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Abstract: The object of the present work is to investigate certain new classes of bi-univalent functions
introduced in this paper using the concept of subordination. The research involves a generalized
multiplier transform defined in this paper which is a generalization of known operators and the
modified sigmoid function. The results contained in the proved theorems refer to coefficient estimates
for the functions in the newly introduced classes.
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1. Introduction

In the recent years, the study of bi-univalent functions has developed nicely with
many researchers obtaining new results which proved to have applications in different
areas of science. A line of research regarding bi-univalent functions deals with introducing
and studying new subclasses containing bi-univalent functions with remarkable properties.
Newly defined operators are used for introducing such new subclasses as it is the case for
the results presented in this paper.

The present investigation becomes more unique with the introduction of a special
function, namely the sigmoid function which is known to be an activation function. Sigmoid
function, as an activation function, is inspired by the way the biological nervous system,
such as the brain, processes information. The brain is composed of a large number of highly
interconnected processing elements, the neurons, working as a unit to solve or process
a specific task. The sigmoid function also has a gradient descendant learning algorithm;
hence, its evaluation can be done in several ways, including truncated series expansion.
The results obtained in the present work have applications in computer science and also in
software development for the purpose of information processing and information retrieval
due to the property of the sigmoid function of being differentiable, which is important for
learning algorithms.

The sigmoid function is referred to as special logistic function and is defined by:

g(z) =
1

1 + e−z . (1)

A sigmoid function is a bounded differentiable real function that is defined for all real
input values and has a positive derivative at each point. It is useful in geometric function
theory because of the following properties:
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It outputs real numbers between 0 and 1.
It maps a large domain to a small range.
It is a one-to-one function; hence, the information is well-preserved.
It increases monotonically.

Just recently, precisely in 2013, Fadipe-Joseph et al. [1] defined the modified Sigmoid
function φ(z) as

φ(z) = 2g(z). (2)

They showed among other properties that φ(z) is a function with positive real part and
that φ(z) ∈ P (class of Caratheodory functions).

Interestingly, φ(z) has the following series expansion

φ(z) = 1 +
1
2

z− 1
24

z3 +
1

240
z5 − . . . , (3)

(see Hamzat and Makinde [2], Murugusundaramoorthy and Janani [3], Oladipo and Gbola-
gade [4]).

Let A denote the class of all analytic functions of the form:

f (z) = z +
∞

∑
k=2

akzk (4)

which are analytic in the open unit disc U = {z : |z| < 1}. In addition, let S denote the
subclass of A, consisting of functions which are univalent in U.

It is well known that every function f ∈ S has an inverse f−1(z) defined as

f−1( f (z)) = z, z ∈ U (5)

and
f ( f−1(ω)) = ω, [|ω| < r0( f ) : r0( f ) ≥ 1

4
]. (6)

In addition, one can say that:

g(ω) = f−1(ω) = ω− a2ω2 + (2a2
2 − a3)ω

3 − (5a3
2 − 5a2a3 + a4)ω

4 + · · · = ω +
∞

∑
k=2

bkωk, (7)

where
b2 = −a2, b3 = 2a2

2 − a3, . . . . (8)

A function f ∈ A is said to be bi-univalent in U if both f and its inverse, f−1,
are univalent.

Recently, the pioneering work of Srivastava et al. [5] has truly resuscitated the study
of analytic bi-univalent functions and a rather vast flood of follow-up to this work have
resulted in the literature on the study of various subclasses of analytic univalent functions.

Let Σ denote the class of all analytic bi-univalent functions in U. The class Σ of bi-
univalent functions has been studied intensely in the recent period. In particular, new
classes of bi-univalent functions were introduced and investigated regarding coefficient
properties as it can be seen, for example, in [6–9]. Coefficient estimates for general sub-
classes of m-fold symmetric analytic bi-univalent functions were also obtained recently
using different types of operators [10], applying subordination properties [11], involving
generalization techniques linking the results to previously obtained ones [12], or using
the inverse of the square-root transform of the Koebe function [13]. Subclasses of m-fold
symmetric bi-bazilevic functions associated with modified Sigmoid functions were con-
sidered in [14] and associated with conic domains in [15]. Quantum calculus aspects were
also considered in the investigation of subclasses of m-fold symmetric analytic bi-univalent
functions in [16]. Extensions, generalizations, and improvements of starlikeness criteria
for certain subclasses of analytic and bi-univalent functions were obtained considering
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coefficient estimates [17] and certain coefficient estimates were also given for particular
families of bi-Bazilevic functions of the Ma–Minda type involving the Hohlov operator [18].
Quasi-Subordination was used for investigating new subclasses for bi-univalent functions
in [19] and an integral operator based upon Lucas polynomial was also involved in the
study of subclasses of bi-univalent functions [20]. New subclasses were introduced and
studied considering aspects regarding argument and real part of certain linear combinations
involving m-fold symmetric bi-univalent functions in [21].

