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Abstract: The concept of symmetry is a very vast topic that is involved in the studies of several
phenomena. This concept enables us to discuss the phenomenon in some systematic pattern de-
pending upon the type of phenomenon. Each phenomenon has its own type of symmetry. The
phenomenon that is used in the discussion of this article is a symmetric distance-measuring function.
This article presents the notions of abstract interpolative Reich-Rus-Ciri¢-type contractions with a
shrink map and examines the existence of ¢-fixed points for such maps in complete metric space.
These notions are defined through special types of simulation functions. The proof technique of
the results presented in this article is easy to understand compared with the existing literature on
interpolative Reich-Rus-Ciri¢-type contractions.

Keywords: ¢-fixed points; interpolative Kannan contraction; abstract interpolative Reich-Rus-Ciri¢-
type contractions with a shrink map

1. Introduction and Preliminaries

Metric fixed point theory has a significant contribution to nonlinear analysis with
its applications. This branch of fixed point theory is based on the work of the famous
mathematician Banach. He proved that [1], on a complete metric space, every contraction
map possesses a unique fixed point. Later on, Kannan [2] and Chatterjea [3] modified the
contraction inequality to study the existence of fixed points of discontinuous self-maps
on a complete metric space. Afterward, this field has flourished with several interesting
results. A few results have been obtained for the following aspects:

(1) Modifying contraction inequality,
(2) Modifying distance measuring function.

Recently, Karapinar [4] derived the interpolative Kannan contraction, which can be
considered a modified form of the Kannan contraction. Inspiration from this work led
several researchers to extend the existing contraction type inequalities in the pattern of
interpolative Kannan contraction.

A few generalizations of contraction inequality have been obtained using some special
types of simulation functions, for example [5,6].

Symmetry is a very vast topic that is involved in the studies of several phenomena.
Each phenomenon has its own definition of symmetry, which helps to discuss the phe-
nomenon in a systematic pattern. Metric space is a symmetric distance measuring function,
which is used in the discussion of this article. In the literature related to interpolative
Kannan contractions, we have seen several results based on the symmetric distance mea-
suring function, for example, [7,8], and the asymmetric distance measuring function, for
example, [9,10].

In this article, we use special types of simulation functions to extend interpolative
Reich-Rus-Cirié-type contraction inequalities. The proof technique of the fixed point results
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involving interpolative contraction type inequalities is more complicated than the proof
technique of the fixed point results involving contraction type inequalities. With the help of
a simulation function, we have tried minimizing these complications of the proof technique,
and now the presented proofs are easier to understand.

Before moving on to the next section, we will recall some basic concepts such as
interpolative Kannan contraction, a few generalizations of the interpolative Kannan con-
traction, well-known simulation functions and some other notions that are required for the
next section.

Let (V,dy) be a metric space and let Q : V — V be a self map. Then, we have the
following notions.

e AmapQ:V — Vissaid to be an interpolative Kannan contraction [4], if

dy (Qk, Ql) < ndy (k, Qk)“rdy (1,QI)' 1

forallk,I € V with k # Qk, where 7 € [0,1) and w; € (0,1).
Later on, it was observed by Karapinar et al. [11] that the above inequality does not
ensure the existence of a unique fixed point of a map in complete metric space. Hence,
to discuss the uniqueness of a fixed point, the above inequality was redefined in the
following way.

e Amap Q:V — Vissaid to be an improved interpolative Kannan contraction [11], if

dv(Qk, Q1) < ndy (k, Qk)“1dy (1, Q1)

forall k,I € V\Fix(Q), wherey € [0,1), w; € (0,1) and Fix(Q) = {k € V : Qk = k}.
e AmapQ:V — Vissaid tobe an interpolative Reich-Rus-Ciri¢-type contraction [12], if

dy(Qk,Ql) < ndy(k,1)1dy(k, Qk)“2dy (I, Ql)1*W1*w2

foreach k,1 € V' \ Fix(Q), where 7 € [0,1) and w1, w; € (0,1) with wy + wp < 1.

In the literature, CB(V) represents the collection of all nonvoid closed and bounded
subsets of V and the Pompeiu-Hausdorff distance is a map Hy : CB(V) x CB(V) — [0, o)
defined by

Hy(E, F) = max{supdy/(e, F),supdy(f,E)}
ecE feF
where dy (f,E) = inf{dy(f,e) :e € E}.

A set-valued generalization of interpolative Reich-Rus-Ciri¢-type contraction is de-
fined in the way: A map Q : V — CB(V) is said to be a set-valued interpolative Reich-Rus-
Ciri¢-type contraction [13], if

Hy(Qk Q1) < ydy (k1) dy (k, Qk)*“2dy (1, QI)! 1~ 2

foreach k,I € V \ Fix(Q), where 7 € [0,1) and w1, w, € (0,1) with wy + wy < 1.

In the literature, we have seen many auxiliary type functions from [0, o) X [0, o0) into
R, for example, simulation functions, R-functions and C-class functions. Recently, Karap-
inar [14] used the simulation function  : [0,00) x [0,00) — R given by Khojasteh et al. [15]
to define the following notion.

