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Abstract: The beta integral method proved itself as a simple but nonetheless powerful method for
generating hypergeometric identities at a fixed argument. In this paper, we propose a generalization
by substituting the beta density with a particular type of Meijer’s G function. By the application of
our method to known transformation formulas, we derive about forty hypergeometric identities, the
majority of which are believed to be new.
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1. Introduction

Summation and transformation formulas for hypergeometric functions at a fixed
argument are important in combinatorics [1–3], analysis [4–6], physics [7–9], computer
science [10] and many other fields [11,12]. As most summation formulas are particular
or limiting cases of some transformation formulas, the latter turn out to be of a higher
significance. The main developments until the end of the 1930s were summarized by
W.N. Bailey in the fundamental monograph [13]. His student, Lucy Joan Slater, attributes
to L.J. Rogers the statement that after Bailey’s work, “nothing remains to be done in the
field of hypergeometric series” ([14], p. 40). In his work, Bailey gave a number of methods
for deriving and proving such transformation formulas, including series rearrangements,
contour integrals, equating coefficients in an identity involving free argument, the “Bailey
method” ([11], Lemma 3.4.2) and the Bailey chains ([11], Chapter 12). Later on, an important
extension to this toolbox was provided by the algorithms of symbolic computation [5,15],
([11], Section 3.11), techniques based on the Lagrange inversion theorem [16] and Abel’s
lemma [17] and various other methods [18,19]. Another simple but frequently very effective
method for obtaining transformation formulas at a fixed argument from an identity involv-
ing a free argument consists of integrating such an identity with respect to the beta density.
It pops up in the literature on various occasions but was fully automated and systematically
applied by Krattenthaler and Rao in [20] and was given the name ”the beta integral method”
by these authors ([8], Chapter 8). The main idea of this work is to generalize this method
by substituting the beta density with a density expressed in terms of Meijer’s G function,
of which the beta density is a particular case. Unlike the beta integral method, however,
this approach does not automatically lead to a transformation formula. The reason behind
this phenomenon is that for the beta integral method to work, one only needs 2F1(1) to be
summable in terms of gamma functions which is always the case by the celebrated Gauss
formula. In contrast, for an application of the G-function integral method proposed here,
one needs a summation formula for the generalized hypergeometric function p+1Fp(1)
with p ≥ 2, which imposes severe parameter restrictions. These restrictions, in many cases,
contradict the parameter structure dictated by the G-function integral method. There is a
number of cases, however, when these two requirements are compatible, and we are led
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to transformation and summation formulas for the generalized hypergeometric functions
evaluated at a specific value of the argument (typically at unity).

It is convenient to introduce an extended definition of the hypergeometric series by

F
(

a
b

... P
∣∣∣∣x) =

∞

∑
n=0

(a1)n(a2)n · · · (ap)n

(b1)n(b2)n · · · (bq)nn!
P(n)xn, (1)

where a = {a1, . . . , ap}, b = {b1, . . . , bq} are complex parameter vectors such that bj never
equals a non-positive integer and P(n) could be any function of n, but in this paper, it will
always be a polynomial of a fixed degree m. The expression (a)n = Γ(a + n)/Γ(a) is the
standard Pochhammer’s symbol (or rising factorial). In this case, it is straightforward to
check that

P(n) = P(0)
(1− λ)n

(−λ)n
,

where λ = (λ1, . . . , λm) is the vector of zeros of the polynomial P (repeated, if neces-
sary, according to the multiplicity) and the shorthand notation for the product (−λ)n =
(−λ1)n(−λ2)n · · · (−λm)n is used here and henceforth. Hence, (1) can be rewritten as

F
(

a
b

... P
∣∣∣∣x) = P(0)p+mFq+m

(
a, 1− λ
b,−λ

∣∣∣∣x) (2)

which is a generalized hypergeometric function with m unit shifts in the parameters.
We will use both ways of writing F interchangeably. This extended definition has been
recently employed by Maier [21] and is equivalent to the concept of “hypergeometrization”
introduced a bit earlier by Blaschke [22]. We also found it convenient to omit the indices of
the hypergeometric functions, as the dimensions of the parameter vectors are usually clear
from the context. However, we will use the traditional notation pFq when dealing with
specific numerical values of p and q to make the formulas more accessible to a reader not
interested in further details. To avoid poles in the denominators, we will always assume
that b1, . . . , bq do not take non-positive integer values. Finally, the omitted argument of the
generalized hypergeometric function signifies the unit argument throughout the paper.

The paper is organized as follows. In the next section, we describe the general frame-
work and present a list of summation and transformation formulas that will serve as raw
material for our machinery. In Section 3, we present the transformation formulas obtained
by the G-function integral method applied to the identities presented in Section 2.3. We
group the formulas in accordance with the values of the parameters u and v in (3). We
included both the formulas we could not locate in the literature and a few well-known
transformations to illustrate the power of the method. We further added a reference each
time we were aware of it. It is typically rather difficult to claim that a hypergeometric
transformation is new, as the literature is vast and there could always be a hidden trick
as to how a “new” transformation can be derived from a known one. Hence, we simply
present all the formulas that we identified as interesting with the hope that some of them
are indeed new.

2. G-Function Integral Method: Preparation
2.1. General Description of the Method

We will use the standard symbols N, Z, R and C to denote the sets of natural, integer,
real and complex numbers, respectively. Similarly to the beta integral method, we will start
with a transformation formula of the form

F
(

α
β

∣∣∣∣Mxw
)
= (1− x)λF

(
δ
γ

∣∣∣∣ Dxu

(1− x)v

)
(3)
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valid for 0 < x < 1. Here, δ, γ and λ are functions of α, β; w, u ∈ N, v ∈ Z, M, D are
constants. A list of transformations of the form (3) will be given in the following subsection.
Here, we just note that the cases

(w, u, v) ∈ {(1, 1, 0), (1, 1, 1)}

correspond to the Euler–Pfaff linear-fractional transformations and their generalizations
to hypergeometric functions with integral parameter differences [23,24]. The quadratic
transformations include the cases

(w, u, v) ∈ {(1, 1, 2), (2, 1, 1), (2, 1, 2), (1, 2, 2), (1, 1,−1), (1, 2, 1)}.

Some cubic transformations [25] also have the form (3). These cases have been explored
by us in [26].

The beta integral method consists of multiplication of transformation Formula (3) by
the beta density xd−1(1− x)e−1 and term-wise integration from 0 to 1. In this work, we
substitute the beta density by the Meijer–Nørlund function Gp,0

p,p of which it is a particular
p = 1 case. This function is defined by the Mellin–Barnes integral of the form

Gp,0
p,p

(
z

b
a

)
:=

1
2πi

∫
L

Γ(a+s)
Γ(b +s)

z−sds. (4)

The shorthand notation Γ(a+s) = ∏
p
j=1 Γ(aj + s) is used here and henceforth. Details

regarding the choice of the contour L can be found in many standard reference books ([27],
Section 5.2), ([28], Section 16.17), ([29], Section 8.2) and our papers [30,31], which also
contain a list of properties of Gp,0

p,p. In particular, to perform the term-wise integration, we
will need the integral evaluation ([30], p. 50).

Γ(b)
Γ(a)

∫ 1

0
xν(1− x)µGp,0

p,p

(
x
∣∣∣∣ b− 1

a− 1

)
dx =

(a)ν

(b)ν
p+1Fp

(
−µ, a + ν

b + ν

)
, (5)

where for any ν, the Pochhammer’s symbol is given by (a)ν = Γ(a + ν)/Γ(a) and (a)ν is
the shorthand notation for the product ∏

p
j=1(aj)ν. The above formula is true if <(a+ ν) > 0

and <(s(a, b) + µ) > 0 (understood element-wise), where s(a, b), here and below, signifies
the parametric excess

s(a, b) =
p

∑
j=1

(bj − aj). (6)

An application of these ideas leads to the following ”master lemma”.

Lemma 1. Assume that (3) holds for x ∈ (0, 1). Suppose further that δ or a contain a negative
integer or v = 0, D = 1, and

<(a) > 0 & <(s(a, b) + λ) > 0 & <(s(a, b) + s(γ, δ) + λ) > 0. (7)

Then,

F
(

α, ∆(a, w)
β, ∆(b, w)

∣∣∣∣M) =
∞

∑
k=0

(δ)k(a)ukDk

(γ)k(b)ukk!
F
(
−λ + vk, a + uk

b + uk

)
, (8)

where ∆(a, w) = (a/w, a/w + 1/w, . . . , a/w + (w− 1)/w).

Remark 1. Only the last restriction in (7) is required for convergence of the series on the right-hand
side of (8), while the first two restrictions are needed for the derivation only and can typically be
removed by analytic continuation once a transformation formula has been obtained.
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Proof. For the proof, multiply (3) by

Γ(b)
Γ(a)

Gp,0
p,p

(
x
∣∣∣∣ b− 1

a− 1

)
and integrate both sides term-wise from 0 to 1 using (5) with µ = 0 on the left-hand side
and µ = −λ− vk on the right-hand side. Further, apply

(a)lk = llk(a/l)k((a + 1)/l)k · · · ((a + l − 1)/l)k = llk∆(a, l)k, (9)

valid for each l ∈ N, on the RHS. If δ or a contain a negative integer, the summation
terminates, and term-wise integration is permitted.

Otherwise, if v = 0, D = 1 define

F(k) :=
Γ(a + uk)
Γ(b + uk) p+1Fp

(
−λ, a + uk

b + uk

)
.

By the change of variable x = e−t in (5), we obtain

F(k) =
∞∫

0

e−tukGp,0
p,p

(
e−t b− 1

a− 1

)
(1− e−t)λe−tdt =

∞∫
0

e−k f (t)g(t)dt,

where

f (t) = tu, g(t) = (1− e−t)λe−tGp,0
p,p

(
e−t b− 1

a− 1

)
= tλ+s(a,b)−1 ĝ(t),

and the function ĝ(t) is analytic near t = 0 with ĝ(0) 6= 0, according to ([30], p. 11). The
first two conditions in (7) make sure that the integral converges. The function f (t) has the
minimum at t = 0 with f (0) = 0 and f ′(0) 6= 0. An application of Watson’s lemma ([11],
Theorem C. 3.1) then yields:

F(k) ∼ C1k−s(a,b)−λ as k→ ∞.

In view of
(δ)k
(γ)kk!

∼ C2k−s(γ,δ)−1,

the series on the right-hand side of (8) absolutely converges if the third condition in (7) is
satisfied, so that term-wise integration is justified.

2.2. Summation Formulas

In this section, we will list the cases when the hypergeometric function of the right-
hand side of (8) is summable in terms of gamma functions. These cases hinge on the
classical summation theorems, their extensions and the following lemma for hypergeo-
metric functions with integral parameter differences (IPD type). A related formula can be
found in our paper ([32], Theorem 3.2). Both in this lemma and in the sequel, we will use
the notation p = (p1, . . . , pl) ∈ Nl , p = p1 + · · ·+ pl and h ∈ Cl . Let us emphasize that
all formulas presented in this section are essentially known results rewritten in the form
convenient for further application in Section 3 which is devoted to new results.

Lemma 2. Suppose l ∈ N, u, v are integers. Then, for k ∈ N such that<(e+λ− d− p− vk) > 0
or if hypergeometric function F terminates, we have

F
(
−λ + vk, d + uk, h + p + uk

e + uk, h + uk

)
=

(−1)vkΓ(e + λ− d)Γ(1 + d− e− λ)Γ(e + uk)Yp(u, v; k)
(h + uk)pΓ((u− v)k + e + λ)Γ(vk + d− e− λ + p + 1)

, (10)

where
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Yp(u, v; t) =
(h− d)p

Γ(e− d)

p

∑
j=0

(d− e + 1)j

j!
F
(
−j, 1− h + d
1− h + d− p

)
(ut + d)j(vt + d− e− λ + j + 1)p−j (11)

is a polynomial in t of degree p.