However, their results seem to lack full flavor addressing the coefficient problems for
functions in Σ associated with the Sigmoid function. Consequently, the present work aims
at investigating the bi-univalent problems concerning certain classes of analytic function
f (z) ∈ Σ as related to the modified Sigmoid function in the open unit disk.

To achieve this, we consider a linear combination

λp(z) + (1− λ)φ(z), (0 ≤ λ ≤ 1),

where p(z) = 1 + p1z + p2z2 + . . . and φ(z) is as defined in (3).
Let h be univalent in U and f analytic in U, then f is said to be subordinate to h,

written as f ≺ h, if there exists a Schwartz function u which is analytic in U, with u(0) = 0
and |u(z)| < 1 for all z ∈ U such that f (z) = h(u(z)). In addition, let h be univalent in U,
then the following equivalent holds true

f ≺ h⇔ f (0) = h(0) and f (U) ⊂ h(U)

(see Miller and Mocanu [22–24]).

2. Preliminary Definitions and Lemmas

For a function f (z) of the form (4), Swamy [25] introduced and studied a multiplier
differential operator In

α,β f (z) given by

In
β,γ f (z) = z +

∞

∑
k=2

( β + kγ

β + γ

)n
akzk. (9)

In the next definition, the general multiplier transform used for defining the new
classes of bi-univalent functions is introduced.

Definition 1. Let the function f (z) be of the form (4), for β, γ, σ ≥ 0, β + γ + σ > 0 and real
β, the following multiplier linear differential operator Ln

β,γ,σ f (z) is defined as:

Lβ,γ,σ f (z) =
β f (z) + γz f ′(z) + σz

(
z f ′(z)

)′
β + γ + σ

L2
β,γ,σ f (z) = Lβ,γ,σ f (z)

(
Lβ,γ,σ f (z)

)
L3

β,γ,σ f (z) = Lβ,γ,σ f (z)
(

L2
β,γ,σ f (z)

)
...

Ln
β,γ,σ f (z) = Lβ,γ,σ f (z)

(
Ln−1

β,γ,σ f (z)
)
= z +

∞

∑
k=2

(
β + γk + σk2

β + γ + σ

)n

akzk, (10)

Remark 1. Suppose that the function f (z) has the form (4), it is easily verified from (10) that

L0
β,0,0 f (z) = f (z) ∈ A,
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see also [26,27], among others. It is obvious that the operator Ln
β,γ,σ f (z) generalizes many existing

operators of this kind which were introduced and studied by different authors. For instance:

(i) Ln
β,γ,0 f (z) = In

β,γ f (z) studied by Swamy [25].
(ii) Ln

β,1,0 f (z) = In
β f (z), β > −1 studied by Cho and Srivastava [28] and Cho and Kim [29].

(iii) Ln
1,γ,0 f (z) = Nn

γ f (z) studied by Swamy [25].

Definition 2. Let Ω : U → C be a convex univalent function in U satisfying the following
conditions:

Ω(0) = 1 and <{Ω(z)} > 0 (z ∈ U).

Further, let r(s) be defined such that

r(z) = 1 +
∞

∑
κ=1

Bkzk. (11)

The next definitions give the classes of bi-univalent functions which are further inves-
tigated in the section “Main Results”.