A map Q:V — Vis said to be an interpolative Hardy-Rogers type Z-contraction, if

C(dv(Qk,Ql),C(k,1)) >0,
for each k,I € V'\ Fix(Q), where wq, wz, w3 € (0,1) with wy + ws + w3 < 1, and

dv(k, Ql) + dv(l, Qk) } 1-wi—wr—ws
5 .

Clk,1) = dy (k1)1 dy (k, Qk)“=dy (1, Q1) |

A few more studies related to interpolative type contractions are available in [16-18].
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In the next section, we use the following family of functions defined in [19]:

OF is the collection of functions 6y : [0, 00)* — [0,00) with the given properties
01: 0¢(d,b,c,0) =0Vd,b,c €[0,00);
6>:  continuous and nondecreasing.

It is well-known that for a self-map Q : V — V, a point v € V with v = Qu is called a
fixed point of Q. If v is a fixed point of Q with ¢(v) = 0 foramap ¢ : V — [0,00), then v is
called a ¢-fixed point of Q. This notion is presented in [20].

2. Results

In this section, we denote Ef by the collection of functions ¢y : [0,00)3 — [0, 00)
such that

(f1) ¢ris nondecreasing in each coordinate;
(f2) @’f(g“’l,g“’Z,g“’S) < g for each g € (0,00) and for each w1, wy, w3 € [0,1] with wq +
wy +wsz = 1.

Example 1. The following functions belong to Zp.
(E1) r;‘f(a, b,c) = abc;

(E2) &5(a,b,c) = (m) (%) (1%)

Throughout this article, {¢ belongs to Z, 6 belongs to ©F, ¢ represents a map from
V into [0,0), and (V,dy) is a metric space.

The following definition is the first form of abstract interpolative Reich-Rus-Ciri¢ type
contraction with a shrink map.

Definition 1. A self-map Q : V — V is called an abstract interpolative Reich-Rus-Cirié¢ type-I
contraction with ¢ shrink, if the below-stated inequalities hold:

dv(Qk,Ql) < ngp(dv(k 1)1, dv(k Qk)“?,dv(1, QI)*)
+L9f (dV(kr Z)W1l dV (kr Qk)wzr dV(l/ Ql)w3r dV(l/ Qk)ahl) (1)
foreach k,1 € V \ Fix(Q) with ] # k, where w1, wy, w3 € [0,1] with wy +wy + w3 =1, wg > 0,

and L > 0;
for every 1 € V, we have

$(Ql) < n(1), @
wheren € [0,1) and Fix(Q) = {v € V :v = Qu}.

The following theorem ensures the existence of ¢-fixed points of the map Q satisfying
the above definition.

Theorem 1. Let Q : V — V be an abstract interpolative Reich-Rus-Cirié type-I contraction with
¢ shrink on a complete metric space (V,dy ). Then at least one ¢-fixed point of Q exists in V.

Proof. Take an arbitrary point [y € V, and define an iterative sequence I,, = Ql,,_1Vn € N.
If I, = ly41 for some ng, then I, is a fixed point of Q. Moreover, by (2) we get
¢(lny) = ¢(Qluy) < AP(ln,). This gives ¢(l,,) = 0. Hence, I, is a ¢-fixed point of Q.
Now, consider I,,_1 # I, Vn € N. By (1), for each n € N, we get

dV(anfll an) < ’7€f (dV(lnflr ln>w1/ dV(lnflr anfl)wzr dv(ln/ an)MS) (3)

+LO0f (dy (In—1,1n)", dv (L1, Qly—1)“?, dy (In, Qln)“?, dy (In, Qly—1)“*).
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That is,

dy (o lis1) < 85 (Aot 1)t dy (hioi, 1), dy (I st )2) Y €N (4)

Now, claim that dy (I, l,+1) < dv(ly—1,1x) Vn € N. If it is wrong, then we have
mo € N with dy (g, lng+1) = dv (Lng—1,1my)- By (4) we get

dV(lmO/ lm0+l) S Uéf(dV(lmofl/lmO)wlldV(lmoflllmO)wz/ dV(lmO/lm0+l)WS)
S ng (dV(lWlO/ lm0+l)W1/ dV(lWlol lmO+l)wz/ dV(lm()/ lm()+l)ws)
S Udv(lmoilmOJrl)

which is only possible when dvy (I, [y, +1) = 0, and it contradicts our assumption. Thus,
the claim is true. Since dy (I, l,+1) < dv(ly—1,1n) Vi € N, then (4) we get

dV<lnrln+1) < ryéf(dv n— 1, /dV(lnflrln)wz,dv(ln,ln+1)w3)
< ﬂ€f<dv w1l dy (1, ) dy (1, 1) ) )
S (ln l, )VTIGN

The above inequality implies that
dy (In, lny1) < n"dv(lo,11) Vn € N. (6)