Proof. According to (5), we have

F
(
−λ + vk, d + uk, h + p + uk

e + uk, h + uk

)

=
Γ(e + uk)

(h + uk)pΓ(d + uk)

1∫
0

(1− x)λ−vkGp,0
p,p

(
x
∣∣∣∣ e + uk− 1, h + uk− 1

d + uk− 1, h + p + uk− 1

)
dx. (12)

Here, by ([23], Lemma 1),

Gp,0
p,p

(
x
∣∣∣∣ e + uk− 1, h + uk− 1

d + uk− 1, h + p + uk− 1

)
=

p

∑
j=0

λjxj+d+uk−1(1− x)−j+e−d−1,

where

λj =
(h− d)p(e− d− j)j

Γ(e− d)j!
F
(
−j, 1− h + d
1− h + d− p

)
.

Substituting this expansion into (12) and integrating term-wise leads to

F
(
−λ + vk, d + uk, h + p + uk

e + uk, h + uk

)
= A

p

∑
j=0

λjΓ(j + d + uk)Γ(−j + e− d + λ− vk),

where

A =
Γ(e + uk)

(h + uk)pΓ(d + uk)Γ(uk− vk + λ + e)
.

To complete the proof, it remains to use the identities

Γ(−j + e− d + λ− vk) = (−1)j+vk Γ(e + λ− d)Γ(1− e− λ + d)
Γ(j + 1 + vk− e + d− λ)

,

Γ(j + d + uk)
Γ(j + 1 + vk− e + d− λ)

=
Γ(d + uk)

Γ(1− λ− e + d + p + vk)
(d + uk)j(1− λ− e + d + j + vk)p−j.

Remark 2. Note that for e = d + 1, the polynomial Yp(u, v; t) reduces to

Yp(u, v; t) = (h− d)p(vt− λ)p (13)

and (10) reduces to the Karlsson–Minton summation theorem ([32], (1.3))

F
(

a, d, h + p
d + 1, h

)
=

Γ(d + 1)Γ(1− a)(h− d)p

Γ(d + 1− a)(h)p
(14)

valid for <(a + p) < 1 (recall that p = p1 + · · ·+ pl).

Remark 3. If p = l = 1, the polynomial Yp(u, v; t) reduces to

Y1(u, v; t) =
v(h− d)− u(e− d− 1)

Γ(e− d)
t− (h− d)λ + (e− d− 1)h

Γ(e− d)
(15)
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with the root

ξ =
(h− d)λ + (e− d− 1)h
(h− d)v− (e− d− 1)u

. (16)

The cases below refer to the values of (u, v) in (3) and (8).
Case I : (u, v) = (1, 0). The Pfaff–Saalschütz theorem ([11], Theorem 2.2.6) in the form

3F2

(
−n, a, b

c, d

)
=

(c− a)n(d− a)n

(c)n(d)n
, c + d = −n + a + b + 1.

yields

3F2

(
−λ,−n + k, a2 + k

b1 + k, b2 + k

)
=

(b1 + λ)n(b2 + λ)n(b1)k(b2)k
(b1)n(b2)n(b1 + λ)k(b2 + λ)k

, (17)

where b1 + b2 + n− a2 + λ = 1, n ∈ N, 0 ≤ k ≤ n.
Rakha and Rathie ([33], (2.5)) (see also ([34], (3.1))) extended the Pfaff–Saalschütz

summation theorem by adding a parameter pair with unit shift. Their extension can be
written in the form:

4F3

(
−j, a, b, f + 1

c, d, f

)
=

(c− a− 1)j(d− a)j(γ + 1)j

(c)j(d)j(γ)j
, c + d = −j + a + b + 2,

where

γ =
(c− a− 1)(c− b− 1) f
ab + (c− a− b− 1) f

.

Setting j = n− k, c = b1 + k, d = b2 + k, a = −λ, b = a2 + k, s = b3 + k after some
rearrangements, we obtain for n, k ∈ N, k ≤ n the following summation formula:

4F3

(
−λ,−n + k, a2 + k, b3 + 1 + k

b1 + k, b2 + k, b3 + k

)
= Ω

(b1)k(b2)k(b3)k(µ + 1)k
(b1 + λ)k(b2 + λ)k(b3 + 1)k(µ)k

, (18a)

where b1 + b2 + n− a2 + λ = 2,

Ω =
(na2(b3 + λ) + b3(b1 + λ− 1)(b2 + λ− 1))(b1 + λ)n−1(b2 + λ)n

b3(1 + a2 − b1)(b1)n(b2)n
, (18b)

and µ is defined by

µ =
na2(b3 + λ) + b3(b1 + λ− 1)(b2 + λ− 1)
λ(b3 − b1 + 1)− (b1 + n− 1)(b1 − a2 − 1)

. (18c)

Another extension of Pfaff–Saalschütz’s theorem is achieved by replacing 1-balanced
(or Saalschützian) series with r-balanced series, where r ∈ N. The simplest formula of this
type with r = 2 as given by Kim and Rathie in ([35], (3.1)) can be cast into the form

3F2

(
−j, a, b

c, d

)
=

(c− a− 1)j(d− a− 1)j

(c)j(d)j

(
1 +

jb
(c− a− 1)(d− a− 1)

)
, c + d = −j + a + b + 2.

Setting j = n− k, c = b1 + k, d = b2 + k, a = −λ, b = a2 + k after some rearrangements,
we obtain for n, k ∈ N, k ≤ n the following summation formula:

3F2

(
−λ,−n + k, a2 + k

b1 + k, b2 + k

)
= B

(b1)k(b2)k(ν + 1)k
(b1 + λ)k(b2 + λ)k(ν)k

, (19a)

where b1 + b2 + n + λ− a2 = 2

B =
(b1 + λ)n−1(b2 + λ)n−1

(b1)n(b2)n
(na2 + (b1 + λ− 1)(b2 + λ− 1)), (19b)
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and ν is defined by

ν =
na2 + (b1 + λ− 1)(b2 + λ− 1)

b1 + b2 + n− a2 + 2(λ− 1)
. (19c)

A particular case of 2-balanced summation theorem is the following formula due to
Bailey ([13], 4.5(1.2)) (see also ([15], Table 6.1–30))

3F2

(
a, b,−j

1 + a− b, 1 + 2b− j

)
=

(a− 2b)j(1 + a/2− b)j(−b)j

(1 + a− b)j(a/2− b)j(−2b)j
.

Setting b = −λ, a = α + k, j = n− k, we obtain:

3F2

(
−λ, α + k,−n + k

1 + λ + α + k, 1− 2λ− n + k

)
= − (α + 2λ)n(λ)n(1− 2λ− n)k(1 + λ + α)k(−α− 2λ− 2n)k+1

(2λ)n(1 + λ + α)n(1− λ− n)k(−α− 2λ− 2n)k(α + 2λ)k+1
. (20)

The (u, v) = (1, 0) case of Lemma 2 takes the form

F
(
−λ, d + k, h + p + k

e + k, h + k

)
=

Γ(e + λ− d)Γ(e)(e)k(h)kYp(1, 0; k)
Γ(e + λ)(1 + d− e− λ)p(h)p(h + p)k(e + λ)k

. (21)

Case II: (u, v) = (1, 1). In this case, the only summation formula is the one given by
Lemma 2:

F
(
−λ + k, d + k, h + p + k

e + k, h + k

)
=

(−1)kΓ(e + λ− d)Γ(e)(e)k(h)kYp(1, 1; k)
Γ(e + λ)(h)p(h + p)k(1 + d− e− λ)p(1 + d− e− λ + p)k

. (22)

Case III: (u, v) = (1,−1). Whipple’s formula ([15], Table 6.1–16) leads to:

3F2

(
−λ− k, 1 + λ + k, a2 + k
b1 + k, 1 + 2a2 − b1 + k

)
=

B(b1)k(1 + 2a2 − b1)k

4k((1 + λ + b1)/2)k((2 + λ + 2a2 − b1)/2)k
, (23)

B =
π21−2a2 Γ(b1)Γ(1 + 2a2 − b1)

Γ((b1 − λ)/2)Γ((1− λ + 2a2 − b1)/2)Γ((1 + λ + b1)/2)Γ((2 + λ + 2a2 − b1)/2)
.

The (u, v) = (1,−1) case of Lemma 2 reads:

F
(
−λ− k, d + k, h + p + k

e + k, h + k

)
=

(−1)kΓ(e + λ− d)Γ(1 + d− e− λ)Γ(e + k)Yp(1,−1; k)
(h + k)pΓ(2k + e + λ)Γ(−k + d− e− λ + p + 1)

or

F
(
−λ− k, d + k, h + p + k

e + k, h + k

)
=

Γ(e + λ− d)Γ(e)(e)k(e + λ− d− p)k(h)kYp(1,−1; k)
Γ(e + λ)(1− e− λ + d)p(h)p(h + p)k4k∆(e + λ, 2)k

, (24)

where ∆(a, 2)k = (a/2)k((a + 1)/2)k.
Case IV: (u, v) = (1, 2). Bailey’s formula ([15], Table 6.1–30) for nearly-poised (of the

second kind) 3F2 is

3F2

(
a, 1 + a/2,−j

a/2, c

)
=

(c− a− 1− j)(c− a)j−1

(c)j
.

Setting a = −λ + 2k, j = n− k, c = b + k, in view of (z)2k = 4k(z/2)k((z + 1)/2)k,
we obtain:



Symmetry 2022, 14, 1541 8 of 31

3F2

(
−λ + 2k, 1− λ/2 + k,−n + k

−λ/2 + k, b + k

)
=

(b + λ− n− 1)(b + λ)n−1(b)k(1− b− λ)k

(b)n(−4)k((2− b− λ− n)/2)k((3− b− λ− n)/2)k
. (25)

From Dougall’s formula ([13], 4.3(3)) (see also ([15], Table 6.1–25))

5F4

(
a, 1 + a/2, c, d,−j

a/2, 1 + a− c, 1 + a− d, 1 + a + j

)
=

(1 + a)j(1 + a− c− d)j

(1 + a− c)j(1 + a− d)j

on setting a = −λ + 2k, c = 1− λ− b1 + k, d = 1− λ− b2 + k, j = n− k and applying
the relations

(γ)n−k =
(−1)k(γ)n

(1− γ− n)k
, (γ + k)n−k =

(γ)n

(γ)k
, (z)2k = 4k(z/2)k((z + 1)/2)k,

we arrive at

5F4

(
−λ + 2k, 1− λ/2 + k, 1− λ− b1 + k, 1− λ− b2 + k,−n + k

−λ/2 + k, b1 + k, b2 + k, 1− λ + n + k

)
=

(1− λ)n(b1 + b2 + λ− 1)n(b1)k(b2)k(1− λ + n)k

(b1)n(b2)n(−4)k(2− b1 − b2 − λ− n)k((1− λ)/2)k((2− λ)/2)k
. (26)

The (u, v) = (1, 2) case of Lemma 2 by application of

Γ(2z) = 22z−1π−1/2Γ(z)Γ(z + 1/2), Γ(z− k) =
(−1)kΓ(z)
(1− z)k

(27)

takes the form

F
(
−λ + 2k, d + k, h + p + k

e + k, h + k

)
=

Γ(e + λ− d)Γ(e)(h)k(e)k(1− e− λ)kYp(1, 2; k)
Γ(e + λ)(1 + d− e− λ)p(h)p(h + p)k(−4)k∆(1− e− λ + p + d, 2)k

. (28)

Case V: (u, v) = (2, 2). The (u, v) = (2, 2) case of Lemma 2 after application of
(27) reads:

F
(
−λ + 2k, d + 2k, h + p + 2k

e + 2k, h + 2k

)
=

Γ(e + λ− d)Γ(e)∆(e, 2)k∆(h, 2)kYp(2, 2; k)
Γ(e + λ)(1− e− λ + d)p(h)p∆(h + p, 2)k∆(1− e− λ + p + d, 2)k

. (29)

Case VI: (u, v) = (2, 1). The (u, v) = (2, 1) case of Lemma 2 after application of
(27) reads:

F
(
−λ + k, d + 2k, h + p + 2k

e + 2k, h + 2k

)
=

Γ(e + λ− d)Γ(e)(−4)k∆(e, 2)k∆(h, 2)kYp(2, 1; k)
(h)pΓ(e + λ)∆(h + p, 2)k(e + λ)k(1 + d− e− λ)p+k

. (30)

Another formula that can sum the hypergeometric function on the right-hand side
of (8) in Case VI can be obtained from Watson’s formula ([15], Table 6.1-16). However, its
application does not lead to any new or interesting known transformations, so we omit
it here.