Definition 3. Let µ(z) be an analytic function with positive real part on U which satisfies the
conditions µ(0) = 1 and µ′(0) > 0. The function f (z) of the form (4) is said to belong to the class
of multiplier starlike function, ∑∗b(β, γ, σ; µ), of complex order, with the provision that

1 +
1
b


z
[

Ln(β, γ, σ) f (z)
]′

[
Ln(β, γ, σ) f (z)

] − 1

 ≺ µ(z) (12)

and

1 +
1
b


ω
[

Ln(β, γ, σ)g(ω)
]′

[
Ln(β, γ, σ)g(ω)

] − 1

 ≺ µ(ω), (13)

where b is any non-zero complex number, ≺ denotes the subordination sign, n ∈ N0, β, γ, σ ≥ 0,
β + γ + σ > 0 and z, ω ∈ U. From the above definition, it follows that there exists a unit bound
function u(z) satisfying the conditions u(0) = 0 and |u(z)| < 1. Then, we can say that

1 +
1
b


z
[

Ln(β, γ, σ) f (z)
]′

[
Ln(β, γ, σ) f (z)

] − 1

 = µ(u(z)) = λp(z) + (1− λ)φ(z), (0 ≤ λ ≤ 1)

and

1 +
1
b


ω
[

Ln(β, γ, σ)g(ω)
]′

[
Ln(β, γ, σ)g(ω)

] − 1

 = µ(u(ω)) = λq(ω) + (1− λ)φ(ω), (0 ≤ λ ≤ 1).

Definition 4. Let µ(z) be an analytic function with positive real part on U which satisfies the
conditions µ(0) = 1 and µ′(0) > 0. The function f (z) of the form (4) is said to belong to the class
of multiplier convex functions, ∑b(β, γ, σ; µ), of complex order, provided

1 +
1
b


z
[

Ln(β, γ, σ) f (z)
]′′

[
Ln(β, γ, σ) f (z)

]′
 ≺ µ(z) (14)
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and

1 +
1
b


ω
[

Ln(β, γ, σ)g(ω)
]′′

[
Ln(β, γ, σ)g(ω)

]′
 ≺ µ(ω), (15)

where b is any non-zero complex number, ≺ denotes the subordination sign, n ∈ N0, β, γ, σ ≥ 0,
β + γ + σ > 0 and z, ω ∈ U. In addition, from definition (4), it follows that there exists a unit
bound function u(z) satisfying the conditions u(0) = 0 and |u(z)| < 1. Then, we can say that

1 +
1
b


z
[

Ln(β, γ, σ) f (z)
]′′

[
Ln(β, γ, σ) f (z)

]′
 = µ(u(z)) = λp(z) + (1− λ)φ(z), (0 ≤ λ ≤ 1)

and

1 +
1
b


ω
[

Ln(β, γ, σ)g(ω)
]′′

[
Ln(β, γ, σ)g(ω)

]′
 = µ(u(ω)) = λq(ω) + (1− λ)φ(ω), (0 ≤ λ ≤ 1).

Definition 5. Let µ(z) be an analytic function with positive real part on U which satisfies the
conditions µ(0) = 1 and µ′(0) > 0. The function f (z) of the form (4) is said to belong to the class
of multiplier-bounded turning functions, ∑R

b (β, γ, σ; µ), of complex order, provided that

1 +
1
b

{[
Ln(β, γ, σ) f (z)

]′
− 1
}
≺ µ(z) (16)

and

1 +
1
b

{[
Ln(β, γ, σ)g(ω)

]′
− 1
}
≺ µ(ω), (17)

where all parameters involved are as earlier defined. Similarly, from definition (5), there exists a
unit bound function u(z) satisfying the conditions u(0) = 0 and |u(z)| < 1 such that

1 +
1
b

{[
Ln(β, γ, σ) f (z)

]′
− 1
}

= µ(u(z)) = λp(z) + (1− λ)φ(z), (0 ≤ λ ≤ 1)

and

1 +
1
b

{[
Ln(β, γ, σ)g(ω)

]′
− 1
}

= µ(u(ω)) = λq(ω) + (1− λ)φ(ω), (0 ≤ λ ≤ 1).

Example 1. Let

µ(z) =
1 + Az
1 + Bz

= µA,B, (−1 ≤ B < A ≤ 1),

then

(a)

∑ ∗
b(β, γ, σ; µ) = ∑ ∗

b

(
β, γ, σ;

1 + Az
1 + Bz

)
= ∑ ∗

b(β, γ, σ; µA,B)

(b)

∑ b(β, γ, σ; µ) = ∑ b

(
β, γ, σ;

1 + Az
1 + Bz

)
= ∑ b(β, γ, σ; µA,B)

(c)

∑ R
b (β, γ, σ; µ) = ∑ R

b

(
β, γ, σ;

1 + Az
1 + Bz

)
= ∑ R

b (β, γ, σ; µA,B)
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Example 2. Let