To verify that the sequence {I,,} is Cauchy. Consider m,n € N with n > m. By triangle
inequality and (6) we obtain

dV(lmrln) < Z dV /+1 < Z 77]dV lO/ ll)
j=m

Since Z]?“’:l 1l is a convergent series, thus, by the above inequality, we get limy, m—co
dy(lm,1n) = 0. As (V,dy) is complete and {l,, } is Cauchy in V, then there exists an element
I* € V with I, — I*. Now, claim that I* = QI*. If it is wrong, then dy (I*, QI*) > 0. Since
{1} is an iterative sequence with I, — I*, thus, we get

max{dy (I,,1*),dy (I, ly+1),dv(I*, QI*)} = dy(I*,QI*) Vn > Ny )
for some Ny € N. By (1), for each n € N, we obtain
dv(Qln, Q") < n&s(dy(ln, 1), dy (In, Qlu)*?, dy (I, QI*)*?) ®)
+L0f (dy (L, 1)1, dy (I, QL )2, dy (I*, QI* )3, dy (I, QL )“4).
From (7) and (8), for each n > Ny, we get

dy(ln1, Q) < &g (dy (L, 7)Y, dy (I, Luy1 )2, dy (17, QIF)“?)
+L9f(dv(ln,l*)w1,dv(ln,an)wz,dv(l*,Ql*)w3,dv(l*,ln+l)“’4)

< nGp(dy (1%, QI )« dy (1%, QI*)“, dy (I*, QI*)*?) 9
+L9f (dV(ln/ l*)er dV(ZH/ an)wzrdv(l*/ Ql*)WB/ dV(l*r ln+1)W4)
< ndy(I*,Ql")

+L9f (dV(lTl/ l*)wl/ dV(lnl an)wzrdV(l*l Ql*)ws/ dV(l*r l}’l+1)W4)‘
By applying the limit # — oo in (9), we get
dv(l*,Ql*) S ﬂdv(l*,Ql*)
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As i < 1, thus, the above inequality, only exists when dy (I*, QI*) = 0. Hence, the
claim is correct. Since I* = QI*, then by (2) we get

P(I") = p(QI") < Ap(I").
This implies that ¢(I*) = 0. Hence, I* is ¢-fixed point of Q. O

By letting ¢ f(a, b,c) = abc and Gf(a, b,c,d) = abcd in Theorem 1, we get the follow-
ing result.

Corollary 1. Let (V,dy) be a complete metric space. Let Q : V. — Vand ¢ : V — [0, 00) be two
maps such that

dV(Qk,Ql) < Udv(k,l)wldv(k,Qk)wzdv(l,Ql)w3
+Ldy (k,1)*"dy (k, Qk)“2dy (1, Q)“*dy (1, Qk)*“*

foreach k,1 € V \ Fix(Q) with | # k, where w1, w,, w3 € [0,1] with wy + wy + w3 = 1 and
wy > O; further, for every I € V, we have

$(Q1) < n¢(1),
where y € [0,1) and L > 0. Then at least one ¢-fixed point of Q exists in V.

By taking w; = wy = 1 and wy = w3 = 0 in the above mentioned corollary, we obtain
the following result.

Corollary 2. Let (V,dy) be a complete metric space. Let Q : V. — Vand ¢ : V — [0, 00) be two
maps such that

foreach k,1 € V' \ Fix(Q) with | # k; further, for every | € V, we have

¢(Q) < no(l),
whereny € [0,1) and L > 0. Then at least one ¢-fixed point of Q exists in V.

Corollary 3. Let (V,dy) be a complete metric space. Let Q : V. — V be a map such that

dy(Qk,Ql) < nydy(k1)1dy(k, Qk)“2dy (I, QI)“s (10)

foreach k,1 € V \ Fix(Q) with 1 # k, where wy, wy, ws € [0,1] with wy + wy + w3 = 1, and
n € [0,1). Then a fixed point of Q exists in V.

The conclusion of the above result can be concluded from Corollary 1 by considering
L=0and ¢(k) =0Vk e V.

The following corollary follows from Corollary 3 by defining w; = 71, wp = T and
w3 = 1- T — 0.

Corollary 4. Let (V,dy) be a complete metric space. Let Q : V. — V be a map such that
dv(Qk Q) < dy (k)™ dy (k Qk)=dy (1, Q1) (11)

foreach k,1 € V \ Fix(Q) with | # k, where 71,7, € (0,1) withty + 7 < 1,and y € [0,1).
Then fixed point of Q exists in V.
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dy(Qk Q1) <

Inequality (12) can be considered as a rational type interpolative contraction inequal-

ity obtained through (1) by taking ¢¢(a,b,c) = (%) ({’—fc) (%) and L = 0. Some

interesting results related to rational type contraction conditions are given in [21].

Corollary 5. Let (V,dy) be a complete metric space. Let Q : V. — Vand ¢ : V — [0, 00) be two
maps such that

dy (k,[)*1dy (L, Ql)“’3) (dv(k/l)“’ldv(k, Qk)“’2> (dv(k, Qk)“2dy (1, Ql)“’3)

1+ dy(k, Qk)«w2 1+dy(l,Ql)ws 1+ dy(k 1)o1 (12)

foreach k,1 € V \ Fix(Q) with k # 1, where w1, wy, w3 € [0,1] with wy + wy + w3 = 1; further,
for every I € V, we have

¢(Ql) < ()

where 7 € [0,1). Then at least one ¢-fixed point of Q exists in V.

