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Abstract: We propose a distortion-corrected integral imaging (II) 3D display system based on lens
array holographic optical element (LAHOE). The LAHOE is used as a projection screen. The projection
beam of the LAHOE is parallel light. Hence, the projection system consists of a spatial light modulator,
a reverse projection lens, a relay optical element, and a telecentric lens. The acquired 3D data and the
reconstructed 3D image of II are symmetrically related to each other. Therefore, there is lens distortion
in the projection system. To avoid affecting the viewing experience of the viewers, the elemental
image array (EIA) is projected obliquely on the LAHOE, causing the lateral distortion of the EIA.
There is a position deviation in the projection system, so the projected EIA has geometric deformation.
Due to the distortion of the EIA, it is difficult to precisely align the projected EIA and LAHOE, which
results in serious flip of the reconstructed 3D images. The distortion of the EIA affects the asymmetry
of the 3D image reconstruction. Lens distortion can be solved by the distortion compensation method.
Lateral and the geometric deformation can be solved by the perspective transformations in computer
graphics. After correction, the undistorted EIA is projected, and the projected EIA on the LAHOE
has little distortion. In the process of 3D image reconstruction, the causes of asymmetry affecting
3D image reconstruction are analyzed, and the issues that generate these asymmetric factors are
addressed. Experimental results indicate that a better 3D display effect is achieved.

Keywords: 3D display; integral imaging; lens-array holographic optical element; elemental
imaging array

1. Introduction

Recently, augmented reality has received wide attention, and it can overlay virtual
images into real scenes [1]. To achieve augmented reality display, see-through optical elements
are used as image synthesizing elements [2]. For decades, augmented reality has been
the 2D display. With the development of the autostereoscopic 3D display, the see-through
autostereoscopic 3D display will be the core of the next generation of augmented reality.

The autostereoscopic 3D display includes holographic display [3,4], multi-view dis-
play [5,6], integrated imaging display [7,8], and other display technologies. The integral
imaging 3D display is considered to be one of the most promising 3D displays. It has the
advantages of a continuous viewing point, full parallax, full-color display, and ignoring
fatigue [9,10]. Therefore, many researchers combine II 3D display technology with aug-
mented reality technology and propose an augmented reality 3D display system by using a
LAHOE as the image synthesizing element. For example, Seoul National University has
developed a full-color LAHOE for 3D optical see-through augmented reality [11], proposed
a without a pseudoscopic problem 3D display using a phase-conjugated reconstruction of
LAHOE [12], released a 2D/3D switchable display system based on LAHOE [13], proposed
an enhanced resolution 3D see-through display system [14], and developed an enhanced
viewing angle II 3D display [15]. The Tokyo Institute of Technology has developed a 3D
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touchable holographic light-field display system [16]. Our group has developed a table-
top augmented reality 3D display system based on II [17] and released a dual-view-zone
tabletop 3D display system based on integral imaging by using a multiplexed holographic
optical element [18].

The acquired 3D data and the reconstructed 3D image of II are symmetrically related
to each other. The LAHOEs of the above system are being used as a projection screen; the
projection beam of the LAHOE is parallel light. So, the projection system consists of a spatial
light modulator, a reverse projection lens, a relay optical element, and a telecentric lens.
The telecentric lens and relay optics are used to collimate and expand the projection beam.
Finally, the collimated light with EIA is projected on the LAHOE with an incident angle
of θ. The structure of the projection system is shown in Figure 1. Because the projection
system is not correct, the projection beam changes in the direction of the curvature of the
projection lens, which is represented by the radial ratio distortion. It causes the image point
to be shifted along the radial direction, and the larger the deformation is from the center
point; this is the radial distortion of the projection system. In the assembly process of the
projection system, the optical axis of the lens that comprises the projection system is not
collinear. The present optical system is affected by eccentricity, leading to distortion of the
image; this is the tangential distortion of the projection system. The distortion of the prism
is mainly due to the manufacturing error of the projector CCD imaging matrix and the
manufacturing error of the projection system objective. So, there is lens distortion in the
projection system.