µ(z) =
1 + Az
1 + Bz

,

such that A =
(

1−α
α−1

)2
, α ≤ 0 and B = −1. That is, if

µ(z) =
1 +

(
1−α
α−1

)2
z

1− z
= µα (−1 ≤ B < A ≤ 1),

then

(a)

∑ ∗
b(β, γ, σ; µ) = ∑ ∗

b

(
β, γ, σ;

1 +
(

1−α
α−1

)2
z

1− z

)
= ∑ ∗

b(β, γ, σ; µα)

(b)

∑ b(β, γ, σ; µ) = ∑ b

(
β, γ, σ;

1 +
(

1−α
α−1

)2
z

1− z

)
= ∑ b(β, γ, σ; µα)

(c)

∑ R
b (β, γ, σ; µ) = ∑ R

b

(
β, γ, σ;

1 +
(

1−α
α−1

)2
z

1− z

)
= ∑ R

b (β, γ, σ; µα)

Before proceeding to the main results, the following Lemmas shall be necessary.

Lemma 1 ([30]). Let a function p ∈ P be given by

p(z) = 1 +
∞

∑
k=1

pkzk, z ∈ U.

Then,
|pk| ≤ 2, k ∈ N,

where p is the family of functions analytic in U for which

p(0) = 1, Re{p(z)} > 0, z ∈ U.

Lemma 2 ([31]). Let the function r(z) given by

r(z) = 1 +
∞

∑
k=1

Ckzk, z ∈ U

be convex in U. In addition, let the function h(z) given by

l(z) = 1 +
∞

∑
k=1

Lkzk,

be holomorphic in U. If
l(z) ≺ r(z), z ∈ U,

then
|Lk| ≤ |C1|, k ∈ N,

(see also [27,32], among others).
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3. Main Results

In the theorem that follows, we give the coefficient estimates for the functions in the
class ∑∗b (β, γ, σ; µ).

Theorem 1. Let f (z) ∈ ∑∗b (β, γ, σ; µ). Then for β, γ, σ ≥ 0, β + γ + σ > 0 and 0 ≤ λ ≤ 1

∣∣a2
∣∣ ≤

√√√√√√ λ
∣∣b∣∣∣∣B1

∣∣
2
(

β + 3γ + 9σ
β + γ + σ

)n

−
(

β + 2γ + 4σ
β + γ + σ

)2n (18)

and ∣∣a3
∣∣ ≤ λ

∣∣b∣∣∣∣B1
∣∣

2
(

β + 3γ + 9σ
β + γ + σ

)n +

∣∣b∣∣2(1 + λ
(

2
∣∣B1
∣∣− 1

))2

4
(

β + 2γ + 4σ
β + γ + σ

)2n . (19)

Proof. Suppose that f (z) ∈ ∑∗b (β, γ, σ; µ), then from the Definition 3, it follows that

1 +
1
b


z
[

Ln(β, γ, σ) f (z)
]′

[
Ln(β, γ, σ) f (z)

] − 1

 = µ(u(z)) = λp(z) + (1− λ)φ(z)

and

1 +
1
b


ω
[

Ln(β, γ, σ)g(ω)
]′

[
Ln(β, γ, σ)g(ω)

] − 1

 = µ(u(ω)) = λq(ω) + (1− λ)φ(ω).

It implies that

∑∞
k=2(k− 1)

(
β + γk + σk2

β + γ + σ

)n

akzk−1

1 + ∑∞
k=2

(
β + γk + σk2

β + γ + σ

)n

akzk−1

= b
[
λp1 +

1− λ

2

]
z + bλp2z2 + b

[
λp3 −

1− λ

2

]
z3 + . . . (20)

and

∑∞
k=2(k− 1)

(
β + γk + σk2

β + γ + σ

)n

bkωk−1

1 + ∑∞
k=2

(
β + γk + σk2

β + γ + σ

)n

bkωk−1

= b
[
λq1 +

1− λ

2

]
ω + bλq2ω2 + b

[
λq3 −

1− λ

2

]
ω3 + . . . , (21)

where p, q, φ ∈ P (class of Caratheodory functions),

p(z) = 1 +
∞

∑
k=1

pkzk, (z ∈ U), (22)

q(ω) = 1 +
∞

∑
k=1

qkωk, (ω ∈ U) (23)

and φ is as earlier defined in (3).
Equating the coefficients of the same powers of z and ω in (20) and (21), respectively,

then we obtain (
β + 2γ + 4σ

β + γ + σ

)n

a2 =
1
2

b
(

1 + λ(2p1 − 1)
)

