S.; formal analysis, Y.J. and Z.S.; investigation, Y.J. and
S.W.; resources, Y.J. and Z.S.; data curation, Z.S. and S.Y.; writing—original draft preparation, Y.J.
and Z.S.; writing—review and editing, Y.J., S.Y. and Y.S.; visualization, Y.J. and Z.S.; supervision,
Y.J.; project administration, Y.J.; funding acquisition, Y.J. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by Funds for the National Key R&D Program of China, Ministry
of science and technology of China (2021YFF0307603) and the National cultural and tourism science
and technology innovation project of the Ministry of culture and Tourism (GJWLKJCXGC-095).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data sets used in this paper are public, free, and available at. NTU
RGB+D 60, NTU RGB+D 120: https://rose1.ntu.edu.sg/dataset/actionRecognition/; (accessed on
21 August 2021). NW-UCLA: http://users.eecs.northwestern.edu/~jwa368/data/; (accessed on
1 November 2021).

Conflicts of Interest: The authors declare that they have no conflict of interest regarding the publica-
tion of this paper.

References
1. Dong, S.; Wang, P.; Abbas, K. A Survey on Deep Learning and Its Applications. Comput. Sci. Rev. 2021, 40, 100379. [CrossRef]
2. Thakur, N.; Han, C.Y. Country-Specific Interests towards Fall Detection from 2004–2021: An Open Access Dataset and Research

Questions. Data 2021, 6, 92. [CrossRef]
3. Feng, M.; Meunier, J. Skeleton Graph-Neural-Network-Based Human Action Recognition: A Survey. Sensors 2022, 22, 2091.

[CrossRef]
4. Xing, Y.; Zhu, J. Deep Learning-based Action Recognition with 3D Skeleton: A Survey. CAAI Trans. Intell. Technol. 2021, 6, 80–92.

[CrossRef]
5. Yan, S.; Xiong, Y.; Lin, D. Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition. In Proceedings

of the 32nd AAAI Conference on Artificial Intelligence AAAI 2018, New Orleans, LA, USA, 2–7 February 2018; pp. 7444–7452.
6. Shi, F.; Lee, C.; Qiu, L.; Zhao, Y.; Shen, T.; Muralidhar, S.; Han, T.; Zhu, S.-C.; Narayanan, V. STAR: Sparse Transformer-Based

Action Recognition. arXiv 2021, arXiv:2107.07089.
7. Sun, Y.; Shen, Y.; Ma, L. MSST-RT: Multi-Stream Spatial-Temporal Relative Transformer for Skeleton-Based Action Recognition.

Sensors 2021, 21, 5339. [CrossRef]
8. Shi, L.; Zhang, Y.; Cheng, J.; Lu, H. Decoupled Spatial-Temporal Attention Network for Skeleton-Based Action-Gesture Recogni-

tion. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics);
Springer Science+Business Media: Berlin, Germany, 2021; 12626 LNCS; pp. 38–53. [CrossRef]

9. Shi, L.; Zhang, Y.; Cheng, J.; Lu, H. Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
16–20 June 2019; Volume 2019, pp. 12018–12027.

10. Hussein, M.E.; Torki, M.; Gowayyed, M.A.; El-Saban, M. Human Action Recognition Using a Temporal Hierarchy of Covariance
Descriptors on 3D Joint Locations. In Proceedings of the IJCAI International Joint Conference on Artificial Intelligence, Beijing,
China, 3–9 August 2013; pp. 2466–2472.

11. Vemulapalli, R.; Arrate, F.; Chellappa, R. Human Action Recognition by Representing 3d Skeletons as Points in a Lie Group.
In Proceedings of the IEEE conference on computer vision and pattern recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 588–595.

12. Hu, J.; Zheng, W.; Lai, J.; Zhang, J. Jointly Learning Heterogeneous Features for RGB-D Activity Recognition. IEEE Trans. Pattern
Anal. Mach. Intell. 2017, 39, 2186–2200. [CrossRef]

https://rose1.ntu.edu.sg/dataset/actionRecognition/
http://users.eecs.northwestern.edu/~jwa368/data/
http://doi.org/10.1016/j.cosrev.2021.100379
http://doi.org/10.3390/data6080092
http://doi.org/10.3390/s22062091
http://doi.org/10.1049/cit2.12014
http://doi.org/10.3390/s21165339
http://doi.org/10.1007/978-3-030-69541-5_3
http://doi.org/10.1109/TPAMI.2016.2640292

Symmetry 2022, 14, 1547 18 of 19

13. Liu, J.; Shahroudy, A.; Xu, D.; Wang, G. Spatio-Temporal LSTM with Trust Gates for 3D Human Action Recognition. Neoplasma
2016, 16, 816–833. [CrossRef]

14. Liu, J.; Wang, G.; Duan, L.Y.; Abdiyeva, K.; Kot, A.C. Skeleton-Based Human Action Recognition with Global Context-Aware
Attention LSTM Networks. IEEE Trans. Image Process. 2018, 27, 1586–1599. [CrossRef]

15. Zhang, P.; Lan, C.; Xing, J.; Zeng, W.; Xue, J.; Zheng, N. View Adaptive Recurrent Neural Networks for High Performance Human
Action Recognition from Skeleton Data. In Proceedings of the IEEE international conference on computer vision, Cambridge, MA,
USA, 20–23 June 2017; pp. 2117–2126.

