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Abstract: We present the results of a theoretical investigation of the stability and collective vibrations
of a two-dimensional hydrodynamic lattice comprised of millimetric droplets bouncing on the surface
of a vibrating liquid bath. We derive the linearized equations of motion describing the dynamics of a
generic Bravais lattice, as encompasses all possible tilings of parallelograms in an infinite plane-filling
array. Focusing on square and triangular lattice geometries, we demonstrate that for relatively low
driving accelerations of the bath, only a subset of inter-drop spacings exist for which stable lattices
may be achieved. The range of stable spacings is prescribed by the structure of the underlying
wavefield. As the driving acceleration is increased progressively, the initially stationary lattices
destabilize into coherent oscillatory motion. Our analysis yields both the instability threshold and the
wavevector and polarization of the most unstable vibrational mode. The non-Markovian nature of
the droplet dynamics renders the stability analysis of the hydrodynamic lattice more rich and subtle
than that of its solid state counterpart.

Keywords: bouncing droplets; Faraday waves; lattice instability; normal-mode analysis; phonons

1. Introduction

The collective vibrations of atoms within a crystal lattice, referred to as phonons,
are of fundamental interest in materials science and solid-state physics, and govern bulk
properties of the crystal such as the heat capacity, thermal and electrical conductivity,
and elastic modulus [1–4]. Complementary insight into lattice dynamics is often gained
through consideration of macroscopic analog systems, including mass-and-spring net-
works [5,6] and more complex metamaterials [7,8]. Numerous hydrodynamic analogues of
crystals have been explored, from Bragg’s packed bubbles at an air–liquid interface [9] to
more recent studies of vibrations in lattices of colloidal particles [10–14] and microfluidic
droplets [15–18]. We here consider theoretically the dynamics of a two-dimensional lattice
comprised of millimetric droplets that bounce on the surface of a vibrating liquid bath and
are coupled through an underlying Faraday wavefield.

A fluid bath vibrating vertically with acceleration γ sin(2π f t) will destabilize into
a subharmonic field of standing Faraday waves, characterized by period TF = 2/ f and
wavelength λF (as is related to ωF = π f through the standard water-wave dispersion
relation), when the vibrational acceleration γ exceeds a critical value γF known as the Fara-
day threshold [19,20]. Below γF, but above the bouncing threshold γB < γF, a millimetric
droplet may bounce indefinitely on the bath’s surface, generating a spatially extended,
temporally decaying wavefield at each impact [21,22]. As γ is gradually increased beyond
γB, the droplet’s bouncing period increases until eventually becoming twice that of the
vibrational driving, thus achieving resonance with the Faraday wavefield and prompting a
substantial increase of the system’s wave energy. In this period-doubled bouncing regime,
droplets may bounce in either low- or high-energy states, as distinguished by bouncing
amplitude and denoted by (2, 1)1 and (2, 1)2, respectively [23]. Such period-doubled drops
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may bounce either in phase or out of phase with respect to each other. For γ > γW , the
walking threshold, a single droplet destabilizes from stationary bouncing into steady hori-
zontal motion, propelled through a resonant interaction with its own wavefield [24,25]. As
γ approaches γF, the persistence time of the waves increases and the droplet’s dynamics
become more strongly influenced by its past trajectory, and the system has heightened
‘path memory’ [26,27]. The resulting non-Markovian nature of the droplet dynamics gives
rise to numerous features reminiscent of quantum systems; consequently, this system has
provided the basis for the burgeoning field of hydrodynamic quantum analogues [28–31].

Multiple droplets may organize into static and dynamic bound states by virtue of their
shared wavefield. Specifically, the static bound states of droplet pairs [32], free rings [33],
and radially confined rings (modelling a one-dimensional periodic lattice) [34] have inter-
drop spacings related to the Faraday wavelength λF. As the vibrational acceleration is
increased, droplet pairs destabilize into either in-line oscillations, or orbital or promenading
(side by side) motion, depending on the droplet size and inter-drop distance [32]. Radially
confined rings destabilize into out-of-phase angular oscillations or propagating soliton-like
waves [34], and free rings exhibit additional radial vibrational modes [33]. The stability
and resonant oscillations of forced chains with a free end have also been considered theo-
retically [35]. Pairs of identical walking drops may form dynamic bound states consisting
of either orbital [24,25,36,37] or promenading motion [38,39].

A variety of two-dimensional bound structures have been studied, including the
rotational [40] and translational instabilities of droplet aggregates [41]. Eddi et al. [42]
constructed eight of the eleven possible Archimedean tilings of the plane, some of which
required tuning the relative bouncing phase of neighbouring droplets. Eddi et al. [43]
considered square and triangular lattices and observed the emergence of coherent modes of
oscillation, a hydrodynamic analog of phonons, beyond a critical vibrational acceleration.
Only one lattice spacing was considered for each geometry and a full characterization of
the emergent oscillations as a function of the lattice spacing was not undertaken. Edge
effects were seen to influence the observed lattice dynamics owing to their finite size. To
rationalize their experimental observations, Eddi et al. [43] proposed a phenomenological,
one-dimensional model in which each droplet was connected to its nearest neighbours via
an effective spring force proportional to the wave amplitude. Notably, their model did not
include an explicit waveform or the influence of the system memory, which precluded a
quantitative characterization of the lattice stability.

A detailed linear stability analysis of an infinite one-dimensional droplet lattice was
performed by Thomson et al. [44], using the stroboscopic model of Oza et al. [45], in order
to rationalize the observed dynamics of a periodic droplet chain [34]. In this configuration,
only certain lattice spacings were found to remain stable below the instability threshold of
a single drop γW , and the lattice subsequently destabilized via either super- or sub-critical
Hopf bifurcations as the driving acceleration was increased. This linear stability analysis
was then extended to investigate both weakly nonlinear oscillations and solitary waves [46].