Consider a simulation function By : [0,00)? — R with the properties:
(b1) By(0,0) =0;
(©2) ylt;s) < p(s) — b
where ¢ : [0,00) — [0, c0) is a nondecreasing function that fulfills that }7° ¥/(s) is conver-
gent for each s > 0, moreover, $(0) = 0 and (s) < sifs > 0.

Example 2. A function By : [0,00) x [0,00) — R defined by By(k,1) = al —k for each
k,1 € [0,00), where P(I) = al and « € (0,1), is the simplest example of the above-defined
simulation function.

Throughout the article, B represents the above simulation function. Now, we define
an abstract interpolative Reich-Rus-Ciri¢ type-II contraction with ¢ shrink by using the
simulation function By.

Definition 2. A self-map Q : V — V is called an abstract interpolative Reich-Rus-Ciri¢ type-II
contraction with ¢ shrink, if the below-stated inequalities hold:

By (v (Qk, QI), & (dv (k1) dy (k, Qk)“2, dy (1, Q1)) )
+ L9f (dv(k,l)wl,dv(k, Qk)“2,dy(1,QD)“3,dy(l, Qk)w4) >0 (13)
foreach k,1 € V \ Fix(Q) with # k, where w1, wy, w3 € [0,1] with wy + wy + w3 =1, wg > 0,

and L > 0;
for every I € V, we have

By (0(QL), ¢(1)) > 0. (14)

Now, we discuss the following ¢-fixed point result for self-maps satisfying the
above definition.

Theorem 2. Let Q : V — V be an abstract interpolative Reich-Rus-Ciri¢ type-II contraction with
¢ shrink on a complete metric space (V,dy ). Then at least one ¢-fixed point of Q exists in V.

Proof. Define an iterative sequence {I,}, thatis I, = Ql,,_1Vn € N, for an arbitrary point
lo € V. If Iy = ;41 for some ng, then I, is a fixed point of Q. Moreover, from (14) we obtain

0 S ﬁ#’ (‘P(Qlﬂo)r 4)(1”0)) S lp(‘i’(lﬂo)) - ¢(Ql"0);that is 47(1710) = ‘P(ano) S lp(‘l’(l"o))' This
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gives ¢(I,,) = 0. Hence, I, is a ¢-fixed point of Q. To work with the proof, we consider
I,—q1 # 1, ¥n € N. By (13), for each n € N, we get

By (v (Qh1,Qha), & (dv (a1, 1) dy (1, Qhy 1), dy (1, QL)) ) (15)
+ LOs (dv (L1, 1), dy (In—1, Qlu—1)“2, dy (In, Qln ), dy (In, Qly—1)*) > 0.
Using (b2) and (15), we get
W (&r(dvln-1,10) " dy (i1, Qlu—1)“2,dv (In, Qln)*?) ) — dv(Qlu-1,Qln)
+ LOs (dy (i1, 1), dy (In—1, Qlu—1)“2, dy (Ln, Qln ), dy (In, Qly—1)*)
> By (dV<anflran>/€f (dV(lnflrln)wlidV(lnfl/anfl)wz/d\/(ln/an)w3)>
+ LOs (dv (L1, 1), dy (In—1, Qlu—1)“2, dy (In, Qln ), dy (In, Qly—1)*) > 0.
This implies
dv(Qli—1,Qln) < ¥(&r(dv(Li—1, 1), dv (ly—1, Qly—1)*?, dv (In, Qln)*?)) (16)
+L0f (dy (In—1,1n)", dy (i1, Qlu—1)“?, dy (In, Qln)“?, dv (In, Qly—1)“*).

That is,

dy(ln, L) < (& (dv Loy, 1), dy (In—1, Qly—1)“2,dy (In, Qlx)?)) V1 € N.(17)

Now, let us claim that dy (I, l,11) < dv(l,_1,1n) Vn € N. Assume that the claim is
wrong, then we have my € N with dy (L, lny+1) > dv(lny—1,Imy)- By (17) we get

¢(€f (dV(lmo—ll lmO)wll dV(lmO—ll lmO)wzz dV(lmO, lmO+1)w3)>
lp(gf (dV(lmO/ lmo-l-l)ujl/ dV(lm(]/ lm0+1)w2, dV(lmg/ lmo-i-l)ws))
lp(dv(lm()/ lm0+l))

which is impossible, since Iy, # I,4+1. Hence, the claim holds. As dy(ly,l,+1) <
dy(ly—1,1n) Vn € N, then (17) we get

dV(lm()/ lmo—l—l)

IN AN IA

dV(li’l/ ln+l) S llj(gf (dV(lnfl/li’l)aq/ dV(lnfl/li’l)wz/ dV(lYl/ ln+l)ws))
S lp(gf (dV(ln—l/ll’l)W11dV(l}’l—l/ll’l)w2/ dV(ln—]/ln)ws))
< ¢(dy(ly_1,1n)) ¥n € N, (18)
This yields
dv(ln, ln-l—l) < l[Jn (dv(lo, ll)) Vn € N. (19)