, (24)



Symmetry 2022, 14, 1479 8 of 13

2
(

β + 3γ + 9σ

β + γ + σ

)n

a3 −
(

β + 2γ + 4σ

β + γ + σ

)2n

a2
2 = λbp2, (25)

(
β + 2γ + 4σ

β + γ + σ

)n

a2 = −1
2

b
(

1 + λ(2q1 − 1)
)

(26)

and[
4
(

β + 3γ + 9σ

β + γ + σ

)n

−
(

β + 2γ + 4σ

β + γ + σ

)2n
]

a2
2 − 2

(
β + 3γ + 9σ

β + γ + σ

)n

a3 = λbq2, (27)

From (24) and (26), it is observed that

a2 =
b
(

1 + λ(2p1 − 1)
)

(
β + 2γ + 4σ
β + γ + σ

)n = −
b
(

1 + λ(2q1 − 1)
)

(
β + 2γ + 4σ
β + γ + σ

)n

which can easily be verified (with λ = 1) that

p1 = −q1.

If we square both sides of (24) and (26) and add together, then we can easily obtain

a2
2 =

b2
[(

1 + λ
(
2p1 − 1

))2
+
(

1 + λ
(
2q1 − 1

))2]
8
(

β + 2γ + 4σ
β + γ + σ

)2n . (28)

Now, the sum of (25) and (27) yields

a2
2 =

bλ
(

p2 + q2
)

2

[
2
(

β + 3γ + 9σ
β + γ + σ

)n

−
(

β + 2γ + 4σ
β + γ + σ

)2n
] . (29)

Using Lemma 2 in (29), having considered (11), (22), and (23), we have

∣∣pk
∣∣ = ∣∣∣∣ pk(0)

k!

∣∣∣∣ ≤ ∣∣B1
∣∣ and

∣∣qk
∣∣ = ∣∣∣∣ qk(0)

k!

∣∣∣∣ ≤ ∣∣B1
∣∣. (30)

Now, the application of (30) in (29) yields

∣∣a2
∣∣2 ≤ |b|λ

∣∣B1
∣∣

2

[
2
(

β + 3γ + 9σ
β + γ + σ

)n

−
(

β + 2γ + 4σ
β + γ + σ

)2n
]

from where the inequality (18) is obtained.
To obtain the bound on

∣∣a3
∣∣ as contained in (19), subtract (24) from (22) and then

use (29) in the result of the difference, then

a3 =
bλ
(

p2 − q2
)

4
(

β + 3γ + 9σ
β + γ + σ

)n +
b2
[(

1 + λ
(
2p1 − 1

))2
+
(

1 + λ
(
2q1 − 1

))2]
8
(

β + 2γ + 4σ
β + γ + σ

)2n . (31)

Using Lemma 1 and (30) in (31), the inequality (19) is obtained and this completes the
proof of Theorem 1.
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The next result is the consequence of Theorem 1 corresponding to Example 1a.

Consequence 1. Let f (z) ∈ ∑∗b(β, γ, σ; µA,B). Then, for β, γ, σ ≥ 0, β + γ + σ > 0,
−1 ≤ B < A ≤ 1 and 0 ≤ λ ≤ 1

∣∣a2
∣∣ ≤

√√√√√√ λ
∣∣b∣∣(A− B)

2
(

β + 3γ + 9σ
β + γ + σ

)n

−
(

β + 2γ + 4σ
β + γ + σ

)2n (32)

and ∣∣a3
∣∣ ≤ λ

∣∣b∣∣(A− B)

2
(

β + 3γ + 9σ
β + γ + σ

)n +

∣∣b∣∣2(1 + λ
(

2(A− B)− 1
))2

4
(

β + 2γ + 4σ
β + γ + σ

)2n . (33)

The consequence of Theorem 1 corresponding to Example 2a.