We here build upon the work of Eddi et al. [43] and Thomson et al. [44] by developing
a theoretical framework for studying the stability and dynamics of two-dimensional droplet
lattices, which one expects to exhibit a richer set of instabilities than their one-dimensional
counterparts. Specifically, we consider the Bravais lattice, a theoretical construct used
in solid-state physics to describe regular crystalline structures. The defining feature of
the Bravais lattice is its discrete translational symmetry, which allows its lattice points to
be expressed as integer multiples of two basis vectors. The Bravais lattice thus appears
to be identical from each constituent lattice point [4]. In two dimensions, five possible
geometries satisfy this required symmetry, specifically, square, triangular, rectangular,
centred rectangular, and oblique lattices.

In Section 2, we use the theoretical model of Couchman et al. [32] to derive the disper-
sion relation governing the stability of a generic Bravais lattice. In Section 3, we focus on
the square and triangular geometries, which admit analytical simplifications due to their
rotational symmetry. For these geometries, we predict the stability threshold and mode of
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vibrational instability that emerge as the bath’s vibrational acceleration is increased progres-
sively. Our theoretical predictions are compared to the experimental results of Eddi et al. [43].
In Section 4, we summarize our results and propose future avenues of investigation.

2. Normal Mode Analysis

In this section, we characterize the linear stability of a Bravais droplet lattice. In Section 2.1,
we review the variable-phase stroboscopic model of Couchman et al. [32] for the dynamics of
multiple interacting droplets, which provides the basis of our analysis. Definitions of relevant
variables and parameters are provided in Table 1. In Section 2.2, we then characterize the base
state of the Bravais lattice and, in Section 2.3, perturb the base state to derive the dispersion
relation governing the lattice’s stability and normal modes of vibration.

Table 1. Definitions of relevant variables and parameters.

Symbol Definition

Fluid
ρ, σ, νe Density, surface tension, effective kinematic viscosity [47]
f , TF = 2/ f , λF , kF = 2π/λF Bath driving frequency, Faraday period, wavelength, wavenumber
γ, γW , γ∗, γF Peak driving acceleration of bath, walking threshold of single drop, lattice instability threshold, Faraday

threshold

Trajectory equation
x = (x, y), t, g Horizontal position, time, gravitational acceleration
R, m = 4πρR3/3 Droplet radius, mass
h(x, t) Wave amplitude strobed at bouncing period TF
f (r) Wave kernel
Td = 1/

(
νek2

F
)

Wave decay timescale [47]
Me =

Td
TF(1−γ/γF)

Memory parameter

A =
√

νe TF
2π

mgk3
F

3k2
Fσ+ρg

Wave-amplitude coefficient

α = ε2

2νe(1+2ε2)
, ε = 2π f ρνekF

3k2
F σ+ρg

Spatio-temporal damping coefficient, viscosity induced wavenumber correction [48]

ζ = 2
kF

√
α

TF Me
Non-dimensional spatial-damping coefficient

D = 0.17mg
√

ρR
σ + 6πRµa, µa Horizontal drag coefficient [47], air viscosity

κ = m
TF D Non-dimensional droplet mass

β =
mgATF k2

F
D Non-dimensional wave-force coefficient

S , C Impact phase parameters (see Appendix A) [32]

Lattice
a, b Basis vectors defining geometry of Bravais lattice
dmn = ma + nb Horizontal position of droplets in base lattice, (m, n) ∈ Z
k, ξ, ωk Wave vector, polarization vector, complex-valued frequency of vibrational mode

2.1. Review of Theoretical Model

Throughout this work, we choose physical parameters for the drop and bath liquids
corresponding to silicone oil with kinematic viscosity ν = 20 cSt, density ρ = 949 kg m−3,
and surface tension σ = 20.6× 10−3 N m−1, which have been widely used in experimental
and theoretical studies of droplet–droplet interactions [32,33,37,39]. In a deep bath vibrating
vertically at f = 80 Hz, such a fluid will be characterized by a Faraday wavelength
λF ≈ 4.75 mm and Faraday threshold γF ≈ 4.25g, where g denotes the gravitational
acceleration. We assume that all droplets have radius R = 0.36 mm and bounce in phase
with each other at the Faraday period TF in the higher-energy (2, 1)2 mode, as assumed in
the prior analysis of free rings [33]. An example of a triangular droplet lattice constructed
in the laboratory is shown in Figure 1a.

The trajectory equation for walking droplets was developed by Moláček and Bush [47].
The ‘stroboscopic’ trajectory equation of Oza et al. [45] is a simplification thereof, so called
because it effectively eliminates the vertical droplet motion from consideration by averaging
the drop dynamics over a bouncing period, and so describes the horizontal dynamics visible
in the laboratory when the system is strobed at the Faraday period [49]. We here employ the
variable-phase stroboscopic model of Couchman et al. [32], an extension of the stroboscopic
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model that accounts for variations in the phase of impact between the droplet and bath.
Consideration of such variations has been found to be necessary in order to rationalize the
observed stability of multi-drop systems [48], including bound droplet pairs [32] and rings [33].

5 mm

Figure 1. (a) An oblique view of a triangular lattice of millimetric droplets bouncing on the surface of
a vertically vibrating liquid bath. The droplets are coupled by a shared wavefield, as is visualized by
illuminating the bath with a striped pattern of coloured light [49]. We note that beneath each drop, the
drop’s reflection from the bath surface is visible. (b) A Bravais lattice is generated via enumeration
of the points dmn = ma + nb, (m, n) ∈ Z, with point (m, n) = (2, 1) highlighted for illustration. The
basis vectors describing the triangular lattice shown here are a = a(1, 0) and b = a(−1/2,

√
3/2),

where a has units of length and sets the lattice spacing. We study the response of the lattice to
perturbations δx away from its base state.