Consider m,n € N with n > m. By triangle inequality and (19) we obtain

n—1 n—1
dy(ln,ln) < Z dy(lj,liy1) < Z ¥/ (dv(lo, 1))
j=m

j=m

Since Z;O:1 ¥/ (s) is a convergent series for each s > 0, hence, by the above inequality
we get limy, ;—00 Ay (I, 1n) = 0. The completeness of (V,dy) confirms the existence of an
element [* € V with [, — I*. Now, let us claim that [* = QI*. Let us suppose that the
claim is wrong, then dy (I*, QI*) > 0. Since {I,, } is an iterative sequence with I,, — I*, thus,
we get

max{dy (I, 1), dv Iy, lis1),dv (1%, QI*)} = dy (I, QI*) Vi > Ny (20)
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for some Ny € N. By (13), for each n € N, we obtain

By (dv (Qln, QI*), & (dy (In, 1), dy (In, Qln )2, dy (I, QI*)“3) )
L0 (dy (I, 1), dy (I, QL)“2, dy (I, QU2 dy (I, QL)) > 0. (21)

This gives

dy(Qln, Q") < 9(Gr(dv (I, 1), dv (Ln, Qln) 2, dy (I*, QIF) %))

+LO¢ (dy (In, "), dy (In, QLu) 2, dy (I, QI )2, dy (I, QL )*). (22)

By (20) and (22), for each n > Ny, we get

dy (L1, Q) < @(Zp(dv (L, 1) dy (I, Lnr) 2, dy (I, QIF)“?))

+L9f (dV(li’lr l*)wlrdV(ln/ an)CUZl dV(l*, Ql*)w3rdV(l*l ln+1)w4)

< P(Gp(dv (7, QI dy (I, QI )2, dy (I*, QL") ) ) (23)
+LO7 (dy (In, 1)1, dy (In, Qln )2, dy (I", QI )3, dy (I, L +1) %)
< pldv(, Q)

+L9f (dV(li’l/ l*)wlrdV(ln/ Qll’l)wz/ dV(l*/ Ql*)w3/ dV(l*/ li’l+1)w4) .
Letting n — oo in (23), we get
dy (I*,QI*) < y(dy(I*,QI")).

The above inequality, only holds when dy (I*,QI*) = 0. Hence, the claim is cor-
rect, I* = QI*. By (14) we get 0 < By(¢(QI*), ¢(I*)) < (p(I*)) — ¢(QI*); that is
o(I*) = p(QI*) < ¢(¢(I*)). This implies that ¢(I*) = 0. Hence, I* is a ¢-fixed point
of Q. O

We will extend the above results by considering Q as a set-valued map. In the
following, CB(V) represents the collection of all nonvoid closed and bounded subsets
of V and CL(V) represents the collection of all nonvoid closed subsets of V.

Definition 3. A set-valued map Q : V. — CB(V) is called an abstract interpolative Reich-Rus-
Cirié type-I set-valued contraction with ¢ shrink, if the below-stated inequalities hold:

Hy(Qk,Ql) < 5&s(dv(k,1)*r,dy(k,Qk)“2,dy (1, Q1)*?)
+L0¢ (dy (k, 1)1, dy (k, Qk)“2,dy (1, Q1)“3, dy (1, Qk)“4) (24)
foreach k,1 € V \ Fix(Q) with ] # k, where w1, wy, w3 € [0,1] with wy +wy + w3 =1, wg > 0,

and L > 0;
for every k € V, we have

sup ¢(1) < n¢(k), (25)
1eQk

whereny € (0,1) and Fix(Q) = {v € V :v € Qu}.

The following theorem can be used to validate the existence of ¢-fixed points for a
map satisfying the above definition.

Theorem 3. Let Q : V — CB(V) be an abstract interpolative Reich-Rus-Ciri¢ type-I set-valued
contraction with ¢ shrink on a complete metric space (V,dy ). Then at least one ¢-fixed point of Q
exists in V; that is, there exists a point v* in V with v* € Qv* and ¢(v*) = 0.
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dy (L1, QlY)

Proof. For an arbitrary point Iy € V, we getsome I; € Qly. If [y = I, then I is a fixed point
of Q. Moreover, by (25) we get ¢(lp) < sup;cq; ¢(I) < n¢(lp); thatis ¢(Ip) = 0. Hence,
lp is a ¢-fixed point of Q. Suppose that neither Iy nor /; is a fixed point of Q, then by (24)
we get

dy(l1,Qh) < Hy(Ql, Qh)
< &g (dv(lo, 1), dy(lo, Qlo)“?,dy (I, Ql1)“?) (26)
+L0¢ (dy (lo, 1), dv (lo, Qlo)“?, dv (I, QL )“?, dv (11, Qlo)“*).
That is,
dy(l1,Ql) < nép(dv(lo, 1), dv(lo, Qlo)*“?, dv (I, QL )“?). (27)

Since 7 € (0,1), thus, for ﬁ > 1 we have I, € Ql; satisfying the given inequality

dy(l, 1) < ;ﬁdval,gm. (28)

To proceed with the proof, we assume that I; # I, otherwise I; is a ¢-fixed point.
From (27) and (28), we get

dy(li,b) < /& (dyv(lo,1)“", dy(lo, Qlo)“?, dv (I, Ql1)“?). (29)