Figure 1. The structure of the projection system, (a) the section diagram of the projection system, and
(b) the top viewport of the projection system.

These LAHOEs of the above systems use the optical principle of off-axis imaging,
which requires that the projection beam be projected at a certain angle θ. As a result, the
lateral distortion of the EIA occurs when the projection beam is projected onto the LAHOE,
as shown in Figure 2a. Because of the position shift of the projector, the EIA has geometric
deformation, as shown in Figure 2b. In the reconstruction process, an obliquely incident
display beam leads to the different pixel densities in horizontal and vertical directions,
which causes the difference in the angular resolution of 3D images in horizontal and the
vertical directions. Because of elemental image array (EIA) distortions, it is difficult to
accurately align the EIA with the LAHOE. Serious flip exists in the reconstructed 3D images,
and it is difficult to build a large 3D display system. The distortion of the EIA affects the
asymmetry of the 3D image reconstruction.
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Figure 2. (a) Lateral distortion of the EIA, (b) geometric deformation of the EIA.

To solve the problem of the lateral distortion of the EIA, the Seoul National University
has developed an on-axis LAHOE for a see-through integral imaging 3D display system [19];
this system effectively solves the issue of the lateral distortion of the EIA but it does not
solve the geometric of the EIA. Moreover, the diffraction beam and the reflected beam of the
LAHOE cannot be separated. Therefore, the diffraction beams and the reflected beam of the
LAHOE overlap each other, so the reconstructed 3D image is not clear, and it has serious
crosstalk problems. The Tokyo Institute of Technology has developed a rapid calibration of
a projection-type holographic light-field display system using hierarchically unconverted
binary sinusoidal patterns [20]. This method could rapidly calibrate the projection-type
II 3D display system and solves the problem of the lateral distortion and the geometric
deformation of the EIA.

To precisely align EIA and LAHOE, our group precorrected the lens distortion of the
projection system, the distortion compensation method can be used to compensate for the
lens distortion, and the EIA of before the project, based on the perspective transformation in
computer graphics, can be used to resolve the lateral distortion and geometric deformation.
In the process of 3D image reconstruction, the causes of asymmetry affecting 3D image
reconstruction are analyzed and the issues that generate these asymmetric factors are
addressed. As a result, the projected EIA has a uniform pixel density in the horizontal and
vertical directions, and the precise alignment between EIA and LAHOE is realized.

2. System Configuration

To realize the precise couple between EIA and LAHOE, the projection beam in the
reconstruction process makes the uniform pixel density in the horizontal and vertical
directions. The distortion is caused by the projection lens. The lateral distortion and
geometric deformation of the EIA are caused by the projection system. The causes of
asymmetry affecting 3D image reconstruction are analyzed. Thus, an examination of the
projection lens is performed first, and then lateral distortion and geometric deformation of
the EIA in the projection system are analyzed.

2.1. Lens Distortion of the Projection System

The projection system consists of a spatial light modulator, a reverse projection lens, a
relay optical element, and a telecentric lens. As shown in Figure 1. The projection system
is not corrected. Therefore, there has lens distortion in the projection system. The lens
distortion of the projection system includes radial distortion, tangential distortion, and thin
prism distortion. The lens distortion cannot be solved by the perspective transformation.
Assuming the coordinates of the projective point without lens distortion are (xp, yq). The
coordinates of the projection points with lens distortion are (xu, yv). The projection beam
changes in the direction of the curvature of the projection lens, which is represented by
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the radial proportion distortion. It causes the image point to be shifted along the radial
direction, and farther away from the center point. The mathematical model of the radial
distortion can be expressed as:{

δxr = k1xu
(

x2
u + y2

v
)
+ O[(xu, yv)

5]

δyr = k2yu(x2
u + y2

v) + O[(xu, yv)
5]

(1)

δxr, δyr are the number of distortions in the horizontal and vertical direction caused
by radial distortion and k1, k2 are the radial distortion coefficients.