The variable-phase stroboscopic model predicts that the horizontal positions, xmn, of
interacting drops of mass m in the lattice evolve according to

mẍmn + Dẋmn = −mgCmn∇h(xmn, t), (1)

where overdots denote time derivatives, and the wavefield h is described by

h(x, t) = A ∑
pq

∫ t

−∞
Spq f (kF|x− xpq(s)|)e−(t−s)/(TF Me)ds, (2)

with wave kernel
f (r) = J0(r)

(
1 + (K1(ζr)ζr− 1)e−r−2

)
, (3)

where J0 and K1 denote Bessel functions of the first kind and modified second kind, respectively.
In Equation (1), drop motion is driven by a wave force, proportional to the local

gradient of the underlying wavefield h, and resisted by a linear drag force with coefficient
D. The wavefield, defined in Equation (2), is modelled as the superposition of waves of
spatial form f (r) generated by each droplet along its past trajectory, as summed over all of
the droplets in the lattice. The wave kernel f (r) is based on the wave model of Moláček
and Bush [47] but more accurately captures the experimentally observed far-field decay
of the wavefield [50], and so the long-range interactions between droplets [32,48,50,51].
For r < 1, f (r) is well approximated by J0(r), but then decays more rapidly than J0(r)
for r > 1, as prescribed by the spatial damping factor ζ which is defined in terms of
fluid parameters in Table 1. The memory timescale TF Me ∼ (1− γ/γF)

−1 appearing in
Equation (2) characterizes the temporal decay of the waves, with higher values of the
memory parameter Me indicating waves that decay more slowly and thus have a greater
influence on the lattice’s evolution.

The phase factors S and C capture the phase shift between the resonant oscillations of
the drop and wavefield, which may vary as a function of the system parameters. Such a
phase shift influences both the wave amplitude generated by each droplet at impact (as
captured by S) and the horizontal wave force imparted to the droplet (as captured by C).
Couchman et al. [32] determined the dependence of these phase factors on the droplet
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radius, local wave height, and vibrational acceleration. They also found that, for drops in
the (2, 1)2 bouncing mode [52] commonly used in experiments and treated here, neglecting
variations in these phase factors may lead to the prediction that bound states destabilize
below the walking threshold of a single droplet γW , a prediction at odds with experimental
observations of drop–drop interactions [32–34,37,39]. Further details concerning the phase
parameters S and C, and their explicit functional forms, may be found in Appendix A.

By introducing the following non-dimensional variables x̄ = kFx, h̄ = h/A, t̄ = t/TF
for horizontal position, wave height, and time, respectively, the governing Equations (1)–(2)
take the following non-dimensional form:

κ ¨̄xmn + ˙̄xmn = −βCmn∇h̄(x̄mn, t̄), (4)

h̄(x̄, t̄) = ∑
pq

∫ t̄

−∞
Spq f (|x̄− x̄pq(s̄)|)e−(t̄−s̄)/Me ds̄. (5)

Expressions for the non-dimensional mass κ and waveforce coefficient β are given in Table 1.
For the remainder of the paper, we drop the overbars denoting non-dimensional variables
for the sake of notational simplicity.

2.2. Base State of the Bravais Lattice

The unperturbed Bravais lattice has droplets located at horizontal positions

dmn = ma + nb, (6)

where m and n are integers and a and b are the basis vectors that define the lattice geometry,
commonly referred to as ‘primitive vectors’ (see Figure 1b). We first demonstrate that a
generic Bravais lattice is a stationary solution to Equation (4). Substituting xmn(t) = dmn
into Equation (5) yields the wavefield for the Bravais lattice,

h(x, t) = Me ∑
pq
S(γ, h(dpq)) f (|x− dpq|). (7)

We note that the lattice symmetry ensures that all drops encounter the same wave height
h(dpq) = h0, so their phase factors are likewise identical, S(h0) = S0. Evaluating Equa-
tion (7) at the lattice points yields an implicit expression for the local wave amplitude,

h0 = MeS(γ, h0)∑
pq

f (
∣∣dpq

∣∣). (8)

Making use of the functional form for S presented in Equation (A2), one may solve the
implicit Equation (8) numerically to obtain h0. Having obtained h0, the phase parameters
S0 = S(γ, h0) and C0 = C(γ, h0) may be computed using Equations (A2) and (A3), re-
spectively. In Section 3, it will be shown that the values S0 and C0 depend on the initial
geometry of the Bravais lattice, which in turn strongly influence the lattice stability.

Having solved for the base state wavefield, it is immediately evident that xmn(t) = dmn
satisfies Equation (4) when ∇h(dmn, t) = 0, which may be written explicitly as

∑
pq

f ′(|dpq|)
dpq

|dpq|
= 0. (9)

Physically, Equation (9) signifies that the net waveforce on each droplet must vanish, or
equivalently that the slope of the wavefield beneath each droplet is zero. Noting that
d(−p,−q) = −d(p,q), the pairwise terms (p, q) and (−p,−q) cancel in Equation (9), leaving
only the (p, q) = (0, 0) term which vanishes because the wave kernel is even and so
f ′(0) = 0 (see Equation (3)). It is thus apparent that, by virtue of its translational symmetry,
any Bravais lattice is a stationary solution of the trajectory equation.
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2.3. Dispersion Relation of the Perturbed Lattice

We may now assess the stability of the Bravais lattice by studying the growth of small
perturbations to the base state, xmn(t) = dmn + εδxmn(t), where ε � 1. Substituting this
perturbation into Equation (4), using the equilibrium condition (9), and expanding to first order
in ε, yields the following linearized equations of motion governing the perturbations δxmn(t),

κδ̈xmn + δ̇xmn = −ϕ ∑
pq

∫ t

−∞
H f
(
dpq
)
·
(
δxmn(t)− δxpq(s)