2.3. Transformation Formulas

In this subsection, we present a number of known transformation formulas of the type
given in (3). We will group them into the same six cases that we have used in the previous
subsection. The cases (u, v) = (1, 1) and (u, v) = (1, 2) have subcases with w = 1 and
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w = 2, but as the value of w does not affect the summation on the right-hand side of (8),
we keep these two situations under the single case.

Case I: (u, v) = (1, 0). The second Euler–Pfaff transformation belongs to this class:

2F1

(
a, b
c

∣∣∣∣x) = (1− x)c−a−b
2F1

(
c− a, c− b

c

∣∣∣∣x). (31)

Its natural extension to the hypergeometric functions with integral parameter differ-
ences is the second Miller–Paris transformation [23,24]. Define m = (m1, . . . , mr) ∈ Nr,
m = m1 + m2 + . . . + mr and f = ( f1, . . . , fr) ∈ Cr. We will reserve the symbols f and m
for the Miller–Paris transformations and their corollaries throughout the rest of the paper.
According to ([36], Theorem 1) and ([24], Theorem 4), we have:

F
(

a, b, f + m
c, f

∣∣∣∣x) = (1− x)c−a−b−mF
(

c− a−m, c− b−m, ζ̂ + 1
c, ζ̂

∣∣∣∣x), (32)

where ζ̂ = (ζ1, . . . , ζm) are the roots of the characteristic polynomial

Q̂m(a, b, c, f, m; t) =
m

∑
k=0

r+1Fr(−k, f + m; f)(a)k(b)k(t)k
(c− a−m)k(c− b−m)kk! 3F2

(
−m + k, t + k, c− a− b−m
c− a−m + k, c− b−m + k

)
. (33)

Transformation (32) holds for |x| < 1 when (1 + a + b− c)m 6= 0, (c− a−m)m 6= 0
and (c− b−m)m 6= 0. A somewhat simpler but less symmetric form of the characteristic
polynomial Q̂m was given by us in ([23], (15)).

Case II: (u, v) = (1, 1). The first Euler–Pfaff transformation is given by

2F1

(
a, b
c

∣∣∣∣x) = (1− x)−a
2F1

(
a, c− b

c

∣∣∣∣ x
x− 1

)
. (34)

It was extended to hypergeometric functions with integral parameter differences by
Miller and Paris [23,24]. Keeping the meaning of m and f, we have, according to ([36],
Theorem 1) and ([24], Theorem 3):

F
(

a, b, f + m
c, f

∣∣∣∣x) = (1− x)−aF
(

a, c− b−m, ζ + 1
c, ζ

∣∣∣∣ x
x− 1

)
(35)

where ζ = ζ(c, b, f) = (ζ1, . . . , ζm) are the roots of the polynomial

Qm(b, c, f, m; t) =
1

(c− b−m)m

m

∑
k=0

(−1)k

k! r+1Fr

(
−k, f + m

f

)
(b)k(t)k(c− b−m− t)m−k. (36)

Two alternative forms of this polynomial can be found in ([32], (3.7)) and ([23],
Theorem 1). Transformation (35) is valid when b 6= f j, j = 1, . . . , r and (c− b−m)m 6= 0.
Both Formulas (32) and (35) fail when c− b−m ∈ {−m + 1, . . . , 0}. We called this situation
degenerate and found the extensions of (32) and (35) to this case in our recent papers [23,37].
Miller–Paris transformations reduce to Euler–Pfaff transformations (31), (34) when m = 0.

Further, according to ([20], (3.3)), for |x| < 1:

2F1

(
α, α + 1/2

β

∣∣∣∣x2
)
= (1− x)−2α

2F1

(
2α, β− 1/2

2β− 1

∣∣∣∣ −2x
1− x

)
. (37)

Case III: (u, v) = (1,−1). According to ([20], (3.5)) for x < 1/2, we have the
Gauss transformation

2F1

(
α, β

(α + β + 1)/2

∣∣∣∣x) = 2F1

(
α/2, β/2

(α + β + 1)/2

∣∣∣∣4x(1− x)
)

. (38)
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This formula remains true for all x if both sides terminate (α and/or β is a negative
even integer).

Further, according to ([20], (3.9)), we have for x < 1/2

2F1

(
α, 1− α

β

∣∣∣∣x) = (1− x)β−1
2F1

(
(β− α)/2, (α + β− 1)/2

β

∣∣∣∣4x(1− x)
)

. (39)

This formula remains true for all x if both sides terminate (for instance, when α > β
are positive integers, both odd or both even).

Case IV: (u, v) = (1, 2). The following transformation is known as Kummer’s first
quadratic transformation ([24], (6.6)) (cf. ([28], 15.8.15)):

2F1

(
α, β

1− β + α

∣∣∣∣− x
)
= (1− x)−α

2F1

(
α/2, α/2 + 1/2

1− β + α

∣∣∣∣ −4x
(1− x)2

)
. (40)

It is true for |x| < 1.
Next, according to ([11], (3.1.11)), we have for |x| < 1

2F1

(
α, β

1− β + α

∣∣∣∣x2
)
= (1− x)−2α

2F1

(
α, α− β + 1/2

1− 2β + 2α

∣∣∣∣ −4x
(1− x)2

)
. (41)

Whipple’s quadratic transformation ([11], (3.1.15)) is given by

3F2

(
α, β, δ

1− β + α, 1− δ + α

∣∣∣∣x) = (1− x)−α
3F2

(
α/2, (α + 1)/2, 1 + α− β− δ

1− β + α, 1− δ + α

∣∣∣∣ −4x
(1− x)2

)
, (42)

which is also valid for |x| < 1.
According to Choi and Rathie ([38], (2.1)) (after change of variable and change of

notation), we have

2F1

(
α, β

β + 1

∣∣∣∣x) = (1− x)−2β
3F2

(
β, β− α/2 + 1, β− α/2 + 1/2

β + 1, 2β− α + 1

∣∣∣∣ −4x
(1− x)2

)
. (43)

We will refer to the above transformation as the first Choi–Rathie transformation. A
closely related result ([38], (2.4)) after change of variable and change of notation takes
the form:

3F2

(
α + 1, 2α, β

α, β + 1

∣∣∣∣x) = (1− x)−2β
3F2

(
β, β− α, β− α + 1/2

β + 1, 2β− 2α + 1

∣∣∣∣ −4x
(1− x)2

)
, (44)

where |x| < 1. We will refer to this transformation as the second Choi–Rathie transformation.
A result by Rakha and Rathie ([33], (3.1)) reads

4F3

(
2α, α− β− 1/2, 1 + α− σ, 1 + α + σ

α + β + 3/2, α− σ, α + σ

∣∣∣∣x) = (1− x)−2α
3F2

(
α, β, δ + 1

α + β + 3/2, δ

∣∣∣∣ −4x
(1− x)2

)
(45)

for |x| < 1, where

σ2 =
1

β− δ

(
α2β− αβδ− βδ/2− δ/4

)
with σ2 < 0 permitted.

The following more recent transformation is given by Wang and Rathie in ([39], (3.1)):

5F4

(
2α− 1, 2α− β− 1, 2α− γ, 1/2 + α−ω, 1/2 + α + ω

β + 1, γ, α− 1/2−ω, α− 1/2 + ω,

∣∣∣∣x)
= (1− x)1−2α

4F3

(
α, α− 1/2, β + γ− 2α, δ + 1

β + 1, γ, δ

∣∣∣∣ −4x
(1− x)2

)
(46)
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for |x| < 1, where

ω2 = (α− 1/2)2 − δ(γ− 2α)(2α− β− 1)
β + γ− 2α− δ

.

Kummer’s first transformation (40) was generalized by Miller and Paris in ([24],
Theorem 5) to the generalized hypergeometric functions with integral parameter differences
as follows:

F
(

α, β, η̂+ 1
1− β + α, η̂

∣∣∣∣− x
)
= (1− x)−αF

(
α/2, α/2 + 1/2, f + m

1− β + α, f

∣∣∣∣ −4x
(1− x)2

)
(47)

where |x| < 1 and η̂ is the vector of zeros of the 2m degree polynomial

R̂2m(t; α, β, f, m) =
m

∑
k=0

(f)m(t)k(α− t)k
(β)kk! r+1Fr

(
−k, f + m

f

)
. (48)

Another set of extensions of the classical quadratic transformations has been obtained
recently by Maier [21]. Whipple’s transformation (42) is generalized to ([21], Theorem 3.1).

F
(

α, β, δ, 1− ρ
1 + α− β, 1 + α− δ,−ρ

∣∣∣∣x) = (1− x)−α
3F2

(
α/2, α/2 + 1/2, α− β− δ− k + 1

1 + α− β, 1 + α− δ

∣∣∣∣ −4x
(1− x)2

)
, (49)

where ρ is the vector of roots of the 2k degree polynomial

P2k(t; α, β, δ) = 3F2

(
−k,−t, t + α

β, δ

)
. (50)

Further extension has been obtained by adding a parameter pair
[

γ + k
γ

]
on the

right-hand side ([21], Theorem 3.4):

F
(

α, β, δ, 1− ρ̂
1 + α− β, 1 + α− δ,−ρ̂

∣∣∣∣x)
= (1− x)−α

4F3

(
α/2, α/2 + 1/2, α− β− δ− k + 1, γ + k

1 + α− β, 1 + α− δ, γ

∣∣∣∣ −4x
(1− x)2

)
, (51)

where ρ̂ is the vector of roots of the 2k degree polynomial

P̂2k(t; α, β, δ, γ) = 4F3

(
−k,−t, t + α, β + δ + γ + k− α− 1

β, δ, γ

)
. (52)

Renaming parameters, it is easy to see that (51) is a generalization of (46) to which
it reduces when k = 1. One more extension is given in ([21], Theorem 3.7) but with
characteristic polynomial defined recursively. We omit this case here.

Case V: (u, v) = (2, 2). The following transformation is known as Kummer’s second
quadratic transformation ([24], (6.5)) (cf. ([28], 15.8.13)):

2F1

(
α, β
2β

∣∣∣∣2x
)
= (1− x)−α

2F1

(
α/2, α/2 + 1/2

β + 1/2

∣∣∣∣ x2

(1− x)2

)
, (53)

where −1 < x < 1/2. This formula remains valid for −1 < x < 1 if we assume that
−α ∈ N so that both sides terminate.
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Kummer’s transformation (53) was generalized by Miller and Paris in ([24], Theorem 5)
to generalized hypergeometric functions with integral parameter differences as follows.
According to ([24], (6.1)), we have:

F
(

α, β−m, η+ 1
2β, η

∣∣∣∣2x
)
= (1− x)−αF

(
α/2, α/2 + 1/2, f + m

β + 1/2, f

∣∣∣∣ x2

(1− x)2

)
(54)

for x < 1/2, where η is the vector of roots of the polynomial

R2m(t) =
m

∑
k=0

(−1)k(f)m(t)2k(β−m− t)m−k

4kk! r+1Fr

(
−k, f + m

f

)
. (55)

Formula (54) is true for 0 < x < 1 if we assume that−α ∈ N so that both sides terminate.
Case VI: (u, v) = (2, 1). According to ([28], 15.8.14), we have for |x| < 1.

2F1

(
α, β
2β

∣∣∣∣x) = (1− x)−α/2
2F1

(
α/2, β− α/2

β + 1/2

∣∣∣∣ −x2

4(1− x)

)
. (56)

3. G-Function Integral Method: Results

By the application of Lemma 1 to case i transformation, i ∈ {I, I I, I I I, IV, V, VI},
playing the role of (3) and using case i summation formulas for summing the generalized
hypergeometric function on the right-hand side of (8), we arrive at the transformation
formulas below, grouped according to the values of (u, v) in (3).

A remark is here in order, regarding the convergence regions of the identities presented
below. According to ([11], Theorem 2.1.2), the generalized hypergeometric series (1) with
P(n) ≡ 1 converges absolutely at x = 1 if <(∑ bi −∑ aj) > 0. If P(n) is a polynomial of
degree m, it follows immediately from the definition of the Pochhammer symbol or also
from (2) that this condition must be modified to <(∑ bi −∑ aj) > m. This condition gives
the convergence regions for the identities involving non-terminating series. For terminating
series, we have finite summations so that the identities are true for all values of parameters
such that no denominator vanishes.