16. Chao, L.; Qiaoyong, Z.; Di, X.; Shiliang, P. Skeleton-Based Action Recognition with Convolutional Neural Networks. In
Proceedings of the 2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Hong Kong, China, 10–14
July 2017.

17. Li, C.; Hou, Y.; Wang, P.; Li, W. Joint Distance Maps Based Action Recognition with Convolutional Neural Networks. IEEE Signal
Process. Lett. 2017, 24, 624–628. [CrossRef]

18. Wang, J.; Liu, Z.; Wu, Y.; Yuan, J. Learning Actionlet Ensemble for 3D Human Action Recognition. IEEE Trans. Pattern Anal. Mach.
Intell. 2014, 36, 914–927. [CrossRef]

19. Liu, M.; Liu, H.; Chen, C. Enhanced Skeleton Visualization for View Invariant Human Action Recognition. Pattern Recognit. 2017,
68, 346–362. [CrossRef]

20. Shi, L.; Zhang, Y.; Cheng, J.; Lu, H. Skeleton-Based Action Recognition with Directed Graph Neural Networks. In Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019;
pp. 7904–7913.

21. Cheng, K.; Zhang, Y.; He, X.; Chen, W.; Cheng, J.; Lu, H. Skeleton-Based Action Recognition with Shift Graph Convolutional
Network. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, WA,
USA, 13–19 June 2020; pp. 180–189.

22. Zhang, P.; Lan, C.; Zeng, W.; Xing, J.; Xue, J.; Zheng, N. Semantics-Guided Neural Networks for Efficient Skeleton-Based Human
Action Recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
Seattle, WA, USA, 13–19 June 2020; pp. 1109–1118.

23. Tsai, M.F.; Chen, C.H. Spatial Temporal Variation Graph Convolutional Networks (STV-GCN) for Skeleton-Based Emotional
Action Recognition. IEEE Access 2021, 9, 13870–13877. [CrossRef]

24. Shi, L.; Zhang, Y.; Cheng, J.; Lu, H. Skeleton-Based Action Recognition With Multi-Stream Adaptive Graph Convolutional
Networks. IEEE Trans. Image Process. 2020, 29, 9532–9545. [CrossRef]

25. Ye, F.; Pu, S.; Zhong, Q.; Li, C.; Xie, D.; Tang, H. Dynamic GCN: Context-Enriched Topology Learning for Skeleton-Based Action
Recognition. In Proceedings of the MM 2020, 28th ACM International Conference on Multimedia, Virtual Event/Seattle, WA,
USA, 12–16 October 2020; pp. 55–63. [CrossRef]

26. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.
In Advances in Neural Information Processing Systems; Mit Press: Cambridge, MA, USA, 2017; pp. 5999–6009.

27. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-End Object Detection with Transformers.
In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics);
Springer Science+Business Media: Berlin, Germany, 2020; 12346 LNCS; pp. 213–229. [CrossRef]

28. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929
preprint.

29. Plizzari, C.; Cannici, M.; Matteucci, M. Skeleton-Based Action Recognition via Spatial and Temporal Transformer Networks.
Comput. Vis. Image Underst. 2021, 208–209, 103219. [CrossRef]

30. Liu, Y.; Zhang, H.; Xu, D.; He, K. Graph Transformer Network with Temporal Kernel Attention for Skeleton-Based Action
Recognition. Knowl.-Based Syst. 2022, 240, 108146. [CrossRef]

31. Freeman, L.C. Centrality in Social Networks Conceptual Clarification. Soc. Netw. 1978, 1, 215–239. [CrossRef]
32. Bonacich, P. Factoring and Weighting Approaches to Status Scores and Clique Identification. J. Math. Sociol. 1972, 2, 113–120.