)
e−(t−s)/Me ds, (10)

where
ϕ = βS0C0, (11)

and H f denotes the Hessian matrix of the radially symmetric wave kernel f (Equation (3)),

H f (x) =

 ∂2 f
∂x2

∂2 f
∂x∂y

∂2 f
∂x∂y

∂2 f
∂y2


x

. (12)

The elements of H f may be expressed explicitly as

∂2 f
∂x2 (x) =

f ′′(r)
r2 x2 +

f ′(r)
r3 y2, (13)

∂2 f
∂y2 (x) =

f ′′(r)
r2 y2 +

f ′(r)
r3 x2, (14)

∂2 f
∂x∂y

(x) =

(
f ′′(r)

r2 − f ′(r)
r3

)
xy, (15)

where x = (x, y) and r = |x|.
In deriving Equation (10), we note that variations in the phase parameters around the

base values S0, C0 are of O(ε2) and so can be neglected. To see this, note that

S(γ, h(dmn + εδxmn)) = S
(

γ, h(dmn) + ε∇h(dmn) · δxmn +O
(

ε2
))

, (16)

but ∇h(dmn) = 0 in the base state (Equation (9)). Therefore, the impact phase parameters
only enter our linear analysis through their base values S0, C0, which influence the resulting
stability of the lattice through the parameter ϕ (Equation (11)) that scales the waveforce in
Equation (10).

To derive the dispersion relation governing the linear stability of the lattice, we
substitute the following normal mode perturbation into Equation (10)

δxmn = ξeik·dmn+ωkt + c.c., (17)

where c.c. denotes the complex conjugate of the preceding exponential term. Equation (17)
represents a plane wave characterized by wavevector k, polarization vector ξ, and com-
plex frequency ωk. The real and imaginary components of ωk represent the mode’s
growth rate and oscillation frequency, respectively. Making use of the following inte-
gral,

∫ t
−∞ eωse−(t−s)/Me ds = Meeωt/(1 + Meω), we thus obtain the dispersion relation[(

κω2
k + ωk

)
I + ϕMe

(
H(0) − H(k)

1 + Meωk

)]
︸ ︷︷ ︸

Dk(ωk)

ξ = 0, (18)
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where I denotes the identity matrix and

H(k) = 2 ∑
pq

H f (dpq) cos(k · dpq) (19)

may be recognized as the elementwise discrete cosine transform of the Hessian matrix
over the lattice. For k = 0, H(0) is the Hessian matrix of the net wavefield at the origin, as
characterizes the wavefield’s local curvature.

Non-trivial solutions (ξ 6= 0) to the dispersion relation (18) exist when

det Dk(ωk) = 0, (20)

which takes the form of a sextic polynomial in the complex-valued frequency ωk and may
be solved numerically. If a wavevector k exists such that any root ω∗k of Equation (20) has
a positive real part, then the associated mode will grow and the lattice will destabilize. If
no such k exist, the lattice remains stable. For an initially stable lattice, as the vibrational
forcing γ is increased, the instability threshold γ∗ is reached when there exists at least one
k∗ such that Re(ω∗k) ≥ 0. The polarization vector ξ∗ associated with the unstable mode k∗

may then be found by solving Dk(ω
∗
k)ξ
∗ = 0 (Equation (18)). We note that the polarization

vector ξ must be real-valued as Dk is a symmetric matrix.
It is noteworthy that, owing to the discrete translational symmetry of the Bravais lattice,

not all wavevectors k produce physically distinguishable oscillations when substituted
into the normal mode ansatz (17). For example, consider a square lattice characterized by
dmn = a(mx̂ + nŷ) and two wavevectors k =

(
kx, ky

)
and k′ =

(
kx + 2π/a, ky + 2π/a

)
.

Substituting k′ into Equation (17) yields

δxmn = ξe2πi(m+n)eik·dmn+ωkt = ξeik·dmn+ωkt, (21)

an oscillation characterized by wavevector k. Therefore, k′ and k result in the same physical
oscillation. It thus suffices to consider only wavevectors k in the lattice’s so-called Brillouin
zone, defined as the smallest set of k required to describe all distinguishable vibrations
of the discrete lattice [4]. The Brillouin zones for the square and triangular geometries
considered in Section 3 are illustrated in Figure 2, and the procedure for generating the
Brillouin zone for a generic Bravais lattice may be found in standard reference texts on
solid-state physics [4].

Figure 2. The extent of the Brillouin zone in wavevector space (kx, ky) for (a) square and (b) triangular
Bravais lattices with lattice spacing a [4]. Wavevectors k′ outside the Brillouin zone are paired with
an equivalent k within the Brillouin zone such that k′ and k yield the same physical vibration once
substituted into the normal mode ansatz (17), a result of the discrete translational symmetry of the
lattice. In characterizing lattice stability, it thus suffices to consider only modes with wavevectors k
within the Brillouin zone.
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3. Results
3.1. Square and Triangular Lattices

We first consider the stability of square and triangular lattices, as are characterized by
a single inter-drop spacing a with droplets at the base state positions

d(square)
mn = a(mx̂ + nŷ), (22)

d(triangle)
mn = a

(
mx̂ + (n/2)

(
−x̂ +

√
3ŷ
))

, (23)

respectively. As is demonstrated in Appendix B, the four- and six-fold symmetry of the
square and triangular geometries, respectively, result in the Hessian matrix for the net
wavefield H(0) (Equation (19), with k = 0) reducing to a scalar multiple of the identity
matrix I,

H(0) = η0I, (24)

where η0 is the unique (repeated) eigenvalue of H(0). Geometrically, Equation (24) sig-
nifies that the curvature of the local wavefield beneath each droplet in the square and
triangular base lattices is isotropic, having the same value in all horizontal directions.
Using Equation (24), the general dispersion relation (18) reduces to the simpler eigenvalue
problem,

H(k)ξ =

[
1

ϕMe
(1 + Meωk)