3.1. Case I: (u, v) = (1, 0)

Fix r, l ∈ N, m ∈ Nr, f ∈ Cr, p ∈ Nl , h ∈ Cl , a, b, d, e ∈ C (recall that m = m1 +
· · ·+ mr, p = p1 + · · ·+ pl). By an application of the beta integral method to the second
Miller–Paris transformation (32), Kim, Rathie and Paris proved in [36] that

F
(

a, b, d, f + m, h + p
c, e, f, h

)
=

Γ(e)Γ(c + e− a− b− d−m− p)
Γ(e− d)Γ(c + e− a− b−m− p)

F
(

c− a−m− p, c− b−m− p, d, ζ̂∗ + 1
c, c + e− a− b−m− p, ζ̂∗

)
, (57)

where <(e− d) > 0, <(c + e− a− b− d−m− p) > 0, (c− b−m− p)m+p 6= 0, (c− b−
a)m+p 6= 0, ζ̂∗ are the roots of the polynomial Q̂m+p(a, b, c, (f, h), (m, p); t) defined in (33).

The following theorem shows that the above formula can be viewed as an extreme
case of a family of transformations of the left-hand side.

Theorem 1. Suppose that (1 + a + b − c)m 6= 0, (c − a − m)m 6= 0, (c − b − m)m 6= 0
and convergence conditions <(e − d − p) > 0 and <(c + e − a − b − d − m − p) > 0 are
satisfied. Then,

F
(

a, b, d, f + m, h + p
c, e, f, h

)
= Λ·F

(
c− a−m, c− b−m, d, ζ̂ + 1
c, e + c− a− b−m, ζ̂

... Yp(1, 0)
)

, (58)
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where

Λ =
Γ(e + c− a− b−m− d)Γ(e)

(h)pΓ(e + c− a− b−m)(1 + d− e− c + a + b + m)p
,

the polynomial Yp(1, 0) = Yp(1, 0; z) is defined in (11) with λ = c− a− b−m, ζ̂ are the roots of
the polynomial Q̂m(a, b, c, f, m; t) defined in (33).

Formula (58) remains valid for m = 0 if the parameters f + m, f, ζ̂ + 1, ζ̂ are omitted.

Proof. Conditions of the theorem ensure that transformation (32) holds. This transforma-
tion is a particular case of (3) if we identify the parameters as follows:

α = (a, b, f + m), β = (c, f), λ = c− a− b−m, δ = (c− a−m, c− b−m, ζ̂ + 1),

γ = (c, ζ̂), D = 1, u = 1, v = 0.

Setting a = (d, h + p), b = (e, h), we can apply Lemma 1 to conclude that

F
(

a, b, d, f + m, h + p
c, e, f, h

)
=

∞

∑
k=0

(c− a−m)k(c− b−m)k(ζ̂ + 1)k(d)k(h + p)k

(c)k(e)k(h)k(ζ̂)kk!
F
(

a + b + m− c, d + k, h + p + k
e + k, h + k

)
.

Summing the hypergeometric function of the right-hand side by Formula (21), we
arrive at (58). If m = 0, instead of the Miller–Paris transformation (32), start with the second
Euler–Pfaff transformation (31).

If e = d + 1, the polynomial Yp(1, 0; z) has the form (13), so that (58) reduces to yet
another extension of the Karlsson–Minton summation theorem (14):

F
(

a, b, d, f + m, h + p
c, d + 1, f, h

)
=

Γ(c− a− b−m + 1)Γ(d + 1)(h− d)p

Γ(d + c− a− b−m + 1)(h)p
F
(

c− a−m, c− b−m, d, ζ̂ + 1
c, d + c− a− b−m + 1, ζ̂

)
.

This formula holds provided that c− a−m or c− b−m is a negative integer.
For r = l = 1, f = ( f ), h = (h), m1 = p1 = 1, the polynomial Q̂1(t) takes the

form ([36], p. 116).

Q̂1(t) = 1 +
(c− a− b− 1) f + ab
(c− a− 1)(c− b− 1)

t
f

.

Then, in view of (15), (16), Formula (58) reduces to

5F4

(
a, b, d, h + 1, f + 1

c, e, h, f

)
=

((e− d− 1)h + (c− a− b− 1)(h− d))Γ(e)Γ(s∗)
hΓ(s∗ + d + 1)Γ(e− d)

× 5F4

(
c− a− 1, c− b− 1, d, ξ̂ + 1, ζ̂ + 1

c, e + c− a− b− 1, ξ̂, ζ̂

)
, (59)

where s∗ = e + c− a− b− d− 2, c− a− 1 6= 0, c− b− 1 6= 0,

ξ̂ = h +
(c− a− b− 1)(h− d)

e− d− 1
, ζ̂ =

(c− a− 1)(c− b− 1) f
(c− a− b− 1) f + ab

.

Note that ξ̂ and ζ̂ are linear-fractional functions of parameters, while, in contrast, the
application of the Kim, Rathie and Paris Formula (57) to the left-hand side of (59) leads to
5F4 on the right-hand side, containing the conjugate quadratic roots among parameters.
Setting d = h leads to the m = 1 case of (57).

Setting m = 0, l = 1, h = (h), p = (1). Then, formula (58) from Theorem 1 takes
the form
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4F3

(
a, b, d, h + 1

c, e, h

)
=

((e− d− 1)h + (c− a− b)(h− d))Γ(e)Γ(s)
(e− d− 1)hΓ(s + d + 1)Γ(e− d− 1) 4F3

(
c− a, c− b, d, ξ∗ + 1

c, e + c− a− b, ξ∗

)
, (60)

where s = e + c − a − b − d − 1, ξ∗ = h + (c − a − b)(h − d)/(e − d − 1). We remark
that Formula (63), obtained by setting m = 0, p = 1 in (57) (see ([36], p. 116)), has
the right-hand side essentially different from the one above. Both our identity above
and (63) can be applied to themselves repeatedly. We found several other transformations
connecting the 4F3 functions with one unit shift and undertook a group-theoretic study of
their properties in [40]. The group-theoretic properties of terminating Saalschützian 4F3
(i.e., with parametric excess equal to unity) have been studied in [8,9,41].

Theorem 2. Suppose that (1 + a + b− c)m 6= 0, (c− a−m)m 6= 0, (c− b−m)m 6= 0, n ∈ N
and g + e + n− d + λ = 1, where λ = c− a− b−m. Then,

F
(
−n, a, b, d, f + m

c, g, e, f

)
=

(g + λ)n(e + λ)n

(g)n(e)n
F
(
−n, a + λ, b + λ, d, ζ̂ + 1

c, g + λ, e + λ, ζ̂

)
, (61)

where ζ̂ is the vector of zeros of the polynomial Q̂m(a, b, c, f, m; t) defined in (33). Hypergeometric
functions on both sides of the above formula are Saalschützian.

Proof. Put a = (−n, d), b = (g, e). Apply Lemma 1 to the transformation (32) playing the
role of (3) (with parameter identification α = (a, b, f + m), β = (c, f), λ = c− a− b−m,
δ = (c− a−m, c− b−m, ζ̂ + 1), γ = (c, ζ̂), D = 1, u = 1, v = 0). Use Formula (17) to sum
the hypergeometric function on the right-hand side to complete the proof.

The most useful case of the above theorem is r = m = 1:

5F4

(
−n, a, b, d, f + 1

c, g, e, f

)
=

(g + c− a− b− 1)n(e + c− a− b− 1)n

(g)n(e)n
5F4

(
−n, c− a− 1, c− b− 1, d, ζ̂ + 1

c, g + c− a− b− 1, e + c− a− b− 1, ζ̂

)
, (62)

where g + e + n− d + c− a− b = 2 and

ζ̂ =
(c− a− 1)(c− b− 1) f
(c− a− b− 1) f + ab

.

Letting n→ ∞, g = 2− n + d− e− c + a + b→ −∞, while keeping other parameters
fixed, we obtain

4F3

(
a, b, d, f + 1

c, e, f

)
=

Γ(e)Γ(e + c− a− b− 1− d)
Γ(e− d)Γ(e + c− a− b− 1) 4F3

(
c− a− 1, c− b− 1, d, ζ̂ + 1

c, e + c− a− b− 1, ζ̂

)
. (63)

This is a particular case of the Kim, Rathie and Paris Formula (57) derived by the beta
integral method ([36], p. 116). The limit transition can be justified by Tannery’s theorem
which is a particular case of the Lebesgue-dominated convergence theorem.

If we let a, c→ ∞ while c− a = 2− n + d + b− g− e is fixed, we arrive at a transfor-
mation for general terminating 4F3 with one unit shift:

4F3

(
−n, d, b, f + 1

g, e, f

)
=

(g− d)n(e− d)n

(g)n(e)n
4F3

(
−n, d, 1− n + d + b− g− e, ζ̂∗ + 1

1− g + d− n, 1− e + d− n, ζ̂∗

)
,

where ζ̂∗ = f (1 + b + d− n− g− e)/b.
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If we let f → ∞ in (62), we obtain (recall that λ = c− a− b− 1):

4F3

(
−n, d, a, b

g, e, c

)
=

(g + λ)n(e + λ)n

(g)n(e)n
5F4

(
−n, d, a + λ, b + λ, ζ̂∗∗ + 1

g + λ, e + λ, c, ζ̂∗∗

)
,

where ζ̂∗∗ = (c− a− 1)(c− b− 1)/(c− a− b− 1) and the condition g+ e+ c+ n− a− b−
d = 2 must be satisfied. This condition says that the 4F3 on the left-hand side is 2-balanced,
while 5F4 on the right-hand side is Saalschützian. As the right-hand side above can be
written as a linear combination of two 4F3 functions, this formula can be viewed as a
three-term relation for terminating 2-balanced 4F3.

Setting d = f , g = f + 1 in (62), we obtain a Saalschützian 3F2 on the left-hand side.
The condition g + e + c + n− a− b− d = 2 becomes e + c− a− b− 1 = −n, so that the
function 5F4 on the right-hand side reduces to 4F3 truncated at the n-term. Using the
notation [4F3]n for such a truncated series and renaming the parameters according to A = f ,
B = c− a− 1, D = c− b− 1, E = c, G = f + c− a− b, we obtain the following curious
summation formula[

4F3

(
A, B, D, ζ̂ + 1

G, E, ζ̂

)]
n
=

(A + 1)n(B + 1)n(D + 1)n

(G)n(E)nn!
, (64)

where the formula for ζ̂ in terms of the new parameters takes the form:

ζ̂ =
e3(A, B, D)

e2(A, B, D)− e2(1− G, 1− E)
.

Here, ek is k-th elementary symmetric polynomial. The Saalschützian condition
e1(A, B, D) + e1(1− G, 1− E) = 0 must be satisfied for the validity of this formula. This is
a summation formula with non-linearly constrained parameters—a rather rare species in the
hypergeometric literature. Letting n→ ∞ in this formula, we recover our recent result ([37],
(45)). For instance, if A = B = C, 3A = −2(1− G) = −2(1− E), we obtain

n

∑
j=0

[(A)j]
3(A + 3j/4)

[(3A/2 + 1)j]2 j!
=

A[(A + 1)n]3

[(3A/2 + 1)n]2n!
.

On the other hand, if we set d = f , c = f + 1 in (62), we obtain Saalschützian 3F2 on
both sides which does not lead to any new formulas.

Theorem 3. Suppose that (1 + a + b− c)m 6= 0, (c− a−m)m 6= 0, (c− b−m)m 6= 0, n ∈ N
and g + e + n− d + λ = 2, where λ = c− a− b−m. Then,

F
(
−n, a, b, d, h + 1, f + m

c, g, e, h, f

)
= Ω·F

(
−n, d, a + λ, b + λ, µ + 1, ζ̂ + 1

g + λ, e + λ, c, µ, ζ̂

)
, (65)

where

Ω =
(g + λ)n−1(e + λ)n−1

h(g)n(e)n
(nd(h + λ) + h(g + λ− 1)(e + λ− 1)), (66)

µ =
nd(h + λ) + h(g + λ− 1)(e + λ− 1)

λ(h− g + 1)− (g + n− 1)(g− d− 1)
(67)

and ζ̂ is the vector of zeros of the polynomial Q̂m(a, b, c, f, m; t) defined in (33). Hypergeometric
functions on both sides are (65) Saalschützian.