In the assembly process of the projection system, the optical axis of the lens that
consists of the projection system is not collinear. The actual optical system is affected by
eccentricity, resulting in the distortion of the image. The mathematical model of tangential
distortion can be expressed as:{

δxd = p1xu(3x2
u + y2

v) + 2p2xuyv + O[(xu, yv)
4]

δyd = 2p1xuyv + p2xu(x2
u + 3y2

v) + O[(xu, yv)
4]

(2)

δxd, δyd are the number of distortions in the horizontal and vertical direction caused
by tangential distortion and p1, p2 are the tangential distortion coefficients.

The thin prism distortion is mainly caused by the CCD imaging array manufacturing
error of the projector and the lens manufacturing error of the projection system. The
mathematical model can be expressed as:{

δxp = s1(x2
u + y2

v) + O[(xu, yv)
4]

δyp = s2(x2
u + y2

v) + O[(xu, yv)
4]

(3)

δxp, δyp are the number of distortions in the horizontal and vertical direction caused by
thin prism distortion and s1, s2 are the thin prism distortion coefficients. Therefore, without
lens distortion imaging, the point coordinates are the sum of the with lens distortion
imaging point coordinates and the number of the distortions of the imaging point, which
can be expressed as: {

xp = xu + δxr + δxd + δxp
yq = yv + δyr + δyd + δyp

(4)

k1, k2, p1, p2, s1, s2 are the lens distortion coefficients and Equation (4) can be expressed as:

CP = D− E (5)

Of these:

C =

[
xu(x2

u + y2
v) 0 3x2

u + y2
v 2xuyv x2

u + y2
v 0

0 yv(x2
u + y2

v) 2xuyv x2
u + y2

v 0 x2
u + y2

v

]
(6)

P =
[
k1 k2 p1 p2 s1 s2

]T (7)

D is the coordinate matrix of the projective point without lens distortion and E is
the coordinate matrix of the projection points with lens distortion. The six coefficients of
the lens distortion can be solved by three pairs of target values and actual values of the
measured pixels. To obtain the lens distortion parameters, we selected the central position
of the projection zone and obtain three pairs of the distortion values and the actual values
of the closest point in the center of the projection zone. To improve the calculation precision,
the distortion coefficient vector P was obtained by the least square method. Then, the
height mapping relation between the coordinate matrix of the projective point without
lens distortion and the coordinate matrix of the projection points with lens distortion was
obtained by Equation (5):

D = CP + E (8)
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Thus, the projection zone without lens distortion was obtained.

2.2. The Lateral Distortion and Geometric Deformation of the EIA

The lens distortion of the projection system has been solved. However, the lateral
distortion and geometric deformation of the EIA remains to be resolved. As shown in
Figure 3, we must correct the distorted EIA image and project the non-deformed EIA
into the target projection zone. The distortion of the EIA is corrected by the method of
pre-correction the distortion of perspective transformation in computer graphics.

Figure 3. Correction principle between the distorted image and the target projection zone.

In computer graphics, perspective transformation is defined as a mapping from one
plan to another. Perspective transformation can extract the translation and rotation matrix
between two images from the homography matrix, and it is rendered based on the correct
mapping relation, which satisfies the linear relationship. Assume that point Q (xp, yq, z) is
an image point projected onto the LAHOE without lens distortion by the projection system.
P (x, y) is a target projection zone image point of the Q after the perspective transformation.
The relationship between them can be expressed as:

x
y
1

 = A
[
R t

]
xp
yq
z
1

 (9)

A is the internal reference matrix of the projection system, which includes the image
main point (u0, v0), the focal length f u in the x-direction, and the focal length f v in the
y-direction of the image coordinates. R and t are the external reference matrix of the
projection system. R consists of three rotation angles, α is the light axis pitching angle, β is
the light yaw angle, and ϕ is the rotation angle of the light. The translation matrix t consists
of tx, ty, and tz translation vectors in three directions. Therefore, the lateral distortion can
be solved by the translation matrix t and the geometric deformation can be solved by the
rotation matrix R.