(
κω2

k + ωk + ϕη0Me

)]
ξ, (25)

which admits non-trivial solutions when ξ is an eigenvector of H(k) with corresponding
eigenvalue ηk. When such is the case, one may equate ηk with the bracketed term on the
right-hand side of Equation (25), yielding

P1(ωk) ≡ κω3
k +

(
1 +

κ

Me

)
ω2

k +

(
1

Me
+ Me ϕη0

)
ωk + ϕ(η0 − ηk) = 0, (26)

which may be solved for the three ωk associated with each of the two eigenvalues ηk. Since
κ > 0 and P1(ωk)→ ∞ as ωk → ∞, the intermediate value theorem guarantees a positive
real root whenever P1(0) < 0, i.e., ϕ(η0 − ηk) < 0. We thus deduce that a lattice is always
unstable if there are any wavevectors k such that either eigenvalue ηk of H(k) is greater
than η0.

Based on Equation (26), we now have a simple procedure for assessing whether a
square or triangular lattice is unstable at the initial vibrational acceleration γ = 0.7γF,
which is below the walking threshold of a single drop γW and corresponds approximately
to the lowest γ at which the droplets bounce in a period-doubled mode [52]. Specifically,
we compute the eigenvalues η0 and ηk of H(k) (Equation (19)) numerically, noting that
there are two ηk for each wave vector k in the Brillouin zone, and plot their dependence
on the lattice spacing a for both the square (Figure 3a) and triangular (Figure 4a) lattice
geometries. Intervals of a where ηk > η0 for all k are shaded in red, indicating that the
lattice is already unstable at γ = 0.7γF. We observe that for both the square and triangular
geometries, there are only discrete intervals of a for which the lattice is initially stable,
which roughly correspond to geometries in which drops bounce in minima of the local
wave amplitude (see Figures 3e and 4e). We note that this behaviour is in accord with
previous studies reporting that bound states are most stable when each drop bounces in
a minimum of the net wavefield produced by its neighbours [32,33]. Thomson et al. [44]
found similar swaths of initial instability as a function of the lattice spacing for infinite
one-dimensional droplet chains at low vibrational accelerations, which they referred to as
‘geometric instabilities’.

For the set of lattices that are initially stable at γ = 0.7γF, we may then determine the
instability threshold γ∗ > 0.7γF at which destabilization occurs. At γ∗, the real part of ωk
will vanish and the imaginary part will correspond to the frequency of the destabilizing
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oscillation. Substituting ωk = iΩ (Ω ∈ R) into Equation (26), separating the complex
polynomial into real and imaginary parts, and eliminating Ω yields

Pk(Me) ≡ ϕη0M3
e + ϕκηk M2

e + Me + κ = 0. (27)

Noting that κ > 0, ϕ > 0 and η0 < 0, we observe that Pk(Me) = 0 has at least one
positive real root, the minimum of which corresponds to the memory M∗e at which the
lattice destabilizes. Because Qk(Me) ≡ Pk(Me) − CM2

e < Pk(Me) for every non-zero
Me provided C > 0, we infer that Qk must have a root at a lower Me than does Pk.
Furthermore, if there is a wavevector k′ such that ηk′ < ηk, then since Pk(Me)−Pk′(Me) =
ϕκM2

e (ηk − ηk′) > 0, the smallest real positive root of Pk′(Me) must be smaller than that of
Pk(Me). We thus conclude that the wave vector k that goes unstable at the lowest memory
value Me, corresponds to that k with the minimum eigenvalue ηk.

We may thus gain additional insight from the curves ηk plotted in Figures 3a and 4a for
the square and triangular geometries, respectively. Namely, in the initially stable intervals
of a, the lowermost curve ηk corresponds to the destabilizing vibrational wavemode k
that will emerge at the instability threshold γ∗. In Figures 3 and 4, we plot the instability
thresholds γ∗ (panel b), and the magnitude and direction of the wavevector characterizing
this destabilizing mode (panels c and d, respectively) as a function of the lattice spacing a.
In all cases, we find that the polarization vector ξ is parallel to the wave vector k, signifying
that the lattices always destabilize into longitudinal, as opposed to transverse, oscillations.

For both the square and triangular geometries, the instability threshold of the lattice,
γ∗, is almost always greater than the walking threshold γW of a single drop. The lattices
are most stable when the constituent drops bounce in the deepest minima of the wavefield
produced by their neighbours, as was the case for droplet pairs and rings [32,33]. This effect
is a direct result of variations in the impact phase, with the product S0C0 (see Equations (10)
and (11)) decreasing with decreasing local wave amplitude (see Figures 3e and 4e) and
thus reducing the horizontal waveforce exerted on each droplet at impact. Conversely,
we note that in their theoretical analysis of a one-dimensional lattice, Thomson et al. [44]
predicted destabilization below γW , despite the fact that experimentally such lattices were
found to remain stable above γW [34]. This mismatch followed from their assumption of
a constant impact phase, and highlights the importance of accounting for variations in
the vertical dynamics by using a variable-impact-phase model when considering droplet–
droplet interactions. In Figures 3b and 4b we observe that γ∗ approaches γW in the limit
of large a, consistent with the droplets in the lattice becoming effectively uncoupled from
their neighbours at sufficiently large distances.