Proof. Set a = (−n, d, h + 1), b = (g, e, h). We again apply Lemma 1 to the trans-
formation (32) (with parameters identified as follows: α = (a, b, f + m), β = (c, f),
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λ = c− a− b−m, δ = (c− a−m, c− b−m, ζ̂ + 1), γ = (c, ζ̂), D = 1, u = 1, v = 0). The
right-hand side of (8) from Lemma 1 is then

∞

∑
k=0

(δ)k(−n)k(d)k(h + 1)k
(γ)k(e)k(g)k(h)kk! 4F3

(
−λ,−n + k, d + k, h + k + 1

g + k, e + k, h + k

)
.

It remains to apply (18) to sum the hypergeometric function on the right-hand side.

The most useful case of the above Theorem is r = m = 1:

6F5

(
−n, d, a, b, h + 1, f + 1

g, e, c, h, f

)
= Ω · 6F5

(
−n, d, a + λ, b + λ, µ + 1, ζ̂ + 1

g + λ, e + λ, c, µ, ζ̂

)
, (68)

where ζ̂ = (c− a− 1)(c− b− 1) f /[ab+(c− a− b− 1) f ], λ = c− a− b− 1 and Saalschütz’s
condition g + e + n − d + λ = 2 is satisfied. The numbers Ω and µ are given in (66)
and (67), respectively.

If we let n→ ∞, g = 2− n + d− e− λ→ −∞, while keeping other parameters fixed,
we recover formula (59).

Next, if f → ∞ in (68), we obtain (recall that λ = c− a− b− 1):

5F4

(
−n, d, a, b, h + 1

g, e, c, h

)
= Ω · 6F5

(
−n, d, a + λ, b + λ, µ + 1, ζ̂∗ + 1

g + λ, e + λ, c, µ, ζ̂∗

)
,

where ζ̂∗ = (c− a− 1)(c− b− 1)/(c− a− b− 1), Ω and µ are defined by (66) and (67),
respectively, and the condition g + e + n− d + λ = 2 is satisfied. This condition states that
the 6F5 on the right-hand side is Saalschützian, while 5F4 on the left-hand side is 2-balanced.

Finally, if we let a, c → ∞ while c− a = 3− n + d + b− g− e is fixed, we arrive at
the transformation

5F4

(
−n, b, d, h + 1, f + 1

g, e, h, f

)
= Ω̂ · 5F4

(
−n, d, 2− g− e− n + d + b, µ̂ + 1, ζ̂∗∗ + 1

2− g− n + d, 2− e− n + d, µ̂, ζ̂∗∗

)
,

where ζ̂∗∗ = f (2 + b + d− n− g− e)/b,

µ̂ =
nd(2 + h + d− n− e− g) + h(1 + d− n− e)(1 + d− n− g)
(2 + d− n− e− g)(h− g + 1)− (g + n− 1)(g− d− 1)

and

Ω̂ =
(2 + d− n− e)n−1(2 + d− n− g)n−1

h(g)n(e)n

× (nd(2 + h + d− n− e− g) + h(1 + d− n− e)(1 + d− n− g)).

The function on the right-hand side has the same type as the function on the left-hand
side (terminating 5F4 with two unit shifts), so that this transformation can be iterated.

The proofs of the above theorems follow the same simple pattern: an application of
Lemma 1 to a Case I transformation followed by an application of a suitable summation
formula. Therefore, below, we simply list the remaining results obtained in this way for the
case (u, v) = (1, 0).

Combination of (32) with (19) (renaming a2 = d, b1 = g, b2 = e), we obtain
the transformation

F
(
−n, a, b, d, f + m

c, g, e, f

)
= B·F

(
−n, a + λ, b + λ, d, ν + 1, ζ̂ + 1

c, g + λ, e + λ, ν, ζ̂

)
,
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where λ = c− a− b−m, g + e + n + λ− d = 2, (1 + a + b− c)m 6= 0, (c− a−m)m 6= 0,
(c− b−m)m 6= 0, ζ̂ is the vector of zeros of the polynomial Q̂m(a, b, c, f, m; t), and according
to (19)

B =
(g + λ)n−1(e + λ)n−1

(g)n(e)n
(nd + (g + λ− 1)(e + λ− 1)),

ν =
(nd + (g + λ− 1)(e + λ− 1))

g + e + n− d + 2(λ− 1)
.

Combination of (32) with (20), we obtain the transformation

F
(

−n, a, b, α, f + m
c, 1 + λ + α, 1− 2λ− n, f

)
= G·F

(
−n, a + λ, b + λ, α,−α− 2λ− 2n + 1, ζ̂ + 1

c, 1− λ− n, α + 2λ + 1,−α− 2λ− 2n, ζ̂

)
,

where λ = c− a− b−m, (1 + a + b− c)m 6= 0, (c− a−m)m 6= 0, (c− b−m)m 6= 0, ζ̂ is
the vector of zeros of the polynomial Q̂m(a, b, c, f, m; t) defined in (33) and

G = − (α + 2λ)n(λ)n(−α− 2λ− 2n)
(2λ)n(1 + λ + α)n(α + 2λ)

.

3.2. Case II: (u, v) = (1, 1)

Fix r, l ∈ N, m ∈ Nr, f ∈ Cr, p ∈ Nl , h ∈ Cl , a, b, d, e ∈ C (recall that m = m1 + · · ·+
mr, p = p1 + · · ·+ pl). By an application of the beta integral method to the first Miller–Paris
transformation (35), Kim, Rathie and Paris proved in [36] that

F
(
−n, b, d, f + m, h + p

c, e, f, h

)
=

(e− d)n

(e)n
F
(
−n, c− b−m− p, d, ζ∗ + 1

c, 1− e + d− n, ζ∗

)
, (69)

where ζ∗ are the roots of the polynomial Qm+p(b, c, (f, h), (m, p); t), <(e− d) > 0, b 6= f j,
1 ≤ j ≤ r, (c − b − m − p)m+p 6= 0. Similarly to the previous case (u, v) = (1, 0), our
approach embeds this identity into a family of transformations. Members of this family
generally have two characteristic polynomials of lower degree: one of degree m and the
other of degree p in contrast to one polynomial Qm+p of degree m + p for (69).

Theorem 4. Suppose b 6= f j, j = 1, . . . , r, (c− b−m)m 6= 0. Then, for each n ∈ N, we have

F
(
−n, b, d, f + m, h + p

c, e, f, h

)
=

(e− d)nΓ(e− d)
(e)n(1 + d− e− n)p(h)p

F
(
−n, c− b−m, d, ζ + 1
c, 1 + d− e− n + p, ζ

... Yp(1, 1)
)

. (70)

Here, the polynomial Yp(1, 1) = Yp(1, 1; z) is defined in (11) with λ = n, ζ is the vector of
zeros of the polynomial Qm(a, b, c, f, m; t) defined in (36).

Formula (70) remains valid in the case m = 0, if we omit the parameters f + m, f, ζ + 1, ζ.

Proof. Conditions of the theorem imply that transformation (35) holds true. This transfor-
mation is a particular case of (3) if we identify the parameters as follows: w = 1, M = 1,
α = (−n, b, f + m), β = (c, f), λ = n, δ = (−n, c− b−m, ζ + 1), γ = (c, ζ), D = −1, u = 1,
v = 1. Setting a = (d, h + p), b = (e, h), we apply Lemma 1 to obtain

F
(
−n, b, d, f + m, h + p

c, e, f, h

)
=

∞

∑
k=0

(−n)k(c− b−m)k(ζ + 1)k(d)k(h + p)k(−1)k

(c)k(e)k(h)k(ζ)kk!
F
(
−n + k, d + k, h + p + k

e + k, h + k

)
.

Application of the summation Formula (22) to the hypergeometric function on the
right-hand side completes the proof. In the case m = 0, instead of the first Miller–Paris
transformation (35), start with the first Euler–Pfaff transformation (34).
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For r = l = 1, f = ( f ), h = (h), m1 = p1 = 1, λ = n by using (2) Formula (70) from
Theorem 4 takes the form

5F4

(
−n, b, d, h + 1, f + 1

c, e, h, f

)
=

(e− d)n

h(e)n

(
h +

nd
1 + d− e− n

)
5F4

(
−n, c− b− 1, d, ζ + 1, ξ∗ + 1

c, 2 + d− e− n, ζ, ξ∗

)
,

where

ξ∗ =
(h− d)n + (e− d− 1)h

e− h− 1
, ζ =

(c− b− 1) f
f − b

.

Here, ξ∗ is the negated root of Y1(1, 1; z) according to (16) and ζ is the root of Q1(t)
according to (36) (see also ([36], p. 116)). We further applied (15) to express Y1(1, 1; 0).

In a similar fashion, setting m = 0, l = 1, h = (h), p = (1), Formula (70) takes the
form

4F3

(
−n, b, d, h + 1

c, e, h

)
=

(e− d)n

(e)n

(
1 +

dn
h(1 + d− e− n)

)
4F3

(
−n, c− b, d, ξ∗ + 1
c, 2 + d− e− n, ξ∗

)
,

where ξ∗ is as defined above. We note that Formula (69) due to Kim, Rathie, Paris under
these restrictions reads ([36], p. 116)

4F3

(
−n, b, d, f + 1

c, e, f

)
=

(e− d)n

(e)n
4F3

(
−n, c− b− 1, d, ζ + 1

c, 1− e− d− n, ζ

)
,

where ζ = (c− b− 1) f /( f − b).
Finally, combination (37) with (22) yields a rather unusual transformation involving a

terminating hypergeometric function evaluated at 2:

F
(

α, α + 1/2, ∆(d, 2), ∆(h + p, 2)
β, ∆(e, 2), ∆(h, 2)

)
= C · F

(
2α, β− 1/2, d, e
2β− 1, e, 1 + d− e + 2α + p

... Yp(1, 1)
∣∣∣∣2), (71)

where −d ∈ N,

C =
Γ(e− 2α− d)Γ(e)

Γ(e− 2α)(h)p(1 + d− e + 2α)p
,

and the polynomial Yp(1, 1) is defined in (11) with λ = −2α.

3.3. Case III: (u, v) = (1,−1)

Combining (38) with (23) and renaming parameters according to A = α, B = β, C = a2,
D = b1, we obtain the transformation

4F3

(
1, A, B, C

(A + B + 1)/2, D, 1 + 2C− D

)
= 4F3

(
1, A/2, B/2, C

(A + B + 1)/2, (1 + D)/2, 1 + C− D/2

)
,

valid if both sides terminate.
Combining (38) with (24) and writing a = α, b = β, we obtain the transformation

F
(

a, b, d, h + p
(a + b + 1)/2, e, h

)
=

Γ(e− d)
(1− e + d)p(h)p

F
(

a/2, b/2, d, e− d− p
(a + b + 1)/2, ∆(e, 2)

... Yp(1,−1)
)

,

where Yp(1,−1) is defined in (11) with λ = 0, and both sides must terminate. This
transformation can further be extended to any values of parameters making both sides
converge using Carlson’s theorem (see an example of such extension in Case IV below). If
p = l = 1, it reduces to

4F3

(
a, b, d, h + 1

(a + b + 1)/2, e, h

)
= 5F4

(
a/2, b/2, d, e− d− 1, ξ∗ + 1
(a + b + 1)/2, ∆(e, 2), ξ∗

)
,
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where, according to (16),

ξ∗ = −
(e− d− 1)h

2d− h− e + 1
.