From the facts that I; € Qlp, I € QI;, and nondecreasing property of ¢, by (29),
we get

dy(li,l) < ¢ (dv (lo, 1), dy (lo, 1)“2, dy (11, 1) “3). (30)

If dy(lo, 1) < dy(lh,12), then from the above inequality we get dy (I1,12) = 0, which is
impossible. Thus, dy (I1,12) < dy(lp,11). Now, by (30), we get

< Vnég(dv(lo, 1), dy (I, 1)<, dy (11, 12)“?)
< Vnég(dv(lo, ), dy (o, 1)<, dy (lo, 11)“?)
< \/ﬁdv(lo, I). (31)

Continuing the proof on the above lines we can obtain a sequence {I,} with I,, €
Ql, 1VneN,l, 1 #1,Vn €N, and

dy(l1,12)

dV(ln/ln+1) < (\/ﬁ)ndv(lo, 11) Vn € N.

Moreover, it is trivial to conclude that {I, } is a Cauchy sequence in a complete metric
space (V,dy), thus, there is a point I* € V with [, — I*. Now, we claim that I* € QI*. If it
is wrong, then dy (I*, QI*) > 0. Thus, we can obtain Ny € N such that

max{dy (I, 1*),dv (L, lys1),dv(I*,QI*)} = dy (I*,QI*) Vn > Ny. (32)
By (24), for k = I,, and | = I*, we obtain
HV(an, Ql*)

0E s (dy (I, 1), dy (o, QL) 2, dy (17, Q1)) (33)
+L9f (dV(ln/ 1), dy (I, QL) 2, dy (I*, QI* )3, dv (I, an)w4) VneN.

IN A

From (32) and (33), for each n > Nj, we get
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dy (i1, Q) < yp(dy (Lo, ), dy (Ln, L1 )2, dy (I, QIF )

+L6f (dV(lnr l*)wlrdval’l/ an)wzl dV(l*/ Ql*)w3/dV(l*/ li’l+1>w4)

< nlr(dv (17, QI ), dy (I, Q)2 dy (17, QI*)“3) (34)
+LOf (dv (Ln, 1)1, dy (In, QL )2, dy (I, QI )3, dy (I 1y 11) )
< pdv(I,QI7)

+L9f (dV(li’lr l*)wlrdV(ln/ an)wzl dV(l*, Ql*)w3rdV(l*/ ln+1)w4) .
By applying the limit n — oo in (34), we get
dy(I*,QI*) < ndy(I*,QI").

The existence of the above inequality is impossible when dy (I*, QI*) > 0. Hence, the
claim is correct, [* € QI*. By (25) we get

¢(I") < sup ¢(I) < Ap(I").

leQl
This implies that ¢(I*) = 0. Hence, I* is a ¢-fixed pointof Q. [

The following result examines the existence of ¢-fixed points for a set-valued map
Q:V — CL(V).

Theorem 4. Let (V,dy) be a complete metric space and let Q : V. — CL(V) be a set-valued map
and ¢ : V — [0, c0) be another map fulfilling the following inequalities:

dV(l/ Ql) < Ugf (dV(kll)WI/dV(k/ Qk)wzldV(Z/ QZ)W3) (35)

foreach k,1 € V \ Fix(Q) with | € Qk, where w1, wy, w3 € [0, 1] with wy + wy + w3 = 1, and
ws # 1; further, for every k € V, we have

sup (1) < y¢(k), (36)

leQk

where 11 € (0,1). Moreover, assume that Graph(Q) = {(k,1) : k € V,1 € Qk} is closed. Then at
least one ¢-fixed point of Q exists in V.

Proof. Following the proof of Theorem 3, here, one can easily obtain a Cauchy sequence
{I} in a complete metric space (V,dy) withl,, € Ql,_1Vn € N, I, 1 # 1, Vn € N, and

dV(ln/ln-H) < (\/ﬁ)ndv(lo, 11) Vn € N.

Furthermore, there exists a point [* € V with [, — I*. Since I, € Ql,,_1 Vn € N, thus,
(Iy—1,1n) € Graph(Q) ¥n € N. As given that Graph(Q) is closed, thus, (I*,1*) € Graph(Q),
thatis I* € QI*. Hence, [* is a fixed point of Q. By considering (36), we conclude that [* is
a ¢-fixed point of Q. O

Now we present the definition of the abstract interpolative Reich-Rus-Ciri¢ type-IT
set-valued contraction with ¢ shrink.

Definition 4. A set-valued map Q : V. — CB(V) is called an abstract interpolative Reich-Rus-
Ciri¢ type-II set-valued contraction with ¢ shrink, if the below-stated inequalities are fulfilled:

By (Hv (Qk, Q1), & (v I 1)y (k, Q)2 dy (1, Q1))
=+ Lef (dV(k/l)W1/dV(k/ Qk)wzrdV(l/ Ql)w3/dV(lr Qk)w4) >0 (37)
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foreach k,1 € V \ Fix(Q) with ] # k, where wq, wy, w3 € [0,1] with wi + wy + w3 =1, w3 # 0,
wy >0,and L > 0;
for every k € V, we have

By (sup ¢(1),¢(k)) > 0. (38)

1eQk

In the following theorems, we assume that ¢ and ¢ are strictly increasing instead
of nondecreasing.