In Figure 3c,d, we highlight two dominant modes of vibration for the square lattice,
as are further illustrated in Figure 5. The first mode (green) corresponds to out-of-phase
oscillations of neighbouring lattice planes along either the x̂ or ŷ directions, which are
equivalent given the four-fold rotational symmetry of the square lattice. We note that Eddi
et al. [43] observed a superposition of such oscillations in the x̂ and ŷ directions, resulting in
the appearance of each droplet exhibiting roughly circular orbits around its base point (see
Figure 4a of [43]). In magenta, we highlight a separate mode characterized by out-of-phase
oscillations along 45 degree planes in the lattice with a wavelength of

√
2a, corresponding

to the diagonal of a square cell. Apart from these two readily identifiable modes, the scaled
wavevector a|k|/π (Figure 3c) varies approximately linearly with the scaled lattice spacing
a/λF, thus representing an oscillation wavelength that is no longer solely governed by a,
but is now also influenced by the Faraday wavelength λF that characterizes the underlying
wavefield.
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Figure 3. The square lattice. (a) The eigenvalues ηk of the matrix H(k) (19), governing the lattice
stability, are plotted as a function of the inter-drop spacing a, normalized by the Faraday wavelength
λF. In intervals of a where η0 is greater than all ηk, the lattice is initially stable at γ/γF = 0.7.
Otherwise, the lattice is already unstable as denoted by red shading. Curves ηk for two common
modes of instability are highlighted. There are two eigenvalues ηk for a single mode k, denoted
by dashed and solid lines of the same colour. We note that the two magenta curves are virtually
indistinguishable. For a given a, the most negative ηk corresponds to the destabilizing wave mode.
(b) The instability threshold γ∗, normalized by the walking threshold for a single drop γW , for
initially stable spacings a. The corresponding wavevector magnitude |k|, normalized by π/a (see
Figure 2a), and wave angle with respect to the x-axis, are shown for the destabilizing mode in panels
(c,d), respectively. Green and magenta points indicate spacings a where one of the two wave modes
highlighted in panel (a) are found to be destabilizing. These modes are further illustrated in Figure 5.
(e) The black curve indicates the dependence on lattice spacing of the local wave amplitude h0

beneath each droplet in the base lattice, normalized by the drop radius R. The orange curve denotes
the corresponding product of impact phases S0C0 that influences the lattice stability through ϕ in
Equation (10).
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Figure 4. The triangular lattice. Quantities characterizing the stability of a triangular lattice are
plotted as a function of the lattice spacing a, in the same manner as for the square lattice in Figure 3.
The dominant mode of instability is highlighted in magenta in panels (c,d), and is illustrated in
Figure 6.

In Figure 4c,d, we highlight the dominant mode of vibration for the triangular lattice
(magenta) which, as illustrated in Figure 6, corresponds to out-of-phase oscillations of
neighbouring lattice planes along the π/6 direction (or equivalently, the π/6 + n(π/3),
n = (1, 2, . . . , 5) directions given the six-fold rotational symmetry of the lattice). This mode
is consistent with that reported by Eddi et al. [43] (see Figure 4b of [43]). We note that
in their experiments, Eddi et al. [43] used different drop sizes and fluid parameters than
considered here, so we cannot present a quantitative comparison between their results and
our theoretical predictions.



Symmetry 2022, 14, 1524 12 of 19

a)

c) d)

b)

Figure 5. Common vibrational modes of the square lattice corresponding to longitudinal waves along
high-symmetry lattice directions. (a) An illustration of the k = (π/a, 0) wave mode highlighted by
green markers in Figure 3, corresponding to the out-of-phase oscillations of neighbouring planes
along the x̂ direction with wavelength λ = 2a. (b) The maximum real part of the eigenvalues ηk are
shown for a lattice spacing a/λF = 3.40, with the most unstable modes k = (π/a, 0) and (0, π/a)
marked by crosses. (c,d) Analogous plots for the wave mode k = (π/a, π/a), highlighted by magenta
markers in Figure 3, corresponding to the out-of-phase oscillations of neighbouring planes along the
45 degree diagonal, with wavelength λ =

√
2a.

a) b)

Figure 6. Common vibrational mode of the triangular lattice. (a) An illustration of the k = 2π√
3a
(
√

3
2 , 1

2 )

wave mode highlighted by magenta markers in Figure 4, corresponding to the out-of-phase oscilla-
tions of neighbouring planes along a line 30 degrees to the horizontal, with wavelength λ =

√
3a.

(b) The maximum real part of the eigenvalues ηk for the lattice spacing a/λF = 2.5. The Brillouin
zone boundary is traced in black (see Figure 2b), and crosses indicate the most unstable modes:

k = 2π√
3a
(
√

3
2 , 1

2 ) and π/3 rotations thereof.
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3.2. Geometric Instabilities in the Low-Memory Limit

We have demonstrated that, for the relatively low driving acceleration γ = 0.7γF,
square and triangular lattices are already unstable for certain values of the lattice spacing a.
Following Thomson et al. [44], we refer to such lattices as being ‘geometrically unstable’.
We proceed by demonstrating a method for predicting whether a generic Bravais lattice is
geometrically unstable on the basis of the shape of the lattice-induced wavefield. In the
low-memory limit Me � 1, the dispersion relation (18) reduces to the eigenvalue problem(

H(0) −H(k)
)

ξ =

[
− 1

ϕMe

(
κω2

k + ωk

)]
ξ, (28)

which admits non-trivial solutions when ξ is an eigenvector of the matrix
(

H(0) −H(k)
)

with corresponding eigenvalue αk. When such is the case, one may equate αk with the
bracketed term on the right-hand side of Equation (28), yielding

P2(ωk) ≡ κω2
k + ωk + ϕMeαk = 0, (29)

which may be solved to obtain the two ωk associated with each of the two eigenvalues αk.
We note that P2(ωk)→ ∞ as ωk → ∞. In the case αk < 0, we also have P2(0) < 0, and so
the intermediate value theorem guarantees the existence of a positive real root. Therefore,
αk < 0 is a sufficient condition for the geometric instability of a generic Bravais lattice;
while we have derived this result in the low-memory limit, one expects that increasing the
memory will tend to promote lattice destabilization. Thus, a lattice that is geometrically
unstable in the low-memory limit should remain so at higher memories.