Combinination of (39) with (24) and writing a = α, b = β, we obtain the transformation

F
(

a, 1− a, d, h + p
b, e, h

)
=

Γ(e + b− d− 1)Γ(e)
Γ(e + b− 1)(2− e− b + d)p(h)p

F
(

(b− a)/2, (a + b− 1)/2, d, e + b− d− p− 1
b, ∆(e + b− 1, 2)

... Yp(1,−1)
)

, (72)

where Yp(1,−1) is defined in (11) with λ = b − 1, and both sides must terminate. If
p = l = 1, it reduces to

4F3

(
a, 1− a, d, h + 1

b, e, h

)
=

(
1 +

d(b− 1)
h(2− e− b + d)

)
Γ(e + b− d− 1)Γ(e)
Γ(e + b− 1)Γ(e− d)

× 5F4

(
(b− a)/2, (a + b− 1)/2, d, e + b− d− 2, ξ∗∗ + 1
b, (e + b− 1)/2, (e + b)/2, ξ∗∗

)
,

where both sides must terminate and, according to (16),

ξ∗∗ = −
(h− d)(b− 1) + (e− d− 1)h

2d− h− e + 1
.

3.4. Case IV: (u, v) = (1, 2)

The following transformations are obtained by combining case IV transformations
with case IV summation formulas. Their proofs follow the same simple pattern which we
illustrate by giving a proof of the first transformation. All subsequent formulas are proved
in a similar fashion.

1. Combining Kummer’s first transformation (40) with (26) leads to a transformation of
the general very well-poised 6F5(−1) to 3F2(1):

6F5

(
A, 1 + A/2, B, C, D, E

A/2, 1 + A− B, 1 + A− C, 1 + A− D, 1 + A− E

∣∣∣∣− 1
)
=

Γ(1 + A− C− D− E)
Γ(1 + A)

× Γ(1 + A− C)Γ(1 + A− D)Γ(1 + A− E)
Γ(1 + A− C− D)Γ(1 + A− D− E)Γ(1 + A− C− E) 3F2

(
C, D, E

1 + A− B, C + D + E− A

)
, (73)

where−E ∈ N. This is easily seen to be equivalent to Bailey’s formula ([13], 4.4(2)) (see
also ([11], Theorem 3.4.6)) by an application of the Thomae’s relation ([13], Section 3.2)
to 3F2 to the RHS. The restriction −E ∈ N is then removed by the fact that Bailey’s
formula is n→ ∞ limit of Whipple’s transformation (75), so that the above identity
remains true if parameters are restricted to make both sides converge.
For the proof of (73), apply Lemma 1 to the particular case of (3) given by (40) to obtain

F
(

α, β, a
1− β + α, b

∣∣∣∣− 1
)
= ∑

k

(α/2)k(α/2 + 1/2)k(−4)k(a)k
(1− β + α)kk!(b)k

F
(

α + 2k, a + k
b + k

)
.

Next, we choose the hypergeometric function on the right-hand side to fit the sum-
mation Formula (26) (with λ = −α), i.e., setting a1 = 1 + α/2, a2 = 1 + α − b1,
a3 = 1 + α− b2, a4 = −n, n ∈ N, b0 = α/2, with arbitrary b1, b2 and b3 = 1 + α + n.
Application of (26) after some cancelations and renaming the parameters according to
A = α, B = β, C = 1 + α− b1, D = 1 + α− b2, E = −n leads to (73).
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2. Combination of (41) with (26) after renaming the parameters according to A = α,
B = β, C = 1 + 2α − b1, D = 1 + 2α − b2, E = −n, yields a presumably new
transformation connecting a particular case of well-poised 9F8 to 4F3 which is neither
balanced nor well-poised:

9F8

(
A, 1 + A/2, B, ∆(C, 2), ∆(D, 2), ∆(E, 2)

A/2, 1 + A− B, ∆(1 + 2A− C, 2), ∆(1 + 2A− D, 2), ∆(1 + 2A− E, 2)

)
=

Γ(1 + 2A− C)Γ(1 + 2A− D)Γ(1 + 2A− E)Γ(1 + 2A− C− D− E)
Γ(1 + 2A)Γ(1 + 2A− C− D)Γ(1 + 2A− C− E)Γ(1 + 2A− D− E)

× 4F3

(
A− B + 1/2, C, D, E

A + 1/2, 2A− 2B + 1, C + D + E− 2A

)
, (74)

where −E ∈ N. We will prove that this formula remains true if the series on the
left-hand side converges, while the series on the right-hand side terminates. The proof
is by an application of Carlson’s theorem ([13], p. 40). Indeed, writing E = −n− z,
n ∈ N, we have proved the above identity for z = 0, 1, 2, . . . Next, assume that the
parameters are restricted so that the 7F6 series obtained on the left-hand side by
deleting the parameters containing E is convergent, i.e.,

<(1 + 2A− B− C− D) > 0.

The terms containing E take the form

(−n/2− z/2)k(−n/2− z/2 + 1/2)k
(1/2 + A + n/2 + z/2)k(1 + A + n/2 + z/2)k

which is uniformly (in k) bounded for <(z) ≥ 0 if <(1 + 2A) > 0. Under these
restrictions, the function on the left-hand side is holomorphic and bounded in the
half-plane <(z) ≥ 0. The function

Γ(1 + 2A + n + z)Γ(1 + 2A− C− D + n + z)
Γ(1 + 2A− C + n + z)Γ(1 + 2A− D + n + z)

on the right-hand side is holomorphic and bounded in <(z) ≥ 0 if we additionally
assume that <(1 + 2A− C − D) > 0. Finally, the series 4F3 on the right-hand side
consists of a finite number of terms, say M, and has poles at the points:

z = C + D− 2A− n + j, j = 0, 1, . . . , M

All these points lie in the left half-plane if M < <(2A + n− C− D) and each term is
bounded under this condition. Hence, for any finite M, we can find sufficiently large
n in order that the above condition be satisfied. We are then in the position to apply
Carlson’s theorem to conclude that both sides are equal for <(z) ≥ 0. Additional
assumptions made above can now be removed by analytic continuation.

3. Combination of (42) with (26) gives (after renaming parameters) Whipple’s transfor-
mation ([11], Theorem 3.4.4) of very well-poised 7F6 to 1-balanced 4F3:

7F6

(
A, 1 + A/2, B, C, D, E, F

A/2, 1 + A− B, 1 + A− C, 1 + A− D, 1 + A− E, 1 + A− F

)
=

Γ(1 + A− D)Γ(1 + A− E)Γ(1 + A− F)Γ(1 + A− D− E− F)
Γ(1 + A)Γ(1 + A− D− F)Γ(1 + A− D− E)Γ(1 + A− E− F)

× 4F3

(
1 + A− B− C, D, E, F

1 + A− B, 1 + A− C, D + E + F− A

)
, (75)
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which is valid for −F ∈ N. The formula is then extended to any values of parameters
such that the left-hand sides converges while the right-hand side terminates using
Carlson’s theorem. See details in ([13], Section 5.4).

4. Combination of (43) with (26) gives transformation, connecting general nearly poised
(of the first kind) 4F3 with 1-balanced 5F4 discovered by Bailey ([13], p. 32, 4.6(1)).
After renaming parameters, it takes the form

4F3

(
A, B, C,−n

κ − B, κ − C, κ + n

)
=

(κ)n(κ − B− C)n

(κ − B)n(κ − C)n
5F4

(
∆(κ − A, 2), B, C,−n

∆(κ, 2), κ − A, B + C− κ + 1− n

)
, (76)

where n ∈ N.
5. Combining (44) with (26) after renaming parameters according to A = 2α, κ = 1 + 2β,

B = 1 + 2β− b1, C = 1 + 2β− b2, D = −n, leads to a transformation of a particular
nearly poised (of the first kind) 5F4 to a particular 2-balanced 5F4:

5F4

(
A, 1 + A/2, B, C, D

A/2, κ − B, κ − C, κ − D

)
=

Γ(κ − B)Γ(κ − C)Γ(κ − D)Γ(κ − B− C− D)

Γ(κ)Γ(κ − B− C)Γ(κ − B− D)Γ(κ − C− D)

× 5F4

(
∆(κ − A− 1, 2), B, C, D

∆(κ, 2), κ − A, B + C + D− κ + 1

)
, (77)

where −D ∈ N. This relation resembles ([13], p. 32, 4.6(2)) but does not reduce to it.
Parameters could be extended to cover the case when the left-hand side converges
while the right side terminates using Carlson’s theorem. Furthermore, numerical
experiments show that this identity remains true for any parameters, making both
sides convergent.

6. Combination of (40) and (25) gives transformation of the second kind nearly-poised
4F3(−1) to another 4F3(1) which is neither poised nor balanced:

4F3

(
A, 1 + A/2, B,−n
A/2, 1− B + A, C

∣∣∣∣− 1
)
=

(C− A− n− 1)(C− A)n−1

(C)n

× 4F3

(
1 + A/2, (1 + A)/2, 1− C + A,−n

1− B + A, (2− C + A− n)/2, (3− C + A− n)/2

)
, (78)

where n ∈ N.
7. Combination of (41) and (25) gives the following transformation:

5F4

(
A, 1 + A/2, B,−n/2, (−n + 1)/2
A/2, 1− B + A, C/2, (C + 1)/2

)
=

(C− 2A− n− 1)(C− 2A)n−1

(C)n
×

4F3

(
1 + A, A− B + 1/2, 1− C + 2A,−n

1− 2B + 2A, (2− C + 2A− n)/2, (3− C + 2A− n)/2

)
, (79)

where n ∈ N.
8. Combination of Whipple’s quadratic transformation (42) with (25) gives the following

transformation of the second kind nearly poised 5F4 to Saalschützian 5F4 which was
discovered by Bailey ([13], 4.5(2)):

5F4

(
A, 1 + A/2, B, C,−n

A/2, 1− B + A, 1− C + A, D

)
=

(D− A− n− 1)(D− A)n−1

(D)n
×

5F4

(
1 + A/2, (1 + A)/2, 1− D + A, 1 + A− B− C,−n

1− B + A, 1− C + A, (2− D + A− n)/2, (3− D + A− n)/2

)
, (80)

where n ∈ N.
9. Combination of the Rakha–Rathie transformation (45) with Dougall’s summation

Formula (26) leads to a transformation of a particular Saalschützian 5F4 with one unit



Symmetry 2022, 14, 1541 22 of 31

shift to very well-poised 8F7 with two unit shifts. Renaming the parameters according
to A = 2α, B = α− β− 1/2, C = 1 + 2α− b1, D = 1 + 2α− b2, E = −n, F = δ, it
takes the form:

5F4

(
(A− 1)/2− B, C, D, E, F + 1

(A + 1)/2, A− B + 1, C + D + E− A, F

)
=

Γ(1 + A− C− E)Γ(1 + A− D− E)Γ(1 + A− C− D)Γ(1 + A)

Γ(1 + A− C)Γ(1 + A− D)Γ(1 + A− E)Γ(1 + A− C− D− E)

× 8F7

(
A, 1 + A/2, B, C, D, E, A/2− σ + 1, A/2 + σ + 1

A/2, 1 + A− B, 1 + A− C, 1 + A− D, 1 + A− E, A/2− σ, A/2 + σ

)
, (81)

where −E ∈ N, and

σ2 =
A(A− 2F)(A− 2B− 1)− 2F(A− 2B)

4(A− 2B− 2F− 1)
.

The formula remains true for non-integer E provided that both sides converge. Note
also that we can regard σ on the right-hand side as an arbitrary number while F on
the left-hand side is then easily expressed in terms of σ2.

10. Combination of Wang–Rathie transformation (46) with Dougall’s summation
Formula (26) leads to a transformation of general Saalschützian 5F4 with one unit shift
to a particular very well-poised 9F8 with two unit shifts. Renaming parameters accord-
ing to A = 2α− 1, B = 2α− β− 1, C = 2α− γ, D = 2α− b1,E = 2α− b2, F = −n,
G = δ, it takes the form:

5F4

(
A− B− C, D, E, F, G + 1

1 + A− B, 1 + A− C, D + E + F− A, G

)
=

Γ(A + 1)Γ(1 + A− D− F)Γ(1 + A− E− F)Γ(1 + A− D− E)
Γ(1 + A− F)Γ(1 + A− D)Γ(1 + A− E)Γ(1 + A− D− E− F)

× 9F8

(
A, 1 + A/2, B, C, D, E, F, A/2−ω + 1, A/2 + ω + 1

A/2, 1 + A− B, 1 + A− C, 1 + A− D, 1 + A− E, 1 + A− F, A/2−ω, A/2 + ω

)
, (82)

where −F ∈ N and

ω2 =
GBC

A− B− C− G
+

A2

4
.