[CrossRef]
33. Ying, C.; Cai, T.; Luo, S.; Zheng, S.; Ke, G.; He, D.; Shen, Y.; Liu, T.-Y. Do Transformers Really Perform Badly for Graph

Representation? Adv. Neural Inf. Process. Syst. 2021, 34, 28877–28888.
34. Maziarka, L.; Danel, T.; Mucha, S.; Rataj, K.; Tabor, J.; Jastrzebski, S. Molecule Attention Transformer. arXiv 2020,

arXiv:Abs/2002.08264.
35. Dwivedi, V.P.; Bresson, X. A Generalization of Transformer Networks to Graphs. arXiv 2020, arXiv:Abs/2012.09699.
36. Shahroudy, A.; Liu, J.; Ng, T.T.; Wang, G. NTU RGB+D: A Large Scale Dataset for 3D Human Activity Analysis. In Proceedings

of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
Volume 2016, pp. 1010–1019.

37. Liu, J.; Shahroudy, A.; Perez, M.; Wang, G.; Duan, L.Y.; Kot, A.C. NTU RGB+D 120: A Large-Scale Benchmark for 3D Human
Activity Understanding. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2684–2701. [CrossRef] [PubMed]

http://doi.org/10.1007/978-3-319-46487-9_50
http://doi.org/10.1109/TIP.2017.2785279
http://doi.org/10.1109/LSP.2017.2678539
http://doi.org/10.1109/TPAMI.2013.198
http://doi.org/10.1016/j.patcog.2017.02.030
http://doi.org/10.1109/ACCESS.2021.3052246
http://doi.org/10.1109/TIP.2020.3028207
http://doi.org/10.1145/3394171.3413941
http://doi.org/10.1007/978-3-030-58452-8_13
http://doi.org/10.1016/j.cviu.2021.103219
http://doi.org/10.1016/j.knosys.2022.108146
http://doi.org/10.1016/0378-8733(78)90021-7
http://doi.org/10.1080/0022250X.1972.9989806
http://doi.org/10.1109/TPAMI.2019.2916873
http://www.ncbi.nlm.nih.gov/pubmed/31095476

Symmetry 2022, 14, 1547 19 of 19

38. Wang, J.; Nie, X.; Xia, Y.; Wu, Y.; Zhu, S.C. Cross-View Action Modeling, Learning, and Recognition. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 2649–2656. [CrossRef]

39. Zhang, Z. Microsoft Kinect Sensor and Its Effect. IEEE Multimed. 2012, 19, 4–10. [CrossRef]
40. Song, Y.F.; Zhang, Z.; Shan, C.; Wang, L. Stronger, Faster and More Explainable: A Graph Convolutional Baseline for Skeleton-

Based Action Recognition. In Proceedings of the MM 2020, 28th ACM International Conference on Multimedia, Seattle, WA, USA,
12–16 October 2020; ACM: New York, NY, USA, 2020; pp. 1625–1633.

41. Peng, W.; Hong, X.; Zhao, G. Tripool: Graph Triplet Pooling for 3D Skeleton-Based Action Recognition. Pattern Recognit. 2021,
115, 107921. [CrossRef]

42. Kim, T.S.; Reiter, A. Interpretable 3D Human Action Analysis with Temporal Convolutional Networks. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017;
pp. 1623–1631.

43. Kong, J.; Bian, Y.; Jiang, M. MTT: Multi-Scale Temporal Transformer for Skeleton-Based Action Recognition. IEEE Signal Process.
Lett. 2022, 29, 528–532. [CrossRef]

44. Du, Y.; Wang, W.; Wang, L. Hierarchical Recurrent Neural Network for Skeleton Based Action Recognition. In Proceed-
ings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015;
pp. 1110–1118.

45. Lee, I.; Kim, D.; Kang, S.; Lee, S. Ensemble Deep Learning for Skeleton-Based Action Recognition Using Temporal Sliding
LSTM Networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017;
pp. 1012–1020. [CrossRef]

46. Si, C.; Chen, W.; Wang, W.; Wang, L.; Tan, T. An Attention Enhanced Graph Convolutional LSTM Network for Skeleton-Based
Action Recognition. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Long Beach, CA, USA, 16–20 June 2019; pp. 1227–1236.

http://doi.org/10.1109/CVPR.2014.339
http://doi.org/10.1109/MMUL.2012.24
http://doi.org/10.1016/j.patcog.2021.107921
http://doi.org/10.1109/LSP.2022.3142675
http://doi.org/10.1109/ICCV.2017.115

	Introduction
	Related Work
	Methods
	Feature Encoding
	Spatial Position Encoding
	Centrality Encoding

	GST Layer
	Self-Attention Mechanism in the GST Layer
	Introduction of Graphical Information
	Multi-Head Attention

	GST Module
	GST Network
	Grid-Search-Based Multi-Stream Fusion Strategy

	Experiments
	Datasets
	Experimental Details
	Experimental Details
	Effectiveness of Feature Encoding
	Effectiveness of the Introduction of Graphical Information
	Effectiveness of Grid-Search-Based Multi-Stream Fusion Strategy

	Comparison with Previous Methods
	Visualization of Attention Map

	Conclusions
	References