In Figure 7, we use the above criterion to determine the regions of initial stability
of a rectangular lattice, as is described by two lattice spacings a and b. We note that the
diagonal line a = b in Figure 7 yields the intervals of stability shown in Figure 3b. As was
the case for the square and triangular geometries, the pockets of stability are correlated
with minima in the local wave amplitude. Having identified the regions of initial stability,
the dispersion relation (18) could then be used to characterize the instability threshold and
most unstable vibrational mode for each lattice.

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Figure 7. The rectangular lattice is parameterised by two lattice spacings, a and b. Regions of initial
stability at low memory are shaded in green. All other lattices are geometrically unstable. The colourmap
corresponds to the local wave amplitude beneath each drop h0, normalized by the drop radius R. Stable
regions are roughly correlated with minima in h0. The diagonal line a = b corresponds to the square lattice,
where the regions of initial stability correspond to those presented in Figure 3.
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4. Discussion

We have used the variable-phase stroboscopic model of Couchman et al. [32] to con-
sider the linear stability of a group of droplets arranged in a Bravais lattice. All Bravais
lattices are stationary solutions to the stroboscopic model, since the lattice’s discrete trans-
lational symmetry ensures that the net waveforce on each droplet vanishes. By considering
the response of the lattice to normal mode perturbations, our analysis yielded an implicit
dispersion relation relating the vibrational mode’s wavevector k to its complex frequency
ωk, as captures both the mode’s growth rate and oscillation frequency. Particular attention
was given to the square and triangular Bravais geometries, for which the rotational symme-
try of the lattice allowed our general dispersion relation to be reduced to a form similar to
that considered by Thomson et al. [44] in their investigation of a one-dimensional droplet
chain. A distinctive feature of our analysis is the inclusion of variations in the drop’s
vertical motion, as are required to capture the stabilizing influence of droplet–droplet inter-
actions that allow lattices to remain stable above the walking threshold of the individual
constituent drops. This stabilizing phenomenon has also been reported for a variety of
other bound states [32–34,37,39].

While all lattices are stationary solutions to the trajectory equation, not all are stable
at low vibrational accelerations; indeed, the majority are geometrically unstable [44]. For
the square and triangular lattices, we deduced a criterion for geometric instability solely
in terms of the local wave curvature beneath each droplet. This criterion predicts discrete
intervals of stability in the lattice spacing. These stable regions correspond roughly to
geometries that minimize the local wave amplitude beneath each droplet, a feature also
reported in bound droplet pairs [32], rings [33], and one-dimensional lattices [44]. By
considering the low-memory limit of our dispersion relation, we deduced a similar criterion
for assessing the geometric instability of a generic Bravais lattice, which we used to identify
the initial regions of stability for the rectangular lattice.

Consistent with the experimental observations reported by Eddi et al. [43], increas-
ing the memory causes an initially stable lattice to destabilize into phonon-like motions
characterized by coherent small-amplitude oscillations. The most unstable modes were
longitudinal waves in all cases and were usually aligned along high-symmetry directions
of the lattice; shear modes only destabilize at higher vibrational forcings. We numerically
computed the instability threshold of the most unstable modes, and found that they typi-
cally arise above the walking threshold γW for a single droplet, as highlights the stability
imparted by neighbouring droplets. Furthermore, we found local maxima for the instability
threshold at the centre of the initially stable regions, corresponding to minima in the local
wave amplitude, a result not captured in the theoretical modelling of the one-dimensional
lattice [44] where variable phase factors were neglected.

The hydrodynamic lattice exhibits certain features that are distinct from canonical
models of phonons in crystalline lattices, such as those analysed by Blackman [53] and
Montroll [54]. In these models, a discrete lattice of masses is connected to their nearest and
next-nearest neighbours via a linear spring force. If we were to remove the damping term
from our dispersion relation (18), and take the low-memory limit considered in Section 3.2,
we would recover a dispersion relation of the same form as that of Blackman and Montroll,
for which all modes are neutrally stable. For droplet lattices accessible in the laboratory, the
damping term in the trajectory Equation (1) dominates the inertia term in the low-memory
limit, resulting in overdamped oscillations. In our system, neutrally stable oscillations only
arise when the stabilizing effects of damping precisely balance the destabilizing effects
of memory.

In the low-memory limit, the potential landscape is a sum of wave kernels centred
at each droplet of the lattice. This potential induces a linear spring force with the local
curvature playing the role of the spring constant. Since the wave kernel is oscillatory, an
individual droplet may contribute a negative curvature (analogously, a negative spring
constant) to this sum, depending on the inter-droplet distance. This effect is not seen in a
canonical mass-spring lattice, as the springs are only perturbed about their equilibrium
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lengths. The oscillatory wave kernel of the hydrodynamic lattice thus gives rise to much
richer dynamics than arise in generic crystal lattices, including the discrete windows of
initial stability.

Our linear theory for the hydrodynamic lattice cannot predict the amplitude of the
emergent oscillations. A weakly nonlinear extension of our theory, which parallels that
developed for a one-dimensional hydrodynamic lattice [46], could yield insight into the
more complex oscillations reported by Eddi et al. [43]. The potential for further theoretical
explorations abound. For example, one might consider how the introduction of defects,
such as holes or an additional droplet, might modify the resulting lattice dynamics [55].