If we let −F → ∞ over integers in (82), we obtain a relation for general non-
terminating 4F3 with one unit shift in terms of a very well-poised 8F7(−1) with
two unit shifts

4F3

(
A− B− C, D, E, G + 1

1 + A− B, 1 + A− C, G

)
=

Γ(A + 1)Γ(1 + A− D− E)
Γ(1 + A− D)Γ(1 + A− E)

× 8F7

(
A, 1 + A/2, B, C, D, E, A/2−ω + 1, A/2 + ω + 1

A/2, 1 + A− B, 1 + A− C, 1 + A− D, 1 + A− E, A/2−ω, A/2 + ω

∣∣∣∣− 1
)

. (83)

Note also that we can regard ω on the right-hand side as an arbitrary number while
G on the left-hand side is easily expressed in terms of ω2.

11. Combination of the Rakha–Rathie transformation (45) with (25) leads to a transfor-
mation of a special Saalschützian 5F4 with one unit shift to a particular second kind
nearly poised 6F5 with three unit shifts. Renaming parameters according to A = α,
B = α− β− 1/2, C = 1 + 2α− b, D = δ, we obtain



Symmetry 2022, 14, 1541 23 of 31

5F4

(
−n, A + 1, A− B− 1/2, C, D + 1

1 + 2A− B, ∆(1 + C− n, 2), D

)
= − (1 + 2A− C)n

(C + n)(1− C)n−1
6F5

(
−n, 2A, 1 + A, B, A− σ + 1, A + σ + 1

A, 1 + 2A− B, 1 + 2A− C, A− σ, A + σ

)
, (84)

where n ∈ N, and

σ2 =
(A− B)(A(A− 1)− D/2) + A(D− A)/2

A− B− D− 1/2
.

Note also that we can regard σ or A− σ on the right-hand side as an arbitrary number
while D on the left-hand side is easy to express in terms of σ2.

12. Combination of Wang–Rathie transformation (46) with (25) leads to a transformation
of a special Saalschützian 6F5 with one unit shift to a particular second kind nearly
poised 7F6 with three unit shifts. Renaming parameters according to A = α, B =
2α− β− 1, C = 2α− γ, D = 2α− b, E = δ, we obtain

6F5

(
−n, A, A + 1/2, 2A− B− C− 1, D, E + 1

2A− B, 2A− C, ∆(1 + D− n, 2), E

)
= − (2A− D)n

(D + n)(1− D)n−1
×

7F6

(
−n, 2A− 1, A + 1/2, B, C, A−ω + 1/2, A + ω + 1/2

A− 1/2, 2A− B, 2A− C, 2A− D, A−ω− 1/2, A + ω− 1/2

)
, (85)

where n ∈ N, and

ω2 =
BCE

2A− B− C− E− 1
+

(
A− 1

2

)2
.

Note also that we can regard ω on the right-hand side as an arbitrary number while E
on the left-hand side is easy to express in terms of ω2.

13. Combination of (40) with IPD summation (28) leads to the following identity:

F
(

α, β, d, h + p
1− β + α, e, h

∣∣∣∣− 1
)
=

Γ(e− d− α)Γ(1 + d + α− e)Γ(e)
Γ(e− α)Γ(1 + d + α− e + p)(h)p

× F
(

∆(α, 2), d, 1− e + α
1− β + α, ∆(1 + d + α− e + p, 2)

... Yp(1, 2)
)

, (86)

where −d ∈ N and Yp(1, 2) is defined in (11) with λ = −α.
14. Combination of (41) with IPD summation (28) leads to the following transforma-

tion formula:

F
(

α, β, ∆(d, 2), ∆(h + p, 2)
1− β + α, ∆(e, 2), ∆(h, 2)

)
=

Γ(e− d− 2α)Γ(e)
Γ(e− 2α)(1 + d + 2α− e)p(h)p

× F
(

α, α− β + 1/2, d, 1− e + 2α
1− β + α, ∆(1 + d + 2α− e + p, 2)

... Yp(1, 2)
)

, (87)

where −d ∈ N and Yp(1, 2) is defined in (11) with λ = −2α.
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15. Combination of Whipple’s quadratic transformation (42) with IPD summation (28)
leads to the following identity:

F
(

α, β, δ, d, h + p
1− β + α, 1− δ + α, e, h

)
=

Γ(e− d− α)Γ(1 + d + α− e)Γ(e)
Γ(e− α)Γ(1 + d + α− e + p)(h)p

× F
(

∆(α, 2), 1 + α− β− δ, d, 1− e + α
1− β + α, 1− δ + α, ∆(1 + d + α− e + p, 2)

... Yp(1, 2)
)

, (88)

where −d ∈ N and Yp(1, 2) is defined in (11) with λ = −α.
16. Combination Miller–Paris transformation (47) with Dougall’s summation Formula (26)

leads to a generalization of (73). Renaming parameters according to A = α, B = β,
C = 1 + α− b1, D = 1 + α− b2, E = −n, it takes the form

F
(

A, 1 + A/2, B, C, D, E, η̂+ 1
A/2, 1 + A− B, 1 + A− C, 1 + A− D, 1 + A− E, η̂

∣∣∣∣− 1
)
=

Γ(1 + A− C− D− E)
Γ(1 + A)

× Γ(1 + A− C)Γ(1 + A− D)Γ(1 + A− E)
Γ(1 + A− C− D)Γ(1 + A− D− E)Γ(1 + A− C− E)

F
(

C, D, E, f + m
1 + A− B, C + D + E− A, f

)
, (89)

where −E ∈ N and η̂ are the roots of R̂2m(t; A, B, f, m). This formula extends to
general E via Carlson’s theorem. For m = r = 1, we have 2η̂1,2 = A±

√
A2 − 4 f B. In

this case, we obtain a connection between general 4F3 with one unit shift and very
well-poised 8F7(−1) with two unit shifts. A similar connection is given by (83). These
two transformations, however, are substantially different.
Taking B = −1, −E ∈ N in (89), we obtain a summation formula for Saalschützian (or
1−balanced) 4F3 with one unit shift:

4F3

(
C, D, E, f + 1

2 + A, C + D + E− A, f

)
=

Γ(1 + A)Γ(1 + A− C− D)Γ(1 + A− C− E)Γ(1 + A− D− E)
Γ(1 + A− C)Γ(1 + A− D)Γ(1 + A− E)Γ(1 + A− C− D− E)

×
(

1− CDE(1 + A− f )
f (1 + A− C)(1 + A− D)(1 + A− E)

)
. (90)

17. Combination of Maier’s Formula (49) with Dougall’s summation Formula (26) leads
to a generalization of Whipple’s transformation (75) with k-balanced 4F3 on the right-
hand side. Renaming variables according to A = α, B = β, C = δ, D = 1 + α− b1,
E = 1 + α− b2, F = −n, we can write this identity as follows:

F
(

A, 1 + A/2, B, C, D, E, F, 1− ρ
A/2, 1 + A− B, 1 + A− C, 1 + A− D, 1 + A− E, 1 + A− F, ρ

)
=

Γ(1 + A− D)Γ(1 + A− E)Γ(1 + A− F)Γ(1 + A− D− E− F)
Γ(1 + A)Γ(1 + A− D− F)Γ(1 + A− D− E)Γ(1 + A− E− F)

× 4F3

(
1 + A− B− C− k, D, E, F

1 + A− B, 1 + A− C, D + E + F− A

)
, (91)

where −F ∈ N. The formula is then extended to any values of parameters such that
the left-hand side converges while the right-hand side terminates using Carlson’s
theorem. The polynomial P2k(t; A, B, C) is defined in (50). For k = 1, its roots are
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2ρ1,2 = −A±
√

A2 − 4BC. Using B = −1 and k = 1 in Formula (91) and assuming
that −F ∈ N, we have a summation formula for 2−balanced 3F2:

3F2

(
D, E, F

2 + A, D + E + F− A

)
=

Γ(1 + A)Γ(1 + A− D− F)Γ(1 + A− D− E)Γ(1 + A− E− F)
Γ(1 + A− D)Γ(1 + A− E)Γ(1 + A− F)Γ(1 + A− D− E− F)

×
(

1 +
DEF

(1 + A− D)(1 + A− E)(1 + A− F)

)
. (92)

This identity is equivalent to the formula ([35], (3.1)) due to Kim and Rathie who
extended Saalschützian summation formula for 3F2 to 2−balanced case.

18. Combination of Choi and Rathie’s quadratic transformation (43) with IPD summation
Formula (28) leads to the following extension of the Karlsson–Minton summation
theorem (14):

F
(

α, β, d, h + p
β + 1, e, h

)
=

Γ(e− d− 2β)Γ(e)
Γ(e− 2β)(1 + d + 2β− e)p(h)p

× F
(

β, β− α/2 + 1/2, β− α/2 + 1, d, 1− e + 2β
β + 1, 2β− α + 1, ∆(1 + d + 2β− e + p, 2)

... Yp(1, 2)
)

, (93)

where −d ∈ N, p = p1 + · · ·+ pl and Yp(1, 2) is defined in (11) with λ = −2β.
19. Closely related to the previous transformation is the formula obtained by using (44)

instead of (43) in combination with the IPD summation Formula (28):

F
(

α + 1, 2α, β, d, h + p
α, β + 1, e, h

)
=

Γ(e− d− 2β)Γ(e)
Γ(e− 2β)(1 + d + 2β− e)p(h)p

× F
(

β, β− α, β− α + 1/2, d, 1− e + 2β
β + 1, 2β− 2α + 1, ∆(1 + d + 2β− e + p, 2)

... Yp(1, 2)
)

, (94)

where −d ∈ N, p = p1 + · · ·+ pl and Yp(1, 2) is defined in (11) with λ = −2β.
20. Combination of Rakha and Rathie’s quadratic transformation (45) with IPD summa-

tion Formula (28) leads to the transformation:

F
(

2α, α− β− 1/2, 1 + α− σ, 1 + α + σ, d, h + p
α + β + 3/2, α− σ, α + σ, e, h

)
=

Γ(e− d− 2α)Γ(e)
Γ(e− 2α)(1 + d + 2α− e)p(h)p

F
(

α, β, δ + 1, d, 1− e + 2α
α + β + 3/2, δ, ∆(1 + d + 2α− e + p, 2)

... Yp(1, 2)
)

, (95)

where −α ∈ N and/or −d ∈ N, p = p1 + · · ·+ pl ,

σ2 =
α2β− αβδ− βδ/2− δ/4

β− δ

and Yp(1, 2) is defined in (11) with λ = −2α.
21. Combination of Miller and Paris’ quadratic transformation (47) and Bailey’s summa-

tion (25) gives a generalization of (78):

F
(

α, 1 + α/2, β,−n, η̂+ 1
α/2, 1− β + α, δ, η̂

∣∣∣∣− 1
)

=
(δ− α− n− 1)(δ− α)n−1

(δ)n
F
(

1 + α/2, (1 + α)/2, 1− δ + α,−n, f + m
1− β + α, (2− δ + α− n)/2, (3− δ + α− n)/2, f

)
, (96)
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where n ∈ N and η̂ are the roots of the polynomial R̂2m(t; α, β, f, m) defined in (48).
For m = r = 1, these roots are 2η̂1,2 = α±

√
α2 − 4 f β.

22. Combination of Maier’s transformation (49) and Bailey’s summation (25) gives a
generalization of Bailey’s Formula (80):

F
(

α, 1 + α/2, β, δ,−n
α/2, 1 + α− β, 1 + α− δ, γ

... P2k

)
=

(γ− α− n− 1)(γ− α)n−1

(γ)n
5F4

(
1 + α/2, (1 + α)/2, α− β− δ− k + 1,−n, 1− γ + α

1 + α− β, 1 + α− δ, (2− γ + α− n)/2, (3− γ + α− n)/2

)
, (97)

where n, k ∈ N and the polynomial P2k(t; α, β, δ) is given in (50). For k = 1, its roots
are 2ρ1,2 = −α±

√
α2 − 4βδ. The function 5F4 on the RHS is k + 1-balanced.

Setting β = −1 and k = 1 in Formula (97), we obtain

4F3

(
1 + α/2, (1 + α)/2,−n, 1− γ + α

2 + α, ∆(2− γ + α− n, 2)

)
=

(γ)n

(γ− α− n− 1)(γ− α)n−1
×
(

1− n
γ

)
.