Theorem 5. Let Q : V — CB(V) be an abstract interpolative Reich-Rus-Ciri¢ type-II set-valued
contraction with ¢ shrink on a complete metric space (V,dy ). Then at least one ¢-fixed point of Q
exists in V.

Proof. For an arbitrary point Iy € V, we get a point I1 € Qly. If [y = I}, then [y is a
fixed point of Q. Moreover, by (38), we get 0 < By (sup;c gy, ¢(1), #(l)) < ¥(¢(lo)) —

sup;c o, ¢(1), this implies ¢(lo) < 9(¢(lp)), hence, [y is a ¢-fixed point of Q. Suppose that
neither [y nor [ is a fixed point of Q, then by (37) we get
By (Hv(Qlo, Qh), &f(dv(lo, 1), dv (lo, Qlo)“?, dv (11, Ql1)“?) (39)
+L0f (dV<ZO/ l])“h/dV(lO/ Qlo)wzr dV(llr Qll)WSIdV(llz Qlo>w4) 2 0.

This implies that

Hy(Qlo, QL) < ¢(&s(dv(lo,11)“",dv(lo, Qlo)*?,dy (I, Ql1)“?))

+L6f (dy (lo, 1), dv (lo, Qlo)“?, dv (I, Q1 ), dv (11, Qlo)“*). (40)
Since I; € Qly, thus, by the above inequality we get
dy(l,Ql) < 9(&f(dv(lo, 1), dy(lo,11)“?, dv (I, Q1 )“?)). (41)

Ifdv(l(), l]) < dv(l], Ql]), thenby (41) we get dv(ll, Qll) < l[J(dv(l], Ql])) < dv(ll, Ql]),
which is impossible. Thus, we conclude dy (lp,11) > dy(l1, Qly). By considering strictly
increasing behavior of ¢, {¢, and using (41) we get

dy(h,Qh) < (C (dv (lo, )1, dy (lo,ll)wz,dv(ll,Qll)w3))
< P(Gr(dv (o, l)“r, dy (o, 1), dv (lo, 11)“?))
< (dv(lo, Ih)). (42)

As dy(l1,Ql) < ¥(dy(lo, 1)), there exists some real number e; > 0 such that
dv(ll, Qll) +€ = l,b(dv(lo, l])) Thus, we get I, € QI; such that dv(ll, lz) < dv(ll, Ql1) +
€1. Hence, we conclude that

dV(ll/ZZ) < lp(dv(lo, ll)) (43)

Continuing the proof on the above lines we can obtain a sequence {I,} with [,, €
Ql,1VneN,l, 1 #1,Vn €N, and

dv(ln, ln+1) < l/)n (dv(lo, 11)) Vn e N.

Further, it can be seen that {/,,} is a Cauchy sequence in a complete metric space
(V,dy) and there exists I* € V with I, — I*. Now, we claim that I* € QI*. If it is wrong
then dy (I*, QI*) > 0. Thus, we can obtain Ny € N such that

max{dy (I, 1*),dy (L, lys1),dv (", QI*)} = dy (I*, QI*) Vn > Ny. (44)
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dy (ly41,QI")

By (37), fork =1, and | = I*, we get

:8117 (HV(an, Ql*)/ gf (dV(lﬂ/ l*>w1/ dV(Zi’l/ Qlﬂ)wZ/dV(l*/ Ql*)W3))
L0 (dy (I, 1), dy (L, QL) 2, dy (I, Q)2 dy (I, QL)) ¥n € N, (45)

From the above inequality, we obtain

Hy (Qln, QI)
$(Zp(dy (b, 1)1, dy (In, Qla)“2, dy (I, QI7)*?) )
+ L0 (dy (I, 1)1, dy (I, QL )2, dy (I*, QI ), dy (I*, Qly)“*) Vi € N. (46)

IA A

From (44) and (46), for each n > Np, we get

dy(lur1, Q1) < (r(dv (n, 1) dy (In, nsn )2, dy (17, QI7) %) )

L0 (dy (In, 1), dy (In, Qlu) 2, dy (I*, QI* )3, dy (I*, L 11)“*)

< (& (dy (17, QI dy (I, QIF)“2, dy (I, QI7)“3) ) (47)
L0 (dy (In, 1), dy (In, Qla) 2, dy (I*, QI* )3, dy (I*, Ly 11)“*)

< p(dv(I5, Q1Y)
L0 (dy (In, 1), dy (In, Qlu )2, dy (I*, QI* )3, dy (I*, L 41) ).

By letting n — oo in (47), we get
dy(I*,QI*) < y(dv(I*,Ql))

which is impossible for dy (I*, QI*) > 0. Hence, the claim is correct, [* € QI*. Moreover,

by (35) we get0 < By (supy. . ¢(1), 9(1°)) < $(9(1*)) — supy . $(1). As I € QI°, thus,
P(I*) < sup;cqp ¢(1) < ¢(¢(I7)). This implies that ¢(I*) = 0. Hence, I* is a ¢-fixed point
of Q. O

The following theorem can examine ¢-fixed points of set-valued map Q : V — CL(V).