The homography matrix between the real imaging zone and the target projection
imaging zone can be expressed as:x

y
1

 =

 a b e
c d f
u v g

xp
yq
1

 (10)
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Because it is a transformation in a two-dimensional plane, the coordinates of the z-axis
direction are removed. From Equation (10) the following two Equations can be obtained through:[

−xp −yq −1 0 0 0 xpx yqx x
0 0 0 −xp −yq −1 xpy yqy y

]
h = 0 (11)

h =
[
a b e c d f u v g

]
(12)

In normalized processing, where g = 1, eight variables need to be calculated. So,
the matrix can be calculated by four pairs of matching points. Assume, (x1, y1), (x2, y2),
(x3, y3), and (x4, y4) are four orientations in the original coordinate system of the distorted
image of EIA without lens distortion, (x1′ , y1′ ), (x2′ , y2′ ), (x3′ , y3′ ), and (x4′ , y4′ ) are the
corresponding point of target projection coordinate after projection transformation of the
EIA. The relationship between them can be expressed as:

[
x
′

y
′

]
=

[
a b
c d

][
x
y

]
+

[
e
f

]
1 +

[
u v

][x
y

] (13)

a, b, c, d, e, f, u, and v are the correction coefficients of the projection system. When
the correction coefficients of the projection system are obtained, the distortion precorrection of
the EIA can be determined, and the pixel mapping relationship between the mapping target
projection zone and the original projection zone of the distorted image of EIA can be determined.

2.3. Correction of the Projection Zone

The correction process of the target projection zone is shown in Figure 3. Before the
correction, the checkerboard cannot overlap the target projection zone completely, because
the checkerboard has lateral distortion, geometric deformation, and lens distortion, as
shown in Figure 3, and Figure 4a shows that the projection system has lens distortion, lateral
distortion, and geometric deformation. Equation (8) is used to correct the lens distortion.
Then Equation (13) is used to correct the lateral distortion and geometric deformation. The
corrected projection system has an extremely low distortion. The corrected checkerboard
matches the target projection zone exactly, as shown in Figure 4b.

Figure 4. Checkerboard correction process, (a) before correction with distortion, (b) after correction
without distortion.

3. Experiment and Results

The fabrication principle of the LAHOE is shown in Figure 5. The fabrication of the
LAHOE is the typical reflective holographic optical element. The interference pattern
formed by an oblique plane wave reference beam and the spherical wave array, containing
properties of the conventional lens array, is recorded into the holographic material in front
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of the lens array. In the experiment, a green solid-state laser with a power of 2000 mW
was used as the light source, and the green-sensitive photopolymer material was used to
fabricate the LAHOE. The thickness of the photopolymers is 15 µm; the refractive index of
the polymer materials is 1.47, and the resolution of the polymer materials is 12,000 line/mm.
The specific parameters of the optical devices are shown in Table 1. An 80 mm × 90 mm
large size LAHOE was fabricated, and the wavefronts of the lens array were reconstructed
through white light, as shown in Figure 6. The pitch of the lens elemental is 1 mm and the
focal length is 3.3 mm. The diffraction efficiency of LAHOE is 84%.

Figure 5. Schematic diagrams for fabrication of the LAHOE. ES, electronic shutter; OL, objective
lens; P, pinhole; CL, collimating lens; A, aperture; BS, beam splitter; M, mirror; HP, holographic plate;
MLA, micro-lens array.

Table 1. Specific parameters of the optical devices.

Components Parameters Values

Solid-state laser
Power 2000 mW

Wavelength 532 nm

Green-sensitive photopolymer material

Thickness 15 ± 1 µm

Resolution 12,000 line/mm

Sensitive wavelength 532 nm

Refractive index modulation >0.02

Refractive index 1.47

Lens-array Pitch 1 mm

Focal length 3.3 mm

Beam splitter Coupling ratio 1:1

The experimental setup for the reconstruction of the 3D image is shown in Figure 7.
The magnification of the telecentric lens is limited, only a 50 mm × 38 mm rectangular
parallel beam can be projected. Therefore, we chose the 35 mm × 35 mm region as the
target projection zone on the large-size LAHOE. The telecentric lens and the relay optics
serve to collimate the beam projected by the projector. The collimated projection beam
with elemental image array was projected on the LAHOE with the incident angle of 45◦.
When the projection beam reaches the LAHOE, some of the beam produces diffracted light
waves and reconstructs the 3D image, and one portion of the projection beam is reflected,
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and another portion of the projection beam crosses the LAHOE. The camera was used to
obtain the 3D images of the diffracted beam reconstruction. The EIA was generated by the
computer, as shown in Figure 8. The EIA consists of 35 × 35 image elements, it contains “3”
and “D”, in which the position of “3” is +6 mm and the “D” position is −6mm.