The function on the left-hand side is 2−balanced 4F3.
23. Further generalization of the above transformation is obtained by using (51) instead

of (49) and (25) to sum the generalized hypergeometric function on the RHS of (8):

F
(

α, 1 + α/2, β, δ,−n
α/2, 1 + α− β, 1 + α− δ, λ

... P̂2k

)
=

(λ− α− n− 1)(λ− α)n−1

(λ)n
6F5

(
1 + α/2, (1 + α)/2, α− β− δ− k + 1,−n, 1− λ + α, γ + k

1 + α− β, 1 + α− δ, (2− λ + α− n)/2, (3− λ + α− n)/2, γ

)
, (98)

where n, k ∈ N and the polynomial P̂2k(t; α, β, δ, γ) is defined in (52). The function 6F5
on the RHS is Saalschützian.
Setting β = −1 and k = 1 in Formula (98), we obtain a summation formula for a
particular Saalschützian (or 1−balanced) 4F3 with one unit shift:

4F3

(
1 + α/2, (1 + α)/2,−n, 1− λ + α, γ + 1

2 + α, ∆(2− λ + α− n, 2), γ

)
=

(λ)n

(λ− α− n− 1)(λ− α)n−1

(
1 +

n(1 + α− γ)

λγ

)
, (99)

where n ∈ N.
24. Combination of Maier’s transformation (51) with (26) leads to a generalization of

Whipple’s transformation (75). Renaming parameters according to A = α, B = β,
C = δ, D = 1 + α− b1, E = 1 + α− b2, F = −n, it can be written as

F
(

A, 1 + A/2, B, C, D, E, F
A/2, 1 + A− B, 1 + A− C, 1 + A− D, 1 + A− E, 1 + A− F

... P̂2k

)
=

Γ(1 + A− D)Γ(1 + A− E)Γ(1 + A− F)Γ(1 + A− D− E− F)
Γ(1 + A)Γ(1 + A− D− F)Γ(1 + A− D− E)Γ(1 + A− E− F)

× 5F4

(
1 + A− B− C, D, E, F, G + k

1 + A− B, 1 + A− C, D + E + F− A, G

)
, (100)

where −F, k ∈ N. The formula is then extended to non-integer values of F, making
both side convergent using Carlson’s theorem. The function on the right-hand side is
general Saalschützian 5F4 with one integral shift. The polynomial P̂2k(t; A, B, C, G) is
defined in (52). For k = 1, its roots are given by

2ρ̂1,2 = −A±
√

A2 − 4BCG/(B + C + G− A).
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25. Combination of Wang and Rathie’s Formula (46) with IPD summation Formula (28)
yields:

F
(

2α− 1, 2α− β− 1, 2α− γ, 1/2 + α−ω, 1/2 + α + ω, d, h + p
β + 1, γ, α− 1/2−ω, α− 1/2 + ω, e, h

)
=

Γ(e− d + 1− 2α)Γ(e)
Γ(e− 2α + 1)(d + 2α− e)p(h)p

F
(

α, α− 1/2, β + γ− 2α, δ + 1, d, 2α− e
β + 1, γ, δ, ∆(d + 2α− e + p, 2)

... Yp(1, 2)
)

, (101)

where −d ∈ N, p = p1 + · · ·+ pl ,

ω2 = (α− 1/2)2 − δ(γ− 2α)(2α− β− 1)
β + γ− 2α− δ

.

and Yp(1, 2) is defined in (11) with λ = 1− 2α.
26. Combination of Miller and Paris’ quadratic transformation (47) and IPD summation

Formula (28) yields:

F
(

α, β, d, η̂+ 1, h + p
1− β + α, e, η̂, h

∣∣∣∣− 1
)

=
Γ(e− α− d)Γ(e)

Γ(e− α)(1 + d− e + α)p(h)p
F
(

α/2, (α + 1)/2, d, 1 + α− e, f + m
1− β + α, ∆(1 + d + α− e + p, 2), f

... Yp(1, 2)
)

, (102)

where −d ∈ N and η̂ are the roots of the polynomial R̂2m(t; α, β, f, m) defined in (48),
p = p1 + · · ·+ pl , and Yp(1, 2) is defined in (11) with λ = −α. Formula (102) extends
to non-integer values of d.

27. Combination of Maier’s transformation (49) and IPD summation Formula (28) yields:

F
(

α, β, δ, d, h + p
1 + α− β, 1 + α− δ, e, h

... P2k

)
=

Γ(e− α− d)Γ(e)
Γ(e− α)(1 + d− e + α)p(h)p

F
(

α/2, (α + 1)/2, d, 1 + α− β− δ− k, 1 + α− e
1− β + α, 1− δ + α, ∆(1 + d + α− e + p, 2)

... Yp(1, 2)
)

, (103)

where −d, k ∈ N and the polynomial P2k = P2k(t; α, β, δ) is defined in (50) and the
polynomial Yp(1, 2) is defined in (11) with λ = −α. For k = 1, the roots of P2k are

2ρ1,2 = −α±
√

α2 − 4βδ.

Formula (103) extends to non-integer values of d.
28. A generalization of the previous transformation is obtained by using (51) instead

of (49). Combining (51) with IPD summation Formula (28), we obtain:

F
(

α, β, δ, d, h + p
1 + α− β, 1 + α− δ, e, h

... P̂2k

)
=

Γ(e− α− d)Γ(e)
Γ(e− α)(1 + d− e + α)p(h)p

F
(

α/2, (α + 1)/2, d, 1 + α− β− δ− k, 1 + α− e, γ + k
1− β + α, 1− δ + α, ∆(1 + d + α− e + p, 2), γ

... Yp(1, 2)
)

, (104)

where −d ∈ N and the polynomial P̂2k(t; α, β, δ, γ) is defined in (52), and Yp(1, 2) is
given by (11) with λ = −α. For k = 1, the roots of P̂2k are

2ρ̂1,2 = −α±
√

α2 − 4βδγ/(β + δ + γ− α),
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so that the left-hand side can be written as a standard hypergeometric function
using (2). Formula (104) extends to non-integer values of d. Setting p = 1, h = h
to be scalars in (104) and assuming that the parameters are subject to the relation
1 + α− β− δ− k = −1, we obtain the following exotic summation formula

F
(

α, β, δ, d, h + 1
1 + α− β, 1 + α− δ, e, h

... P̂2k

)
=

Γ(e− α− d)Γ(e)
Γ(e− d)Γ(e− α)(1 + d + α− e)h

×
(

d(α)2(e− α− 1)(γ + k)[(α + 2)(h− d)− (h + 1)(e− d− 1)]
(1− β + α)(1− δ + α)(2 + d + α− e)(3 + d + α− e)γ

+ α(h− d)− h(e− d− 1)
)

.

For k = 1, the function on the left-hand side is 7F6 with three unit shifts.

3.5. Case V: (u, v) = (2, 2)

Combination of Kummer’s second quadratic transformation (53) with IPD summa-
tion (29) leads to the transformation formula

F
(

α, β, d, h + p
2β, e, h

∣∣∣∣2)
=

Γ(e− α− d)Γ(e)
Γ(e− α)(1 + d + α− e)p(h)p

F

(
∆(α, 2), ∆(d, 2)
β + 1/2, ∆(1 + d + α + p− e, 2)

... Yp(2, 2)

)
, (105)

where α or d is a negative integer, Yp(2, 2) is defined in (11) with λ = −α. In particular, for
p = 1, according to (15) and (16), we obtain

4F3

(
α, β, d, h + 1
2β, e, h

∣∣∣∣2)
=

Γ(e− α− d)Γ(e)(α− e− d− 1− dα/h)
Γ(e− α)Γ(e− d)(1 + d + α− e) 5F4

(
∆(α, 2), ∆(d, 2), ξ∗ + 1
β + 1/2, ∆(2 + d + α− e, 2), ξ∗

)
,

where

ξ∗ = −
α(d− h) + h(e− d− 1)

2h− 2(e− 1)

is the negated root of Y1(2, 2).
Combination of the Miller–Paris quadratic transformation (54) with IPD summa-

tion (29) leads to

F
(

α, β−m, η+ 1, d, h + p
2β, η, e, h

∣∣∣∣2)
=

Γ(e− α− d)Γ(e)
Γ(e− α)(1 + d + α− e)p(h)p

F
(

∆(α, 2), ∆(d, 2), f + m
β + 1/2, ∆(1 + d + α + p− e, 2), f

... Yp(2, 2)
)

, (106)

where α or d is a negative integer, η is the vector of roots of the polynomial R2m defined
in (55) and Yp(2, 2) is defined in (11) with λ = −α. For m = 1, the roots of R2 are given by:

η1,2 = 2 f − 1/2± 2
√
( f + 1/4)2 − f β.
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3.6. Case VI: (u, v) = (2, 1)

Combination of (56) with (30) leads to the transformation formula

F
(

α, β, d, h + p
2β, e, h

)
=

Γ(e− α/2− d)Γ(e)
Γ(e− α/2)(1 + d + α/2− e)p(h)p

F
(

α/2, β− α/2, ∆(d, 2)
β + 1/2, e− α/2, 1 + d + α/2 + p− e

... Yp(2, 1)
)

, (107)

where Yp(2, 1) is defined in (11) with λ = −α/2. In particular, for p = 1, according to (15)
and (16), we obtain

4F3

(
α, β, d, h + 1
2β, e, h

)
=

Γ(e− α/2− d)Γ(e)((h− d)α/2− (e− d− 1)h)
Γ(e− α/2)Γ(e− d)(1 + d + α/2− e)h 5F4

(
α/2, β− α/2, ∆(d, 2), ξ∗ + 1
β + 1/2, e− α/2, 2 + d + α/2− e, ξ∗

)
,

where the negated root ξ∗ = −ξ of Y1(2, 1) is given by

ξ∗ = −
(d− h)α/2 + (e− d− 1)h

h + d− 2e + 2
.

Both above formulas remain valid for any parameters, making both sides convergent,
which can be justified using Carlson’s theorem.

4. Concluding Remarks

In this paper, we derived over forty transformation formulas for the generalized
hypergeometric function evaluated at a fixed argument, all of them presented in Section 3.
Most of these identities are new. We also included several known ones to demonstrate
the power of our approach. For each transformation presented here, we have conducted a
thorough search of the literature to verify whether it is a guise of a known result. In a few
cases when such a connection was found, we provided the corresponding reference and
explanation. We further presented several new summation formulas obtainable from our
transformation identities. The idea behind our method is rather simple and generalizes
naturally the beta integral method explained in detail in [20]: we integrate a known
transformation formula against the density expressed in terms of Meijer’s G function and
apply a known summation formula to the resulting series. We think that some of the
formulas presented in this work may serve as generating relations for certain groups of
hypergeometric transformations. In particular, Formulas (59) and (62) may clearly serve
as such generators. A group-theoretic study of the resulting family of transformations
is one possible direction of further research in analogy with the study undertaken by
us in [40], the starting point of which is Formula (60). The groups of this sort play an
important role in mathematical physics. In particular, they constitute the key ingredient
of a succinct description of the symmetries of Clebsh–Gordon’s and Wigner’s 3− j, 6− j
and 9− j coefficients from the angular momentum theory [8,9,41,42]. The summation
formulas for the generalized hypergeometric function with integral parameter differences
(IPD), on the other hand, appear in the calculation of several integrals in high-energy
field theories and statistical physics [43]. A further recent application of an IPD-type
summation formula is in the area of multiple orthogonal polynomials, see [44]. Another
possible research direction motivated by the present investigation is summation formulas
for the hypergeometric functions with non-linearly restricted parameters, a rather striking
example of which is Formula (64). The further specialization of parameters in some of
the transformations presented here will probably lead to new summation formulas with
non-linearly restricted parameters.

We believe that techniques presented in this paper may have further applications and
potential extensions. In particular, they may be applied to new transformations formulas
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for the generalized hypergeometric functions like ([45], Formula (6)). Further, they can
definitely be extended to k-hypergeometric functions [46]. Applications to cubic transfor-
mations, including certain new summation formulas, can be found in our paper [26].
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