In solid-state physics, more complex lattice geometries arise, for example, in ionic
lattices comprised of more than one type of atom. In such cases, the ‘unit cell’ constitutes
the smallest non-repeating subcomponent of the lattice, and the structure may be defined
in terms of a Bravais lattice of such unit cells. As is well established in the phonon
literature, having more than one element per unit cell is a prerequisite for optical modes
and band gaps [4,56], frequency ranges in which no vibrational states arise. In our study, we
restricted our attention to the case where there is a single droplet per unit cell, and focused
on relatively simple geometries. In the future, one might extend this framework to describe
lattices tiled by unit cells containing multiple droplets, thereby describing arbitrary lattices
in the plane. We note that for such arrangements, the equilibrium condition ∇h(dmn) = 0
(Equation (9)) would not necessarily be satisfied for all arbitrary unit cells. Nevertheless, an
extended theoretical framework might enable an investigation of the Archimedian tilings
that Eddi et al. [42] were unable to access in the laboratory, such as the truncated hexagonal
and great rhombi-trihexagonal lattices.
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Appendix A. Impact-Phase Parameters

The strobing of the trajectory equation of Moláček and Bush [47] at the vertical bounc-
ing period TF introduces two impact-phase parameters,

S =

∫ t+TF
t FN(t′) sin(π f t′)dt′∫ t+TF

t FN(t′)dt′
, C =

∫ t+TF
t FN(t′) cos(π f t′)dt′∫ t+TF

t FN(t′)dt′
, (A1)

that represent averages of the sine and cosine of the bath’s phase of oscillation over the
duration of droplet impact, weighted by the vertical contact force FN exerted on the drop
by the bath [47]. The impact phase directly scales both the wave amplitude generated at
each impact (see Equation (2)) and the horizontal wave force imparted to the drop by the
bath (see Equation (1)), as captured by S and C, respectively. While the phase parameters
are often combined into a constant fitting parameter sinΦ, modulations in a drop’s impact
phase have been shown to be critically important in accurately capturing the stability of
bound droplet states [32,33,37,39]. Couchman et al. [32] thus derived functional forms
for the dependencies of S and C on the bath’s vibrational acceleration γ, the local wave
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amplitude beneath each drop h0 = h(x0, t), and the drop radius R. To ensure that our
theoretical predictions may provide the best possible comparison with future experimental
studies, we here include these variable-phase parameters in our analysis, noting that the
product SC may be set to a constant for a simpler description of the system.

The functional dependencies of S and C on the bath’s vibrational acceleration γ, local-
wave amplitude h0, and droplet radius R, are presented in Table 2 of Couchman et al. [32].
To obtain the explicit results presented in Section 3, we here focus our theoretical analysis
on drops of radius R = 0.36 mm bouncing in a (2, 1)2 mode, as are typical parameters for
experimental studies [32,33,37,39]. In this case, the impact phase functions take the form

S(γ, h0) = 1− 1.32 exp{−3.52(γ/g− 5.73h0/R− 2)}, (A2)

C(γ, h0) = 1.98 exp{−2.37(γ/g− 5.86h0/R− 2)}, (A3)

where the gravitational acceleration g and drop radius R are used to non-dimensionalize γ
and h0, respectively.

Appendix B. Rotational Symmetries of the Square and Triangular Lattices

We here derive the simplification H(0) = η0I (Equation (24)) which holds for the
square and triangular lattices, due to their respective four- and six-fold symmetries (see
Figure A1). We adopt the notation

cpq ≡ xpq/
∣∣dpq

∣∣, spq ≡ ypq/
∣∣dpq

∣∣, (A4)

where dpq =
(

xpq, ypq
)
, and cpq and spq thus represent the cosine and sine of the angle

between the position vector dpq and the x-axis. Equation (19), using k = 0, thus yields

H(0) = 2 ∑
pq

 f ′′(|dpq|)
[

c2
pq cpqspq

cpqspq s2
pq

]
︸ ︷︷ ︸

A1

+
f ′(|dpq|)
|dpq|

[
s2

pq −cpqspq

−cpqspq c2
pq

]
︸ ︷︷ ︸

A2

. (A5)

For both the square and triangular geometries, we now demonstrate that the right-hand
side of Equation (A5) is proportional to the identity matrix I.

Figure A1. Square (a) and triangular (b) lattices exhibit four- and six-fold symmetry, respectively,
and may be generated by rotating the bolded points around the origin in increments of π/2 and π/3.

Appendix B.1. Square Lattice

Consider performing the sums in Equation (A5) by grouping four points at a time,
selected by rotating an initial point (p, q) in the first quadrant of Figure A1a through angles
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of θ = lπ/2, l ∈ [0, 3]. Importantly, each of these four points maintains the same distance
|dpq| from the origin. Using the identities

3

∑
l=0

sin2(θ0 + lπ/2) =
3

∑
l=0

cos2(θ0 + lπ/2) = 2, (A6)

3

∑
l=0

sin(θ0 + lπ/2) cos(θ0 + lπ/2) = 0, (A7)

yields

3

∑
l=0

A1 =
3

∑
l=0

(
c2

l clsl
clsl s2

l

)
=

(
2 0
0 2

)
, (A8)

3

∑
l=0

A2 =
3

∑
l=0

(
s2

l −clsl
−clsl c2

l

)
=

(
2 0
0 2

)
. (A9)

Thus, the right-hand side of Equation (A5) is proportional to the identity matrix I.

Appendix B.2. Triangular Lattice

Performing an analogous procedure as for the square lattice, we now evaluate the
sums in Equation (A5) by grouping six points at a time, selected by rotating an initial point
(p, q) in the bolded sixth of Figure A1b through angles of θ = lπ/3, l ∈ [0, 5]. Using the
identities

5

∑
l=0

sin2(θ0 + lπ/3) =
5

∑
l=0

cos2(θ0 + lπ/3) = 3, (A10)

5

∑
l=0

sin(θ0 + lπ/3) cos(θ0 + lπ/3) = 0, (A11)

yields

5

∑
l=0

A1 =
5

∑
l=0

(
c2

l clsl
clsl s2

l

)
=

(
3 0
0 3

)
, (A12)

5

∑
l=0

A2 =
5

∑
l=0

(
s2

l −clsl
−clsl c2

l

)
=

(
3 0
0 3

)
. (A13)

Thus, once again, the right-hand side of Equation (A5) is proportional to the identity
matrix I.
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