Figure 6. Reconstruction of the lens array using the LAHOE with Bragg matched light.

Figure 7. Experimental setup of reconstruction 3D images.

Figure 8. Elemental images for reconstruction of 3D images.
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After correction of distortion of EIA, the EIA, and LAHOE realize precise coupling.
In the process of 3D image reconstruction, the pixel density of the projection beam in the
horizontal and vertical direction is uniform, as shown in Figure 9a,b. In the reconstruction
process, the projection beam was used to irradiate LAHOE. The LAHOE has the optical
properties of a micro-lens array when Bragg conditions are satisfied. The EIA information
carried in the reference light wave was modulated by the LAHOE to reconstruct the 3D
image. We obtained four pictures from the left, right, top, and bottom four viewpoints. The
distortion of EIA was eliminated. We can see the horizontal parallax of the virtual “3D”
from the left and right images and the vertical parallax of the virtual “3D” from the top
and bottom images. The reconstructed 3D images have obvious horizontal and vertical
parallaxes. Visualization 1 clearly shows the horizontal and vertical parallaxes between the
“3”, “D”, and the real-world scene. Reconstructed 3D images exhibit uniform pixel density
in horizontal and vertical directions.

Figure 9. Reconstructed 3D images of distortion correction (see Visualization 1), (a) horizontal
viewing parallax, and (b) vertical viewing parallax.

The 3D images reconstructed by the EIA without any correction are shown in Figure 10.
The EIA exhibits lateral distortion, geometric deformation, and lens distortion, such that the
EIA cannot be accurately coupled to the LAHOE. Consequently, it has different densities
of pixel in horizontal and vertical directions, which causes the difference in the angular
resolution of 3D images in horizontal and vertical directions. Reconstructed 3D images
have serious crosstalk, weak definition, and poor image quality, and the stereoscopic sense
of reconstructed 3D image is not evident. We obtained four pictures from the left, right, top,
and bottom four viewpoints. We can see the horizontal parallax of the virtual “3D” from
the left and right images, and the vertical parallax of the virtual “3D” from the top and
bottom images, but the 3D images have serious crosstalk and weak stereoscopics. The pixel
densities are different in the horizontal and the vertical directions, and the resolution of the
reconstructed 3D images is different in the horizontal and vertical directions. Visualization
2 shows the horizontal and vertical parallaxes between the “3”, “D”, and the real-world
scene, but the 3D images have serious crosstalk.
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Figure 10. Reconstructed 3D images of distortion without correction (See Visualization 2),
(a) horizontal viewing parallax, and (b) vertical viewing parallax.

4. Conclusions

In conclusion, we propose a distortion-corrected projection-type see-through II 3D
display system based on LAHOE. Based on the principle of the projection lens distortion
and the projection system in computer graphics, the problem of lens distortion, lateral
distortion, and geometric deformation of the EIA is eliminated. In the process of 3D image
reconstruction, the causes of asymmetry affecting 3D image reconstruction are analyzed,
and the issues that generate these asymmetric factors are addressed. The EIA is closely
coupled with the LAHOE, and the 3D images with high image quality and significant
sense of stereoscopic are reconstructed. The projection beam in the reconstruction process
makes the uniform pixel density in horizontal and vertical direction. The resolution
of the reconstructed 3D images is uniform in horizontal and vertical direction. In the
reconstruction of the small-size see-through II 3D display, the mismatch between the
EIA and LAHOE is not obvious. However, the mismatch between EIA and LAHOE is
highlighted in large-size see-through II 3D display. The system provides a solution for the
reconstruction of the large-size see-through II 3D display.
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