Theorem 6. Let (V,dy) be a complete metric space and let Q : V. — CL(V') be a set-valued map
and ¢ : V — [0, 00) be another map fulfilling the following inequalities:

By (dv (1, QD) (dv (k1) dy (k, QK dv (1, Q1)) ) > 0 (48)

foreach k,1 € V \ Fix(Q) with 1 € Qk, where wy,w, € [0,1] and w3 € (0,1) with wy + wy +
w3 = 1; further, for every k € V, we have

By (sup ¢(1), (k) > 0. (49)

1€Qk

Furthermore, assume that Graph(Q) = {(k,1) : k € V,1 € Qk} is closed. Then at least one
¢-fixed point of Q exists in V.

3. Application

A suitable application of the work can be seen as an existence theorem for the following
type of fractional-order integral equation:

k(t) =q(t) + ﬁ /Op(t)(p(t) - s)"‘_lw(s,k(s))ds, xe(0,1), te]=]ab] (50)

whereq: ] > R, p: ] » Rt =[0,00), and w: | x R — R are continuous functions,  is
constant real number, and T is the Euler gamma function; that is I'(a) = fooo te—le=tdt,
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Consider V = (C|a, b],R) is the space of all continuous and bounded real-valued
functions defined on | = [a, b]. Define a metric on V by

dy (k1) = |k~ 1]} = max|k(t)  (¢)| Wk, 1 € V.
€

Clearly, (V,dy) is a complete metric space.
Now, we move towards the existence theorem of (50).

Theorem 7. Consider V = (Cla, b], R) and consider the operator

Q: V-V, Qk(t)=q(t)+ ﬁ /Op(t)(p(t) — )" Lw(s,k(s))ds, ae€(0,1), te]

where g: ] — R, p: ] = Rt = [0,00), and w: ] x R — R are continuous functions, u is
constant, and T is the Euler gamma function; that is T'(«) = fooo t*=lo=tdt Moreover, consider
that there are w1, wy, w3 € [0, 1] with wy + wy + w3 = 1 satisfying

|w(s, k(s)) —w(s,I(s))] 2000y _ I(e) @1
Hk_QkszHl_QleS < [F("‘+1)] |k(s) Z(S)| (51)

foralls € ] and for each k,1 € V with min{||k — I||, ||k — Qk||, ||l — Ql||} > 0, moreover,

<1

sup ’]/l

te]

Then, (50) possesses at least one solution.

Proof. For each k,I € V with min{||k —I||, ||k — Qk||, ||l — QI||} > 0, we obtain

(1)
|QK(t) — QI(1)| = “ /p (p(t) = 8)" [ew(s, k(s)) — w(s, I(s))]ds
< ) =s)"" 1d5][ (o + 1)l = 21t |l — QK[|2 11 — QI[|*>
_ (p( )) Ol Apl@all] 1w
= [r(“” [T (a) 2| = 21" [ & — Q|21 — Q1|
= w\u( ( — 1| ||k — Qk[|2[I — QI||“3 Vt € ].

Thus, we get
[1Qk — QI < allke — 1[|** ||k — Qk{[2[|7 — QI[|**

for each k,I € V'\ Fix(Q) with k # I. Thus, by Corollary 3, a fixed point of Q occurs; that
is, the integral Equation (50) possesses at least one solution. [

Example 3. Consider V. ={0,1,2---,20} and define

dyen =2 K=l
VT Y max{k 1}, k£

Define Q:V — Vand ¢ : V — [0,00) by

Q(k)Z{O' k=0

k—1, otherwise
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and

Then, it is easy to verify that the axioms of Theorem 1 are valid, by taking r(a, b, c) = abc,

w1 =0.99, wy = 0.005, w3 = 0.005, L = 0and n = %. Thus, there is an element k € V with
Qk = kand ¢(k) = 0.

Example 4. Consider V.= W the set of all whole numbers and define

0, k=1

dv (k1) = {max{k,l}, k1.

Define Q:V — CB(V)and ¢ : V — [0, 00) by

{0}, ke {0,1}
Qk)=<{{0k—1}, ke{23,---,10}
{0,k}, otherwise

and

0, otherwise.

k/2, k 1,2,---,10
¢<k>={ /2 kel }

Then, it is easy to check that the axioms of Theorem 6 are valid, by taking & f(a, b,c) = abc,
By(k,1) = (49/50)] —k, w1 = 0.99, wp = 0.005, and w3 = 0.005. Since

(k —1)%9%° < (49/50)k% for each k € {1,2,---,10}.
Hence, there is an element k € V with k € Qk and ¢(k) = 0.

4. Conclusions

In this article, we have studied the existence of ¢-fixed points for the mappings
satisfying abstract interpolative Reich-Rus-Ciri¢-type contractions with a shrink map on
a complete metric space. Abstract interpolative Reich-Rus-Cirié-type contraction with a
shrink map has the following characteristics:

e Itisan extended form of interpolative Reich-Rus-Ciri¢-type contraction.
* It provides an easier proof of the results, ensuring ¢-fixed points.

Finally, we have studied the existence of a solution for a fractional-order integral
equation using our results.
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