Consequence 2. Let f (z) ∈ ∑∗b(β, γ, σ; µα). Then, for β, γ, σ ≥ 0, β + γ + σ > 0 and
0 ≤ λ ≤ 1 ∣∣a2

∣∣ ≤
√√√√√√ 2λ

∣∣b∣∣
2
(

β + 3γ + 9σ
β + γ + σ

)n

−
(

β + 2γ + 4σ
β + γ + σ

)2n (34)

and ∣∣a3
∣∣ ≤ λ

∣∣b∣∣(
β + 3γ + 9σ

β + γ + σ

)n +

∣∣b∣∣2(1 + 3λ
)2

4
(

β + 2γ + 4σ
β + γ + σ

)2n . (35)

Theorem 2. Let f (z) ∈ ∑b(β, γ, σ; µ). Then, for β, γ, σ ≥ 0, β + γ + σ > 0 and 0 ≤ λ ≤ 1,

∣∣a2
∣∣ ≤

√√√√√√ λ
∣∣b∣∣∣∣B1

∣∣
2
[

3
(

β + 3γ + 9σ
β + γ + σ

)n

− 2
(

β + 2γ + 4σ
β + γ + σ

)2n] (36)

and ∣∣a3
∣∣ ≤ λ

∣∣b∣∣∣∣B1
∣∣

6
(

β + 3γ + 9σ
β + γ + σ

)n +

∣∣b∣∣2(1 + λ
(

2
∣∣B1
∣∣− 1

))2

16
(

β + 2γ + 4σ
β + γ + σ

)2n . (37)

Proof. Suppose that f (z) ∈ ∑b (β, γ, σ; µ), then from the Definition 4, it follows that

1 +
1
b


z
[

Ln(β, γ, σ) f (z)
]′′

[
Ln(β, γ, σ) f (z)

]′
 = µ(u(z)) = λp(z) + (1− λ)φ(z), (0 ≤ λ ≤ 1)

and

1 +
1
b


ω
[

Ln(β, γ, σ)g(ω)
]′′

[
Ln(β, γ, σ)g(ω)

]′
 = µ(u(ω)) = λq(ω) + (1− λ)φ(ω), (0 ≤ λ ≤ 1).

It implies that
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∑∞
k=2 k(k− 1)

(
β + γk + σk2

β + γ + σ

)n

akzk−1

1 + ∑∞
k=2 k

(
β + γk + σk2

β + γ + σ

)n

akzk−1

= b
[
λp1 +

1− λ

2

]
z + bλp2z2 + b

[
λp3 −

1− λ

2

]
z3 + . . . (38)

and

∑∞
k=2 k(k− 1)

(
β + γk + σk2

β + γ + σ

)n

bkωk−1

1 + ∑∞
k=2 k

(
β + γk + σk2

β + γ + σ

)n

bkωk−1

= b
[
λq1 +

1− λ

2

]
ω + bλq2ω2 + b

[
λq3 −

1− λ

2

]
ω3 + . . . , (39)

where p, q, φ ∈ P (class of Caratheodory functions). Following the same process as in
Theorem 1, we obtain the required results as contained in (36) and (37).

Next is the consequence of Theorem 2 corresponding to Example 1b

Consequence 3. Let f (z) ∈ ∑b(β, γ, σ; µA,B). Then, for β, γ, σ ≥ 0, β + γ + σ > 0,
−1 ≤ B < A ≤ 1 and 0 ≤ λ ≤ 1,

∣∣a2
∣∣ ≤

√√√√√√ λ
∣∣b∣∣(A− B

)
2
[

3
(

β + 3γ + 9σ
β + γ + σ

)n

− 2
(

β + 2γ + 4σ
β + γ + σ

)2n] (40)

and ∣∣a3
∣∣ ≤ λ

∣∣b∣∣(A− B
)

6
(

β + 3γ + 9σ
β + γ + σ

)n +

∣∣b∣∣2(1 + λ
(

2
(

A− B
)
− 1
))2

16
(

β + 2γ + 4σ
β + γ + σ

)2n . (41)

Next is the consequence of Theorem 2 corresponding to Example 2b.

Consequence 4. Let f (z) ∈ ∑b(β, γ, σ; µα). Then, for β, γ, σ ≥ 0, β + γ + σ > 0 and
0 ≤ λ ≤ 1, ∣∣a2

∣∣ ≤
√√√√√√ λ

∣∣b∣∣[
3
(

β + 3γ + 9σ
β + γ + σ

)n

− 2
(

β + 2γ + 4σ
β + γ + σ

)2n] (42)

and ∣∣a3
∣∣ ≤ λ

∣∣b∣∣
3
(

β + 3γ + 9σ
β + γ + σ

)n +

∣∣b∣∣2(1 + 3λ
)2

16
(

β + 2γ + 4σ
β + γ + σ

)2n . (43)

Theorem 3. Let f (z) ∈ ∑R
b (β, γ, σ; µ). Then, for β, γ, σ ≥ 0, β + γ + σ > 0 and 0 ≤ λ ≤ 1,

∣∣a2
∣∣ ≤

√√√√√√ λ
∣∣b∣∣∣∣B1

∣∣
3
(

β + 3γ + 9σ
β + γ + σ

)n (44)
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and ∣∣a3
∣∣ ≤ λ

∣∣b∣∣∣∣B1
∣∣

3
(

β + 3γ + 9σ
β + γ + σ

)n +

∣∣b∣∣2(1 + λ
(

2
∣∣B1
∣∣− 1

))2

16
(

β + 2γ + 4σ
β + γ + σ

)2n . (45)

Proof. Suppose that f (z) ∈ ∑R
b (β, γ, σ; µ), then from the Definition 5, it follows that

1 +
1
b
{z
[

Ln(β, γ, σ) f (z)
]′
− 1} = µ(u(z)) = λp(z) + (1− λ)φ(z), (0 ≤ λ ≤ 1)

and

1 +
1
b
{ω
[

Ln(β, γ, σ)g(ω)
]′
− 1} = µ(u(ω)) = λq(ω) + (1− λ)φ(ω), (0 ≤ λ ≤ 1).

It implies that

∞

∑
k=2

k
(

β + γk + σk2

β + γ + σ

)n

akzk−1 = b
[
λp1 +

1− λ

2

]
z + bλp2z2 + b

[
λp3 −

1− λ

2

]
z3 + . . . (46)

and

∞

∑
k=2

k
(

β + γk + σk2

β + γ + σ

)n

bkωk−1 = b
[
λq1 +

1− λ

2

]
ω + bλq2ω2 + b

[
λq3 −

1− λ

2

]
ω3 + . . . , (47)

where p, q, φ ∈ P (class of Caratheodory functions). Following the same process as in
Theorem 1, we obtain the required results as revealed in (44) and (45).

Further, we present the consequence of Theorem 3 corresponding to Example 1c.

Consequence 5. Let f (z) ∈ ∑R
b (β, γ, σ; µA,B). Then, for β, γ, σ ≥ 0, β + γ + σ > 0,

−1 ≤ B < A ≤ 1 and 0 ≤ λ ≤ 1,

∣∣a2
∣∣ ≤

√√√√√√ λ
∣∣b∣∣(A− B

)
3
(

β + 3γ + 9σ
β + γ + σ

)n (48)

and ∣∣a3
∣∣ ≤ λ

∣∣b∣∣(A− B
)

3
(

β + 3γ + 9σ
β + γ + σ

)n +

∣∣b∣∣2(1 + λ
(

2
(

A− B
)
− 1
))2

16
(

β + 2γ + 4σ
β + γ + σ

)2n . (49)

Finally, we present the consequence of Theorem 3 corresponding to Example 2c.

Consequence 6. Let f (z) ∈ ∑R
b (β, γ, σ; µα). Then, for β, γ, σ ≥ 0, β + γ + σ > 0 and

0 ≤ λ ≤ 1, ∣∣a2
∣∣ ≤

√√√√√√ 2λ
∣∣b∣∣

3
(

β + 3γ + 9σ
β + γ + σ

)n (50)

and ∣∣a3
∣∣ ≤ 2λ

∣∣b∣∣
3
(

β + 3γ + 9σ
β + γ + σ

)n +

∣∣b∣∣2(1 + 3λ
)2

16
(

β + 2γ + 4σ
β + γ + σ

)2n . (51)
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4. Conclusions

The study conducted in this paper involves three classes of bi-univalent functions
associated with the modified sigmoid function in the open unit disk. They are introduced
in Definitions 3–5 using the general multiplier transform given in Definition 1 and the
concept of subordination. Two interesting examples are constructed for particular values of
the parameters involved in the definition of the classes. The main results are contained in
three theorems in which coefficient estimates are obtained for each of the newly defined
classes of bi-univalent functions. Interesting consequences of the theorems follow when
applying the proved results considering the two examples earlier mentioned.

The new results presented in this paper are interesting for researchers since the co-
efficient estimates obtained in this work could be used in the future to investigate the
Fekete–Szegö relation as well as the Hankel determinants for the newly introduced classes
as seen in the previously cited papers [33,34], among others.
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